
Journal of Functional Analysis 270 (2016) 2126–2167
Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Finite products sets and minimally almost periodic 

groups

V. Bergelson a,1, J.C. Christopherson a, D. Robertson a,∗, 
P. Zorin-Kranich b,2

a Department of Mathematics, The Ohio State University, 231 West 18th Avenue, 
Columbus, OH 43210-1174, USA
b Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem, 91904, 
Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 May 2014
Accepted 18 December 2015
Available online 12 January 2016
Communicated by P. Biane

MSC:
37A15

Keywords:
Correspondence principle
Finite products set
Weak mixing

We characterize those locally compact, second countable, 
amenable groups in which a density version of Hindman’s 
theorem holds and those countable, amenable groups in 
which a two-sided density version of Hindman’s theorem 
holds. In both cases the possible failure can be attributed 
to an abundance of finite-dimensional unitary representations, 
which allows us to construct sets with large density that do not 
contain any shift of a set of measurable recurrence, let alone a 
shift of a finite products set. The possible success is connected 
to the ergodic–theoretic phenomenon of weak mixing via a 
two-sided version of the Furstenberg correspondence principle.
We also construct subsets with large density that are not 
piecewise syndetic in arbitrary non-compact amenable groups. 
For countably infinite amenable groups, the symbolic systems 

* Corresponding author.
E-mail addresses: vitaly@math.ohio-state.edu (V. Bergelson), cory@math.ohio-state.edu

(J.C. Christopherson), robertson@math.ohio-state.edu (D. Robertson), pzorin@math.huji.ac.il
(P. Zorin-Kranich).
1 Gratefully acknowledges the support of the NSF under grants DMS-1162073 and DMS-1500575.
2 Partially supported by the ISF grant 1409/11.
http://dx.doi.org/10.1016/j.jfa.2015.12.008
0022-1236/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jfa.2015.12.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
mailto:vitaly@math.ohio-state.edu
mailto:cory@math.ohio-state.edu
mailto:robertson@math.ohio-state.edu
mailto:pzorin@math.huji.ac.il
http://dx.doi.org/10.1016/j.jfa.2015.12.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2015.12.008&domain=pdf


V. Bergelson et al. / Journal of Functional Analysis 270 (2016) 2126–2167 2127
associated to such sets admit invariant probability measures 
that are not concentrated on their minimal subsystems.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Given a sequence xn in N = {1, 2, . . . } the finite sums set or IP set generated by xn

is defined by

FS(xn) =
{∑

n∈α

xn : ∅ �= α ⊂ N finite
}
.

The following theorem, proved by N. Hindman in 1974, confirmed a conjecture of Graham 
and Rothschild.

Theorem 1.1. (See Hindman [21].) For any finite partition N = C1 ∪ · · · ∪ Cr there is 
some i ∈ {1, . . . , r} and some sequence xn in N such that FS(xn) ⊂ Ci.

Given a partition result, it is natural to ask whether it has a density version. For 
example, van der Waerden’s theorem states that, for any finite partition of N there is 
a cell of the partition containing arbitrarily long arithmetic progressions. The density 
version of van der Waerden’s theorem, Szemerédi’s theorem, states that if E ⊂ N has 
positive upper density, meaning that

d(E) = lim sup
N→∞

|E ∩ {1, . . . , N}|
N

is positive, then E contains arbitrarily long arithmetic progressions. If the above limit 
exists then its value is called the density of E and denoted d(E).

In an attempt to discover a density version of Hindman’s result, Erdős asked whether 
d(E) > 0 implies that E contains a shift of some finite sums set. In other words, does 
every E ⊂ N satisfying d(E) > 0 contain a set of the form FS(xn) + t for some sequence 
xn in N and some t in N? It is necessary to allow for a shift because having positive 
density is a shift-invariant property, whereas being a finite sums set is not. Indeed 2N +1
has positive density but contains no finite sums set. The following theorem of E. Straus 
provided “a counterexample to all such attempts” [14, p. 105].

Theorem 1.2. (E. Straus, unpublished; see [2, Theorem 2.20] or [22, Theorem 11.6].) For 
every ε > 0 there is a set E ⊂ N having density d(E) > 1 − ε such that no shift of E
contains a finite sums set.
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This is proved by removing the tails of sparser and sparser infinite progressions fromN: 
for each n in N one removes a set of the form {ank+n : k ≥ bn}. Since every finite sums 
set FS(xn) intersects every set of the form tN (because infinitely many of the xn are 
congruent modulo t, say) after these removals one is left with a subset of N no shift of 
which contains a finite sums set. Moreover, by carefully choosing the values of an and bn, 
one can ensure that the density of the resulting set exists and is as close to 1 as we like. 
Since any subset F of N with d(F ) = 1 contains arbitrarily long intervals, and hence a 
finite sums set, d(E) > 1 − ε is the best we can expect.

This paper is concerned with the natural task of finding and characterizing groups 
in which an analogue of Theorem 1.2 holds. More specifically, we wish to describe those 
groups in which there are arbitrarily large sets no shift of which contains some sort of 
structured set. To make our results precise we need to decide what we mean by “large” 
and “structured”. We will consider only locally compact, Hausdorff topological groups, 
hereafter called simply “locally compact groups”. Within this class of groups, we can 
define a notion of largeness whenever the group has a Følner sequence.

Definition 1.3. Let G be a locally compact group with a left Haar measure m. A sequence 
N �→ ΦN of compact, positive-measure subsets of G is called a left Følner sequence if

lim
N→∞

m(ΦN ∩ gΦN )
m(ΦN ) = 1 (1.4)

uniformly on compact subsets of G, and a right Følner sequence if

lim
N→∞

m(ΦNg ∩ ΦN )
m(ΦN ) = 1

uniformly on compact subsets of G. By a two-sided Følner sequence we mean a sequence 
that is both a left Følner sequence and a right Følner sequence.

A locally compact group G with a left Haar measure m is said to be amenable if 
L∞(G, m) has a left-invariant mean. Every locally compact, second countable, amenable 
group has a left Følner sequence [27, Theorem 4.16]. This was originally proved by Følner 
for countable groups in [16].

Definition 1.5. Let Φ be a left, right, or two-sided Følner sequence in a locally com-
pact, second countable, amenable group G with a left Haar measure m and let E be a 
measurable subset of G. Define the upper density of E with respect to Φ to be

dΦ(E) = lim sup
N→∞

m(E ∩ ΦN )
m(ΦN ) ,

the lower density of E with respect to Φ by
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dΦ(E) = lim inf
N→∞

m(E ∩ ΦN )
m(ΦN ) ,

and the density of E with respect to Φ as dΦ(E) = dΦ(E) = dΦ(E) whenever the limit 
exists.

Thus the question we wish to answer is the following one: in which locally compact, 
second countable, amenable groups is it possible to find a subset with arbitrarily large 
density no shift of which contains a set of some specified type? In this paper we concern 
ourselves with two types of sets: piecewise syndetic sets and sets of measurable recurrence.

Definition 1.6. Let G be a topological group. A subset S of G is called syndetic if there 
exists a compact set K such that KS = G. A subset T of G is called thick if for every 
compact set K there exists g ∈ G such that Kg ⊂ T . A subset P of G is called piecewise 
syndetic if there exists a compact set K such that KP is thick.

To be precise, we should speak of “left thick”, “left syndetic” and “left piecewise 
syndetic” sets. However, since we will not need the corresponding right-sided notions, 
we will continue to omit “left” from the terminology.

Definition 1.7. Let (X, B, μ) be a separable probability space. By a measure-preserving 
action of a topological group G on (X, B, μ) we mean a jointly measurable map T :
G ×X → X such that the induced maps T g : X → X preserve μ and satisfy T gTh = T gh

for all g, h in G.

Definition 1.8. A subset R of a topological group G is a set of measurable recurrence if 
for every compact set K in G, every measure-preserving action T of G on a separable 
probability space (X, B, μ), and every non-null, measurable subset A of X there exists 
g in R \K such that μ(A ∩ T gA) > 0.

For piecewise-syndetic sets we have a version of Theorem 1.2 in every locally compact, 
second countable, amenable group that is not compact. The proof is given in Section 6.

Theorem 1.9. For any locally compact, second countable, amenable group G that is not 
compact, any left Følner sequence Φ in G, and any ε > 0 there is a closed subset Q of G
with dΦ(Q) > 1 − ε that is not piecewise syndetic.

Whether a version of Theorem 1.2 holds for sets of measurable recurrence depends on 
how many finite-dimensional representations the group has.

Definition 1.10. By a representation of a topological group G we mean a continuous 
homomorphism from G to the unitary group of a complex Hilbert space. A group is 
a WM group if it has no non-trivial finite-dimensional representations. A group is a 
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virtually WM group if it has a subgroup of finite index that is a WM group. Lastly, 
a group is WM-by-compact if it has a closed, normal, WM subgroup that is cocompact.

The terminology WM is from ergodic theory. In [4], a topological group is said to 
be WM if any ergodic, measure preserving action is weakly mixing. By Theorem 3.4 in 
[30], this agrees with our terminology. It follows immediately from von Neumann’s work 
on almost-periodic functions (discussed in Section 2) that a group is a WM group if 
and only if it is minimally almost-periodic (which means that the only almost-periodic 
functions on the group are the constant functions).

One can measure how far from being WM a topological group G is by considering 
the closed, normal subgroup G0 of G, obtained by intersecting the kernels of all finite-
dimensional representations: G is WM if and only if G0 = G. We have a version of 
Theorem 1.2 for sets of measurable recurrence whenever G/G0 is not compact. We give 
the proof in Section 5.

Theorem 1.11. Let G be a locally compact, second countable, amenable group such that 
G/G0 is not compact. Then for any left Følner sequence Φ in G and any ε > 0 there is 
a measurable subset E of G with dΦ(E) > 1 − ε such that no set of the form KEK with 
K ⊂ G compact contains a set of measurable recurrence.

When G = Z the group G0 is trivial (G0 is trivial for every countable, abelian group) 
so Theorem 1.11 strengthens Theorem 1.2 by exhibiting a set E with dΦ(E) > 1 − ε

for any prescribed Følner sequence Φ. Since every finite sums set is a set of measurable 
recurrence (see Example 2.22) it also strengthens Theorem 1.2 by widening the class of 
sets that cannot be shifted into E.

As in the proof of Theorem 1.2, we will prove Theorem 1.11 by removing sparser and 
sparser sets from G. To prohibit shifts of sets of measurable recurrence, we will construct 
E by removing from G shifts of tails of return time sets arising from certain G actions. 
That is, for certain measure-preserving actions T : G ×X → X we will remove from G
shifts of tails of sets with small density of the form {g ∈ G : T gx ∈ U}. These actions 
will have a unique invariant measure, which will imply that the density of the sets we 
remove will exist. Combining this with a version of the monotone convergence theorem 
for density (Lemma 5.1) will allow us to prove that the density dΦ(E) exists. It is only 
when G/G0 is not compact that we can produce sufficiently many actions suitable for 
this approach.

The two-sided finite product sets, which we now define, are what prevent Theorem 1.11
from holding in the WM case.

Definition 1.12. Let F = {α ⊂ N : 0 < |α| < ∞}. For any sequence gn in a topological 
group G such that gn → ∞ (in the sense that it eventually leaves any compact subset 
of G) and any α = {k1 < · · · < km} in F define Iα(gn) = gk1 · · · gkm

and Dα(gn) =
gkm

· · · gk1 . Then FPI(gn) := {Iα(gn) : α ∈ F} is the increasing finite products set



V. Bergelson et al. / Journal of Functional Analysis 270 (2016) 2126–2167 2131
determined by the sequence gn and FPD(gn) := {Dα(gn) : α ∈ F} is the decreasing 
finite products set determined by the sequence gn. Put I∅(gn) = D∅(gn) = idG. Lastly, 
define by

FP(gn) = {Iα(gn)Dβ(gn) : α, β ∈ F ∪ {∅}, α ∩ β = ∅, α ∪ β �= ∅}

the two-sided finite products set determined by the sequence gn.

We insist that the sequence gn determining a finite products set escapes to infinity 
in order to produce sets of measurable recurrence, cf. Example 2.22. Note that FP(gn)
contains both FPI(gn) and FPD(gn) because we can take either β or α to be empty.

Definition 1.13. Let G be a locally compact, second countable, amenable group. A subset 
S of G is called left substantial if S ⊃ UW for some non-empty, open subset U of G
containing idG and some measurable subset W of G having positive upper density with 
respect to some left Følner sequence in G.

By [4, Theorem 2.4], a locally compact, second countable, amenable group G is WM 
if and only if every left substantial subset of G contains an increasing finite products set. 
It follows that Theorem 1.11 fails badly when G is WM.

Definition 1.14. Let G be a locally compact, second countable, amenable, unimodular 
group. We say that a subset S of G is substantial if S ⊃ UWU for some non-empty, 
open subset U of G containing idG and some measurable subset W of G having positive 
upper density with respect to some two-sided Følner sequence in G.

Our next result, a two-sided version of [4, Theorem 2.4], strengthens the degree to 
which a version of Theorem 1.2 is unavailable in WM groups. (Note that WM groups 
are always unimodular by Lemma 2.1.)

Theorem 1.15. Let G be a locally compact, second countable, amenable, WM group. Then 
every substantial subset of G contains a two-sided finite products set.

We would be interested to know whether two-sided finite products sets are partition 
regular.

Question 1.16. Is it true that, for any finite partition C1 ∪ · · · ∪ Cr of an infinite group 
G one can find 1 ≤ i ≤ r such that Ci contains a two-sided finite products set?

As in [4], we deduce Theorem 1.15 from results about measurable recurrence of WM 
groups using a version of the Furstenberg correspondence principle. This is why we 
restrict out attention to substantial subsets: as explained in Section 3, there is in general 
no correspondence principle for arbitrary positive-density subsets.
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Since two-sided finite products sets involve multiplication on the left and on the right, 
we will need a two-sided version of the correspondence principle to prove Theorem 1.15. 
We develop such a principle in Section 3. When G has a two-sided Følner sequence the 
correspondence principle can be stated as follows.

Theorem 1.17. Let G be a locally compact, second countable, amenable group with a left 
Haar measure m and a two-sided Følner sequence Φ. Let W be a Borel subset of G, let 
U ⊂ G be an open neighborhood of the identity and let S ⊃ UWU be measurable. Then 
there is a compact metric space X with a continuous G × G action L × R, an L × R

invariant Borel probability measure μ on X and a non-negative, continuous function ξ
on X such that

dΦ(g−1
1 Sh1 ∩ · · · ∩ g−1

n Shn) ≥
∫

Lg1Rh1ξ · · ·LgnRhnξ dμ

for any g1, . . . , gn, h1, . . . , hn in G.

See Theorem 3.2 for the general version, which also shows it is possible to assume μ
is ergodic for L ×R at the cost of the Følner sequence.

To prove Theorem 1.15 we need to exhibit multiple recurrence for the measure pre-
serving actions L and R produced by our correspondence principle. Using results from 
[9], which are based on ideas introduced in [23] and [1], we will obtain the following 
strong form of recurrence (cf. Corollary 4.9).

Theorem 1.18. Let G be a locally compact, second countable, amenable, WM group and 
let T1, T2 be measure-preserving actions of G on a probability space (X, B, μ) such that 
(g, h) �→ T g

1 T
h
2 is an ergodic G × G action on (X, B, μ). Then for any 0 ≤ f ≤ 1 in 

L∞(X, B, μ) and any ε > 0 the set

{
g ∈ G :

∫
f · T g

1 f · T g
1 T

g
2 f dμ ≥

(∫
f dμ

)4

− ε

}

has density 1 with respect to every left Følner sequence on G.

We will show (see Example 4.12) that it is not sufficient to assume the set in Theo-
rem 1.15 is left substantial. In fact we will construct, in a countable group, a set that 
has density 1 with respect to a left Følner sequence and yet cannot contain a decreasing 
finite products set. By [4, Theorem 2.4] this set must have zero density with respect 
to every right Følner sequence. The existence of such a set answers the question, raised 
in [12], of whether a set having positive upper density with respect to some left Følner 
sequence must have positive upper density for some right Følner sequence.

Our next result, a consequence of Theorem 1.15, shows that a version of Theorem 1.2
fails to hold whenever G is WM-by-compact.
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Theorem 1.19. Let G be a locally compact, second countable, amenable group that is 
WM-by-compact but not WM. Then every substantial subset of G contains a left-shift of 
some two-sided finite products set and a right-shift of some (possibly different) two-sided 
finite products set. On the other hand, for every two-sided Følner sequence Φ in G there 
exists a subset of G having positive upper density with respect to Φ containing no set of 
measurable recurrence.

In view of the fact (see Section 2.3 below) that a countable group G is virtually WM if 
and only if G0 has finite index, Theorems 1.11, 1.15 and 1.19 together yield the following 
trichotomy for countable, amenable groups.

Theorem 1.20. Let G be a countable, infinite, amenable group. Then exactly one of the 
following holds.

1. G is WM. Then every subset of G having positive upper density with respect to some 
two-sided Følner sequences contains a two-sided finite products set.

2. G is virtually WM, but not WM. Then every subset of G having positive upper density 
with respect to some two-sided Følner sequences contains a left shift of some two-sided 
finite products set and a right shift of some two-sided finite products set. However, 
for any two-sided Følner sequence there is a subset with positive upper density that 
does not contain a set of measurable recurrence.

3. G is not virtually WM. Then for any two-sided Følner sequence Φ and any ε > 0
there is a subset E of G with dΦ(E) > 1 −ε such that no set of the form KEK, where 
K ⊂ G is finite, contains a set of measurable recurrence.

In general, however, the situation is more complicated. As Example 2.16 shows, there 
are locally compact, second countable, amenable groups G which have cocompact von 
Neumann kernel and yet fail to be WM-by-compact. Nevertheless, for such groups we 
still have a one-sided version of Theorem 1.19.

Theorem 1.21. Let G be a non-compact, locally compact, second countable, amenable 
group such that G/G0 is compact. Let S be a substantial subset of G. Then S contains 
a (left or right) shift of an increasing finite products set.

Question 1.22. Does a two-sided version of Theorem 1.19 hold?

Thus we have the following one-sided trichotomy for locally compact, second count-
able, amenable groups that are not compact.

Theorem 1.23. Let G be a locally compact, second countable, amenable group that is not 
compact. Then exactly one of the following holds.
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1. G is WM. Then every substantial subset of G contains an increasing finite products 
set.

2. G is not WM, but G/G0 is compact. Then every substantial subset of G contains 
a left shift of an increasing finite products set and a right shift of an increasing 
finite products set. However, there are substantial sets that do not contain a set of 
measurable recurrence.

3. G/G0 is not compact. Then there are substantial subsets with density arbitrarily close 
to 1 no shift of which contains a set of measurable recurrence.

The rest of the paper runs as follows. In the next section we recall some necessary facts 
about locally compact groups, Følner conditions and almost periodic functions, and what 
we need about topological dynamics, sets of measurable recurrence, and certain classes of 
large subsets of groups. In Section 3 we discuss a two-sided Furstenberg correspondence 
principle that relates ergodic theory to combinatorics. Section 4 starts with the necessary 
background on magic extensions and the multiple recurrence results these imply. After 
using these results to prove Theorem 1.15, we give an example to show that the result 
is not always true for left substantial sets. We conclude the section with a proof of 
Theorem 1.19. In Section 5 we prove Theorem 1.11 using a version of the monotone 
convergence theorem for density and describe some combinatorial properties of the sets 
the theorem produces. Lastly, in Section 6, we prove Theorem 1.9 and use this result 
to exhibit a topological dynamical system (X, G) in which the only minimal closed, 
invariant subset of X is a singleton, but having an invariant measure that is non-atomic.

We would like to thank the anonymous referees for their helpful suggestions, and 
Klaus Schmidt for pointing out Example 2.16.

2. Preliminaries

Throughout this paper, we write “locally compact group” as a shorthand for “locally 
compact, Hausdorff topological group”.

2.1. Locally compact groups

We will prove most of our results for locally compact, second countable, amenable 
groups. Working at this level of generality exposes more completely the differences be-
tween left multiplication and right multiplication.

Throughout this section G denotes a locally compact, second countable group and m
is a fixed left Haar measure on G. Given g in G and a function f : G → R we denote 
by lgf and rgf the functions G → R defined by (lgf)(x) = f(g−1x) and (rgf)(x) =
f(xg) respectively. With the exception of these l and r being lowercase, we follow the 
notational conventions in [15]. For instance, ‖ · ‖∞ denotes the supremum norm on 
bounded functions, and given a function f on G, we define f̌ by f̌(g) = f(g−1) for all g
in G.
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The modular function of G is the unique continuous homomorphism � : G → (0, ∞)
such that �(g)‖rgf‖1 = ‖f‖1 for every g ∈ G and f ∈ L1(G, m). Recall that G is said 
to be unimodular if � = 1. We record the following for completeness.

Lemma 2.1. Any locally compact, WM group G is unimodular.

Proof. Composing the modular function � of G with any character of (0, ∞) gives a 
representation of G on C. Since G is WM this representation is trivial, so the modular 
function takes values in the kernel of the character. Choosing characters whose kernels 
intersect trivially shows that � = 1. �

The space L1(G, m) becomes an involutive Banach algebra upon defining an isometric 
involution f �→ f∗ by f∗(x) = f(x−1)�(x−1) and taking the convolution

(f � h)(x) =
∫

f(y)h(y−1x) dm(y) =
∫

f(xy)h(y−1) dm(y)

as the multiplication. We have lg(f � h) = (lgf) � h and rg(f � h) = f � (rgh) for any 
g ∈ G and any functions f, h in L1(G, m).

Definition 2.2. A function f : G → R is left uniformly continuous if, for any ε > 0, there 
is a neighborhood V of idG in G such that ‖lvf − f‖∞ < ε for all v in V and right 
uniformly continuous if, for any ε > 0, there is a neighborhood V of idG in G such that 
‖rvf − f‖∞ < ε for all v in V . A function is uniformly continuous if it is both left and 
right uniformly continuous.

Note that the space of uniformly continuous functions is closed in the supremum 
norm. Since l is a continuous action of G on L1(G, m), the convolution f � h is left 
uniformly continuous and the convolution h � f̌ is right uniformly continuous whenever 
f ∈ L1(G, m) and h ∈ L∞(G, m).

We conclude the discussion of general locally compact, second countable groups with 
the following basic fact that we will use often.

Lemma 2.3. Let G be a locally compact, second countable group. Then there exists an 
increasing sequence K1 ⊂ K2 ⊂ · · · of compact subsets of G such that every compact 
subset of G is contained in some KN . In particular G = ∪{KN : N ∈ N}.

Proof. Let g1, g2, . . . be a dense sequence in G and let U be a compact neighborhood 
of idG. Let KN = Ug1 ∪ · · · ∪ UgN for each N in N. Let V be the interior of U . For 
any compact subset K of G we can find N in N such that V g1 ∪ · · · ∪ V gN ⊃ K. Thus 
K ⊂ KN . Since G is locally compact the sets KN cover G. �
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2.2. Følner conditions

We will make use of two Følner conditions: Følner sequences and Reiter sequences.
We remark that it suffices to consider countably many compact sets K when proving 

uniformity in (1.4). This follows from Lemma 2.3. In fact, it even suffices to verify (1.4)
for almost every g, since the local uniformity then follows from Egorov’s theorem and 
continuity of convolutions.

Every locally compact, second countable, amenable group has a left Følner sequence 
[27, Theorem 4.16]. Since we fixed a left Haar measure m to begin with, it is not imme-
diately clear that such groups have right Følner sequences.

Lemma 2.4. Let G be a locally compact, second countable, amenable group with a left 
Haar measure m. Then G has a right Følner sequence if and only if G is unimodular.

Proof. When G is unimodular the right Haar measure m̃ defined by m̃(E) = m(E−1)
agrees with m on Borel sets. If follows from this that N �→ Φ−1

N is a right Følner sequence 
whenever Φ is a left Følner sequence. On the other hand, if G is not unimodular then �
is unbounded so there is some g in G with �(g) ≥ 3. Thus m(Eg�E) ≥ 2m(E) for all 
Borel sets E, precluding the existence of a right Følner sequence. �

Thus it is impossible to find a two-sided Følner sequence in a general locally compact, 
second countable, amenable group. However, by relaxing the requirement that Φ be a 
sequence of sets we can overcome this problem.

Definition 2.5. A sequence Φ of non-negative functions in L1(G, m) each having integral 1
is called a left Reiter sequence if

‖lgΦN − ΦN‖1 → 0 (2.6)

for every g ∈ G, a right Reiter sequence if

‖�(g)rgΦN − ΦN‖1 → 0 (2.7)

for every g ∈ G, and a two-sided Reiter sequence if it is both left and right Reiter.

Note that if Φ is a left Følner sequence in a locally compact, second countable group 
G then

N �→ 1
m(ΦN ) · 1ΦN

(2.8)

is a left Reiter sequence. Thus in particular every locally compact, second countable, 
amenable group G has a left Reiter sequence. Moreover, given a left Følner sequence Φ
the sequence
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N �→ 1
m(ΦN )2 · 1ΦN

� 1∗
ΦN

is a two-sided Reiter sequence, so every locally compact, second countable, amenable 
group has such a sequence. Note also that, when G is unimodular, every left/right/two-
sided Følner sequence Φ induces, via (2.8), a left/right/two-sided Reiter sequence.

Reiter sequences give rise to a notion of density that agrees with the usual notion of 
density when the sequence happens to arise from a Følner sequence as in (2.8).

Definition 2.9. Let Φ be a left/right/two-sided Reiter sequence in L1(G, m). Given a 
Borel subset E of G, denote by

dΦ(E) = lim sup
N→∞

∫
1E · ΦN dm

the upper density of E with respect to Φ. The lower density of E with respect to Φ, 
which is denoted dΦ(E), is defined as the corresponding lim inf, and the density of E
with respect to Φ is the value dΦ(E) of the limit, if it exists.

In unimodular groups, the standard slicing argument allows one to construct a two-
sided Følner sequence from a given two-sided Reiter sequence. We will make use of a 
relativized version of this construction, in which the resulting Følner sequence assigns to 
a given subset a lower density not undercutting the upper density with respect to the 
given two-sided Reiter sequence.

Proposition 2.10. Let G be a locally compact, second countable, amenable group that is 
unimodular, and let Φ be a two-sided Reiter sequence in L1(G, m). Then for every Borel 
subset E ⊂ G there exists a two-sided Følner sequence Ψ such that dΨ(E) ≥ dΦ(E).

This result implies in particular that every locally compact, second countable uni-
modular amenable group admits a two-sided Følner sequence. For a shorter proof of this 
fact see [26, I.§1, Proposition 2].

Proof of Proposition 2.10. Let r = dΦ(E). Passing to a subsequence we may assume 
that dΦ(E) = r.

Claim. Let K ⊂ G be a compact set and ε > 0. Then there exists a subset K ′ ⊂ K with 
m(K \K ′) < ε and a nonnull compact set F in G such that m(F�xF )/m(F ) < ε and 
m(Fx�F )/m(F ) < ε for every x ∈ K ′ and m(E ∩ F )/m(F ) > r − ε.

We have ΦN =
∫∞
0 1AN,h

dh =
∫∞
0 χN,h dλN (h), where AN,h = {ΦN > h} are the 

superlevel sets, χN,h = m(AN,h)−11AN,h
are the normalized characteristic functions, and 

λN is the probability measure on (0, ∞) with density h �→ m(AN,h) with respect to the 
Lebesgue measure. We have
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r − ε <

∫
ΦN1E dm =

∞∫
0

∫
E

χN,h dm dλN (h)

for sufficiently large N . It follows that the set H = {h :
∫
E
χN,h dm > r − 2ε} satisfies 

λN (H) ≥ ε
1−(r−2ε) .

Consider

|lxΦN − ΦN | =
∣∣∣

∞∫
0

1xAN,h
− 1AN,h

dh
∣∣∣.

The central observation in the slicing argument is that the sets AN,h are nested, so the 
integrand on the right-hand side cannot take both strictly positive and strictly negative 
values at any given point. Therefore the right-hand side equals

∞∫
0

|1xAN,h
− 1AN,h

| dh.

It follows that

‖lxΦN − ΦN‖1 =
∞∫
0

m(xAN,h�AN,h) dh =
∞∫
0

m(xAN,h�AN,h)
m(AN,h) dλN (h).

If N is sufficiently large, then by (2.6) and the dominated convergence theorem

ε

1 − (r − 2ε)
ε2

2 >

∫
K

‖lxΦN − ΦN‖1 dm(x)

=
∞∫
0

∫
K

m(xAN,h�AN,h)
m(AN,h) dm(x) dλN (h).

Analogously, by (2.7), the dominated convergence theorem and, crucially, the fact that 
G is unimodular, for sufficiently large N we have

ε

1 − (r − 2ε)
ε2

2 >

∞∫
0

∫
K

m(AN,hx�AN,h)
m(AN,h) dm(x) dλN (h).

It follows that
∫ m(xAN,h�AN,h)

m(AN,h) + m(AN,hx�AN,h)
m(AN,h) dm(x) < ε2
K
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for some h ∈ H. Therefore m(xAN,h�AN,h)
m(AN,h) + m(AN,hx�AN,h)

m(AN,h) < ε for x in a subset K ′ ⊂ K

with m(K \K ′) < ε, proving the claim.

Claim. Let K ⊂ G be a compact set and ε > 0. Then there exists a nonnull compact set 
F in G such that m(xF�F )/m(F ) < ε and m(Fx�F )/m(F ) < ε for every x ∈ K and 
m(E ∩ F )/m(F ) > r − ε.

We may assume that m(K) > ε. We apply the previous claim to the set K̃ := K∪KK

with ε/2 in place of ε. We obtain a subset K ′ ⊂ K̃ with m(K \K ′) < ε/2 and a compact 
set F in G such that m(xF�F )/m(F ) < ε/2 and m(Fx�F )/m(F ) < ε/2 for every 
x ∈ K ′ and m(E ∩ F )/m(F ) > r − ε.

Let now k ∈ K. Then we have kK̃ ∩ K̃ ⊇ kK, so that m(kK̃ ∩ K̃) > ε. It follows that 
kK ′ ∩K ′ �= ∅, so that k = k1k

−1
2 for some k1, k2 ∈ K ′. Therefore

m(kF�F ) = m(k−1
2 F�k−1

1 F ) ≤ m(k−1
2 F�F ) + m(F�k−1

1 F )

≤ m(F�k2F ) + m(k1F�F ) < ε

and, since G is unimodular,

m(Fk�F ) = m(Fk1�Fk2) ≤ m(Fk1�F ) + m(F�Fk2) < ε.

This proves the claim.
The conclusion of the theorem follows quickly using the observation that it suffices 

to verify (1.4) for the increasing sequence of compact sets K1 ⊂ K2 ⊂ · · · given by 
Lemma 2.3: let the sets ΨN be given by the last claim with the compact sets KN and 
ε = 2−N . �
Definition 2.11. Let G be a locally compact, second countable, amenable group. Define 
by

d∗(E) = sup
{
dΦ(E) : Φ a two-sided Reiter sequence

}
the two-sided upper Banach density of a Borel subset E of G.

Note that, by Proposition 2.10, when G is unimodular the definition of two-sided upper 
Banach density is unchanged if one considers the supremum over only the two-sided 
Følner sequences.

2.3. Almost periodic functions

We will now recall the notion of an almost-periodic function on a locally compact, 
second countable group G and its relationship with the finite-dimensional representa-
tions of G. Denote by Cb(G) the Banach space of all bounded continuous functions 



2140 V. Bergelson et al. / Journal of Functional Analysis 270 (2016) 2126–2167
f : G → C equipped with the supremum norm. The G-actions l and r on Cb(G) are iso-
metric. A function f ∈ Cb(G) is called almost periodic if one of the following equivalent 
conditions holds.

1. The subset {lgf : g ∈ G} of Cb(G) is relatively compact,
2. the subset {rgf : g ∈ G} of Cb(G) is relatively compact, or
3. f is the pullback of a continuous function under the maximal topological group com-

pactification ι : G → Ḡ (also called the almost periodic or Bohr compactification).

For the equivalence (1) ⇐⇒ (2) see [7, Theorem 9.2] and for the equivalence (2) ⇐⇒
(3) see [7, Remark 9.8]. Denote by AP(G) the space of all almost periodic functions on G. 
It follows from the characterization (3) that almost periodic functions are uniformly 
continuous.

The matrix coefficients of a finite-dimensional continuous representation give rise to 
almost-periodic functions on G. Specifically, given a continuous representation φ of G
on a finite-dimensional, complex Hilbert space V and vectors x, y in V we can form the 
almost-periodic function f(g) = 〈φ(g)x, y〉.

Theorem 2.12. (See [34, Theorems 30 and 31].) Matrix coefficients span a dense subspace 
of AP(G).

The constant functions are always almost-periodic. There are groups having no other 
almost-periodic functions (see [35] and Examples 2.13 and 2.14). Such groups are said to 
be minimally almost-periodic. Theorem 2.12 implies that a group is minimally almost-
periodic if and only if it is a WM group. In view of the Peter–Weyl theorem, non-trivial 
compact groups are never WM groups.

Example 2.13. Recall that a group is called periodic if each of its elements has finite 
order. Let G be a countably infinite periodic group that is the union of an increasing 
sequence of simple subgroups Gn (a constant sequence Gn = G is allowed). Then G is 
WM. For contradiction assume that G admits a non-trivial finite-dimensional unitary 
representation π. Then π is faithful on every simple subgroup on which it is non-trivial, 
so it is faithful on G. The Jordan–Schur theorem [11, Theorem 36.14] now implies that 
G has a finite index normal abelian subgroup H. In particular, H∩Gn ⊂ Gn is a normal 
abelian subgroup for each n, and it is non-trivial for sufficiently large n, a contradiction.

This applies, for instance, to the finite alternating group of the integers A(N), which 
is the subgroup of the finite symmetric group of the integers

S(N) = {σ : N → N : σ is a bijection and {n ∈ N : σ(n) �= n} is finite}

consisting of the even permutations. Indeed, A(N) is the union ∪An where An is the 
alternating group on n points. Now [S(N) : A(N)] = 2, so S(N) is a virtually WM group. 
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On the other hand, φ(σ) = (−1)sgn(σ) defines a non-trivial representation of S(N), so 
S(N) is not a WM group.

This also applies to the projective linear group PSLn(F ) over an infinite algebraic field 
F of finite characteristic for any n ≥ 2. Indeed, F can be written as an increasing union 
of finite subfields F (k), and PSLn(F ) is the increasing union of copies of PSLn(F (k)). It 
is a classic result that PSLn(F (k)) is simple unless n = 2 and |F (k)| = 2, 3.

In these examples the groups G are amenable since they are locally finite.

Example 2.14. Recall that a group is called residually finite if its points are separated 
by the homomorphisms into finite groups. By [25, Theorem 7] any finitely generated 
group that admits a faithful representation over a field of characteristic zero is residually 
finite. It follows that any countably infinite, finitely generated, simple group G is WM. 
Indeed, suppose that G is not WM. Since G is simple, this implies that G has a faithful 
finite-dimensional representation. By the result cited above this forces G to be residually 
finite, which contradicts simplicity.

It has been recently shown that there exist (many) countably infinite, finitely gener-
ated, simple, amenable groups, see [24, Corollary B].

It follows from Theorem 2.12 that the subset

{g ∈ G : f(g) = f(idG) for all f ∈ AP(G)}

of G, sometimes called the von Neumann kernel of G, is precisely G0. In fact, G0 is the 
kernel of the almost periodic compactification ι of G. Note, however, that G0 need not 
be a WM group.

Example 2.15. Let

G =
{(

u v
0 1

)
: u, v ∈ Q, u �= 0

}

be the affine group of Q. It is shown in [35] that

G0 =
{(

1 v
0 1

)
: v ∈ Q

}
.

Clearly G0, which is isomorphic to (Q, +), is not WM.

The locally compact, second countable groups G can be classified according to the 
properties of their almost periodic compactification ι : G → Ḡ as follows.

1. The almost periodic compactification ι : G → Ḡ is not a surjective map. Equivalently, 
G/G0 is not compact. Groups with this property are the subject of Theorem 1.11. 
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In this case G is not WM-by-compact, since for any WM subgroup H ≤ G we have 
H ≤ G0, and if G/H is compact, then G/G0 would also be compact.

2. The almost periodic compactification ι : G → Ḡ is surjective. In this case our 
knowledge depends on the cardinality of Ḡ.
(a) Ḡ consists of one point, or equivalently G = G0, or G is WM. In this case we 

have Theorem 1.15.
(b) Ḡ consists of more than one point but is finite, or equivalently 1 < [G : G0] < ∞. 

In this case G0 is WM, since any non-trivial finite-dimensional representation of 
G0 would induce a finite-dimensional representation of G that does not vanish 
identically on G0. Corollary 1.19 holds.

(c) Ḡ is infinite. In this case G0 need not be WM and, more generally, G need not 
be WM-by-compact (see Example 2.16). Theorem 1.21 holds. Note that this case 
cannot occur for discrete G.

Example 2.16 (K. Schmidt). The von Neumann kernel of a connected, locally compact 
group admits an explicit description, see [33, Theorem 3]. A special case of this descrip-
tion shows that the von Neumann kernel of a solvable, connected, locally compact group 
is the closed commutator subgroup (this can be seen as a version of Lie–Kolchin theo-
rem, cf. [32, Theorem 3]). Thus the von Neumann kernel G0 of the semidirect product 
G = SO(2) � R2 (taken with respect to the defining action of SO(2) on R2) equals R2. 
This shows that G0 need not be WM when G/G0 is compact in the case that G is not 
discrete.

In order to prove Theorem 1.11 we will need a supply of almost periodic functions 
that vary sufficiently slowly.

Lemma 2.17. Let G be a locally compact, second countable, amenable group such that the 
almost periodic compactification ι : G → Ḡ is not surjective. Then for every ε > 0 and 
every compact set K in G there exists an almost periodic function f : G → [0, 1] such 
that ‖lgf − f‖∞ < ε for every g ∈ K and the range of f is ε-dense in [0, 1].

Proof. Since G is amenable, it has a left Følner sequence, so there exists a nonnull 
compact set F ⊂ G such that m(F�gF )/m(F ) < ε for every g ∈ K. In particular, 
ι(F−1) ⊂ ι(G) is a compact subset. On the other hand, by the assumption that ι is not 
surjective, ι(G) is a proper dense subgroup of the compact group Ḡ, so it is not compact.

Therefore there exist gi ∈ G, i = 0, . . . , �1/ε�, such that the sets ι(F−1gi) are pairwise 
disjoint. Let f̃ : Ḡ → [0, 1] be a continuous function that equals iε on ι(F−1gi). (Such a 
function can be constructed using the Urysohn lemma.)

Consider now the continuous function f = m(F )−1 ∫
F
lg f̃ dm(g) on Ḡ. Then 

f(gi) = iε, so that f(G) is ε-dense in [0, 1]. Moreover, it follows from the Følner condition 
that ‖lgf − f‖∞ < ε for every g ∈ K. �
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2.4. Topological dynamics

We now recall some facts from topological dynamics. A topological dynamical system
(X, G) is a compact metric space (X, d) together with a jointly continuous left action 
(g, x) �→ gx of G on (X, d). We say that (X, G) is topologically transitive if there is some 
x ∈ X with dense orbit and minimal if every point in X has dense orbit. A system (X, G)
is equicontinuous if the collection of homeomorphisms x �→ gx, g ∈ G, is equicontinuous. 
A Borel measure μ on X is invariant with respect to a left action of G if, for all Borel 
sets A ⊂ X and all g ∈ G, one has μ(gA) = μ(A). A version of the Bogolioubov–Krylov 
theorem (see [36, Corollary 6.9.1]) for amenable groups guarantees that if G is amenable, 
then any topological dynamical system (X, G) admits an invariant Borel probability 
measure. The system (X, G) is said to be uniquely ergodic if there is only one invariant 
Borel probability measure on X. The support of a Borel probability measure on a compact 
metric space (X, d) is the intersection of all closed sets with full measure. Since X is 
second countable, the support has full measure. Given a topological dynamical system 
(X, G), a point x ∈ X, and a subset A of X, write RA(x) = {g ∈ G : gx ∈ A}. Sets of 
the form RA(x) are called return time sets.

Theorem 2.18. (See [31, Theorem 7].) Let (X, G) be a topological dynamical system 
that is topologically transitive and equicontinuous. Then (X, G) is minimal and uniquely 
ergodic. If X is infinite and μ is the unique G-invariant probability measure, then μ is 
non-atomic.

Lemma 2.19. Let (X, G) be a topological dynamical system. If (X, G) is uniquely ergodic 
with invariant Borel probability measure μ, A is a Borel set with μ(∂A) = 0, x is a point 
in X, and Φ is any left Reiter sequence, then dΦ(RA(x)) = μ(A).

Proof. Since (X, G) is uniquely ergodic, for every f in C(X) and every x ∈ X we have

lim
N→∞

∫
ΦN (g)f(gx) dm(g) =

∫
f dμ.

Fix ε > 0. Since μ(∂A) = 0 we can find f1, f2 in C(X) so that f1 ≤ 1A ≤ f2 and ∫
f2 − f1 dμ < ε. Thus

μ(A) − ε ≤
∫

f1 dμ = lim
N→∞

∫
ΦN (g)f1(gx) dm(g)

≤ lim inf
N→∞

∫
ΦN (g)1A(gx) dm(g) ≤ lim sup

N→∞

∫
ΦN (g)1A(gx) dm(g)

≤ lim
N→∞

∫
ΦN (g)f2(gx) dm(g) =

∫
f2 dμ ≤ μ(A) + ε,

giving dΦ(RA(x)) = μ(A) as desired. �
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Lemma 2.20. Let (X, d) be a compact metric space with a non-atomic probability mea-
sure μ. For any ε > 0 and any point x in the support of μ there is an open set A
containing x such that μ(A) < ε and μ(∂A) = 0.

Proof. Let x be a point in the support of μ. For every t > 0 the open ball Bt centered at x
with radius t has positive measure. Their boundaries ∂Bt are disjoint, so only countably 
many of the sets ∂Bt have positive measure. Let tn be a sequence decreasing to 0 such 
that μ(∂Btn) = 0 for all n. We have μ(Btn) → μ({x}) = 0 because μ is non-atomic. Put 
A = Btn with n so large that μ(Btn) < ε. �
2.5. Sets of measurable recurrence

In this subsection we discuss sets of measurable recurrence in locally compact, second 
countable groups. Note that the joint measurability condition in Definition 1.7 implies 
(see [20, 22.20(b)], for example) that the induced action of G on L2(X, B, μ) is strongly 
continuous. We begin by pointing out that, when G is countable and infinite, Defini-
tion 1.8 coincides with the usual definition.

Proposition 2.21. Let G be a countable, infinite group. Then a subset R of G is a set 
of measurable recurrence if and only if, for every measurable action of G on a separable 
probability space (X, B, μ) and every B in B with positive measure, we can find r in 
R \ {idG} such that μ(B ∩ T rB) > 0.

Proof. It is clear that every set of measurable recurrence has the stated property. Con-
versely, suppose that G is a countable group and that R is a subset of G with the stated 
property. Let K be a compact subset of G, let (X, B, μ) be a separable probability space 
equipped with a measure-preserving G action, and let A be a nonnull measurable subset 
of X. Consider the space Y = {0, 1}G with the (1

2 , 
1
2 )-Bernoulli measure and the shift 

action of G. Let F = K \ {idG}, which is a finite set, and put

B = {y ∈ Y : y(idG) = 1, y(f) = 0 for all f ∈ F}.

Then A ×B is a nonnull measurable subset of X×Y , and by the hypothesis there exists 
a g ∈ R\{idG} such that (A ×B) ∩ (gA ×gB) is nonnull. By construction of B it follows 
that g ∈ R \K and A ∩ gA is nonnull. Hence R is a set of measurable recurrence. �

We remark that the measure of the set B in the above proof can be improved con-
siderably. Indeed, above B has measure 2−n−1, where n = |F |, but if one uses instead 
the ( n

n+1 , 
1

n+1 )-Bernoulli measure then the measure of B will become 1
n+1

(
n

n+1
)n

>

e−1/(n + 1).
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Example 2.22. Let G be a locally compact, second countable group. Let P be a subset 
of G such that for every neighborhood U of idG the set UP contains a set of the form 
FPI(gn) with gn → ∞. Then P is a set of measurable recurrence.

Proof. Fix a compact set K in G and a measure-preserving action of G on a separable 
probability space (X, B, μ). Let A be a non-null, positive-measure subset of X. Since 
the induced action on L2(X, B, μ) is strongly continuous, there is a relatively compact, 
symmetric neighborhood U of the identity such that μ(A ∩ gA) > μ(A) − μ(A)2/2 for 
any g ∈ U .

Let n �→ gn be a sequence such that gn → ∞ and FPI(gn) ⊂ UP . Let n �→ hn be a 
subsequence of n �→ gn such that FPI(hn) ⊂ G \UK. Such a sequence can be constructed 
by choosing hn+1 from

{gi : i ∈ N} \ ∪ {Iα(hi)−1UK : ∅ �= α ⊂ {1, . . . , n}}

inductively. By a standard argument (originally due to Gillis [19]) we have

μ(h1 · · ·hmA ∩ h1 · · ·hnA) > μ(A)2/2

for some m > n. Then hn+1 · · ·hm ∈ FPI(gn) \UK and μ(A ∩hn+1 · · ·hmA) > μ(A)2/2. 
Let g ∈ U be such that ghn+1 · · ·hm ∈ P . Then μ(A ∩ ghn+1 · · ·hmA) > 0. �

In any given group G we denote the class of sets of measurable recurrence by R.

Lemma 2.23. The class R is partition regular.

Proof. Suppose R1∪· · ·∪Rr ∈ R. We need to show that Ri ∈ R for some i ∈ {1, . . . , r}. 
Assume Ri /∈ R for all i = 1, . . . , r. Thus for each 1 ≤ i ≤ r there is a compact set 
Ki in G, a measure-preserving action Ti of G on a separable probability space, and a 
positive measure set Bi in the probability space witnessing the fact that Ri is not a set of 
measurable recurrence. The positive-measure set B1×· · ·×Br in the product probability 
space equipped with the product action T1 ×· · ·×Tr, and the compact set K1 ∪ · · · ∪Kr

now witness the fact that R1 ∪ · · · ∪Rr is not a set of measurable recurrence, which is a 
contradiction. �

Given a class of subsets it is natural (see [3] for an extensive discussion) to consider 
its dual class, which consists of all subsets whose intersection with every member of the 
given class is non-empty. Denote by R∗ the dual class of R. It is clear that if A ∈ R∗, 
then every superset of A is also a member R∗. It follows from partition regularity of R
that the intersection of any two members of R∗ is again a member of R∗. Since every 
cocompact subset of a member of R is clearly a member of R, this has the following 
consequence.
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Corollary 2.24. Any cocompact subset of an R∗ set is R∗.

We will need later the fact that return time sets in certain topological dynamical 
systems belong to R∗.

Lemma 2.25. Let (X, G) be a minimal topological dynamical system where G acts by 
isometries. For any x in X and any neighborhood U of x the set RU (x) is in R∗.

Proof. Let δ > 0 be such that the ball Bδ(x) is contained in U . Let μ be an invariant 
Borel probability measure on (X, G). By minimality V := Bδ/2(x) has positive measure. 
Since G acts by isometries, the R∗ set {g : V ∩ gV �= ∅} is contained in RU (x). �

Finally, we note that the classes R and R∗ are closed under conjugation.

2.6. Syndetic, thick, and piecewise-syndetic sets

Given a topological group G, denote by S, T , and P, the classes of syndetic, thick, 
and piecewise syndetic subsets, respectively.

Lemma 2.26. S∗ = T and T ∗ = S.

Proof. First, let S be syndetic in G and let T be thick in G. By syndeticity there exists a 
compact set K such that KS = G. By thickness there exists g ∈ G such that K−1g ⊂ T . 
Write g = ks with k ∈ K, s ∈ S. Thus the intersection of any syndetic set with any 
thick set is non-empty. This implies T ⊂ S∗ and S ⊂ T ∗.

We now prove that if G = P ∪Q then either P is thick or Q is syndetic. If P is not 
thick then there exists a compact set K such that for each g ∈ G we have Kg ∩Q �= ∅. 
Thus for any g ∈ G we can find k ∈ K and q ∈ Q such that kg = q. This implies that 
K−1Q = G as desired.

Now, if P does not belong to T then its complement is syndetic so P does not belong 
to S∗. Similarly, if Q does not belong to S then its complement is thick so Q does not 
belong to T ∗. Thus T ⊃ S∗ and S ⊃ T ∗. �
Lemma 2.27. Let G be a group that is not compact. Then for any thick subset T of G
and any compact subset K of G there is g ∈ G \K such that Kg ⊂ T .

Proof. Let T and K be thick and compact subsets of G respectively. Let h ∈ G \KK−1. 
By thickness we have (K ∪Kh)g ⊂ T for some g ∈ G. Suppose that g ∈ K and hg ∈ K. 
Then h = (hg)g−1 ∈ KK−1, a contradiction. Hence g /∈ K or hg /∈ K, as required. �
3. The Furstenberg correspondence principle

Since the configurations we are interested in (see Definition 1.12) are two-sided in na-
ture, we need a correspondence principle that is sensitive to multiplication on the left and 
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on the right. Roughly speaking, a correspondence principle should relate recurrence for 
sets of positive upper density in our group to recurrence in a certain measure-preserving 
action of the group on a probability space. It turns out that this is not possible for arbi-
trary Borel sets of positive upper density even in R. Indeed, setting ΦN = [0, N ] in R, [5, 
Theorem D] exhibits for all but countably many α > 0 a subset E of R with dΦ(E) = 1/2
such that dΦ(E − nα ∩ E) = 0 for all n in N. On the other hand, whenever α > 0 is 
irrational, the set {nα : n ∈ N} is a set of measurable recurrence because (as first proved 
in [10]) the sequence nαt is uniformly distributed mod1 for any real, non-zero t.

An appropriate one-sided correspondence principle for general locally compact, second 
countable groups was given in [4, Theorem 1.1]. We now describe a two-sided version 
adequate for our needs. It is for substantial subsets, which we now define in general, that 
we can prove a correspondence principle.

Definition 3.1. We say that a subset S of G is substantial if one can find a measurable 
subset W of G with dΦ(W ) > 0 for some two-sided Reiter sequence Φ in L1(G, m) and 
a symmetric, open subset U of G containing idG such that S ⊃ UWU .

In unimodular groups the notion of being substantial does not change if one demands 
dΦ(W ) > 0 for some two-sided Følner sequence Φ in the definition; this follows from 
Proposition 2.10. Thus Definition 3.1 agrees with Definition 1.14 when both apply.

Theorem 3.2 (Correspondence principle). Let G be a locally compact, second countable, 
amenable group with a left Haar measure m and a two-sided Reiter sequence Φ. Let W
be a Borel subset of G, let U be an open neighborhood of idG, and let S ⊇ UWU be 
measurable. Then there is a compact metric space X with a continuous G × G-action 
L ×R and a non-negative, continuous function ξ on X such that the following hold.

1. There exists an L ×R-invariant Borel probability measure μ on X such that 
∫
ξ dμ =

dΦ(W ) and

dΦ(g−1
1 Sh1 ∩ · · · ∩ g−1

n Shn) ≥
∫

Lg1Rh1ξ · · ·LgnRhnξ dμ

for any g1, . . . , gn, h1, . . . , hn in G.
2. There exist an ergodic L × R-invariant Borel probability measure ν on X and a 

two-sided Reiter sequence Ψ such that 
∫
ξ dν ≥ dΦ(W ) and

dΨ(g−1
1 Sh1 ∩ · · · ∩ g−1

n Shn) ≥
∫

Lg1Rh1ξ · · ·LgnRhnξ dν (3.3)

for any g1, . . . , gn, h1, . . . , hn in G.

If G is discrete, we can take ξ to be a characteristic function of a clopen subset of X.
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In the second part of Theorem 3.2 we obtain an ergodic measure-preserving system at 
the cost of modifying the Reiter sequence. Thus if one is only interested in the two-sided 
upper Banach density, it suffices to consider ergodic measure-preserving systems, see 
Corollary 3.4. This was already observed for the group Z in [6, Proposition 3.1].

The probability space that our correspondence yields will be built on the Gelfand 
spectrum of a C∗-algebra of functions on G. Recall that one can think of the Gelfand 
spectrum as either the space of maximal ideals, or as the space of all non-trivial multi-
plicative linear forms. As in [4], the C∗-algebra we use will consist of uniformly continuous 
functions.

Proof of Theorem 3.2. We may assume without loss of generality that U is symmet-
ric. Let ψ be a continuous non-negative function supported in U such that ψ = ψ∗

and 
∫
ψ dm = 1. The function ξ := ψ � 1W � ψ̌ is non-negative, uniformly continuous, 

and dominated by 1S. We now consider the minimal closed ∗-subalgebra A of bounded 
functions on G that contains 1G, contains ξ, and is invariant under l and r. By the 
Gelfand–Naimark theorem A is canonically isomorphic to C(X), where X is the Gelfand 
spectrum of A, that is, the space of all non-trivial multiplicative linear forms on A with 
the weak* topology.

Since A consists of uniformly continuous functions, the G × G-action l × r on A is 
jointly continuous. Since the action l× r is by C∗-algebra automorphisms, it follows that 
it induces a continuous G × G action L × R on X such that lgrgf = f ◦ Lg−1Rg−1 for 
every f ∈ A. Since A is separable, it follows that X is metrizable.

Part (1). Passing to a subsequence of Φ we may assume that dΦ(W ) exists. Passing 
to a further subsequence of Φ we may assume that

μ(f) := lim
N→∞

∫
ΦNf dm

exists for every f ∈ A. This is a positive unital linear functional on A, so by the Riesz–
Markov–Kakutani representation theorem μ corresponds to a Borel probability measure 
on X. The Reiter property of Φ implies that μ is L ×R-invariant. We have

μ(ξ) = lim
N→∞

∫
ΦN (ψ � 1W � ψ̌) dm

= lim
N→∞

∫∫∫
ΦN (x)ψ(y)1W (z)ψ̌(z−1y−1x) dm(x) dm(y) dm(z)

= lim
N→∞

∫∫
ψ(y)ψ̌(x)

∫
ΦN (yzx)1W (z) dm(z) dm(x) dm(y)

= lim
N→∞

∫∫
ψ(y)ψ(x)�(x)

∫
(ly−1rxΦN )(z)1W (z) dm(z) dm(x) dm(y)

= lim
N→∞

∫
ΦN (z)1W (z) dm(z) = dΦ(W )

by the Reiter property of Φ and the dominated convergence theorem.
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Lastly we have

dΦ(g−1
1 Sh1 ∩ · · · ∩ g−1

n Shn)

≥ lim
N→∞

∫
ΦN · lg−1

1
rh−1

1
(ψ � 1W � ψ̌) · · · lg−1

n
rh−1

n
(ψ � 1W � ψ̌) dm

=
∫

Lg1Rh1ξ · · ·LgnRhnξ dμ

for any g1, . . . , gn, h1, . . . , hn in G as desired.
Part (2). Let ν be an ergodic component of μ under the action L × R such that ∫
ξ dν ≥

∫
ξ dμ. Let e : A → C be the evaluation map at idG. Then e ∈ X. Moreover, 

the orbit of e under L (or R) consists of the evaluation morphisms at all points of 
G. Therefore both LGe and RGe separate points in A, so that LGe = RGe = X by 
the Urysohn lemma. A version of [17, Proposition 3.9] now implies that the point e is 
generic for ν under the action L × R with respect to some left Følner sequence of the 
form (ΘNsN ×ΘN ) on G ×G. Since the function Lg1Rh1ξ · · ·LgnRhnξ is continuous, we 
have
∫
X

Lg1Rh1ξ · · ·LgnRhnξ dν

= lim
N→∞

1
m(ΘN )m(ΘNsN )

∫
(l,r)∈ΘNsN×ΘN

(lg−1
1

rh−1
1
ξ · · · lg−1

n
rh−1

n
ξ)(LlRre) dm(l) dm(r)

≤ lim sup
N→∞

1
m(ΘN )2�(sN )

∫
(l,r)∈ΘNsN×ΘN

(lg−1
1

rh−1
1

1S · · · lg−1
n

rh−1
n

1S)(lr−1) dm(l) dm(r)

= lim sup
N→∞

1
m(ΘN )2�(sN )

∫
g−1
1 Sh1∩···∩g−1

n Shn

1ΘNsN � 1∗
ΘN

dm(l),

and we obtain the conclusion with the two-sided Reiter sequence ΨN = m(ΘN )−2 ×
�(sN )−11ΘNsN � 1∗

ΘN
.

Finally, when G is discrete we can take U = {idG}, so ξ = 1W = ξ2 is an indicator 
function of some clopen set B. �

We remark that, in Part 2 of Theorem 3.2, we need to pass from the given two-sided 
Reiter sequence to one for which e is generic in order to get an ergodic measure-preserving 
system. This can be masked if one is willing to use two-sided upper Banach density.

Corollary 3.4. Let G be a locally compact, second countable, amenable group with a left 
Haar measure m. Let W be a Borel subset of G, let U be an open neighborhood of idG, and 
let S ⊇ UWU be measurable. Then there is a compact metric space X with a continuous 
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G ×G-action L ×R, an ergodic L ×R-invariant Borel probability measure ν on X, and 
a non-negative, continuous function ξ on X such that 

∫
ξ dν = d∗(W ) and

d∗(g−1
1 Sh1 ∩ · · · ∩ g−1

n Shn) ≥
∫

Lg1Rh1ξ · · ·LgnRhnξ dν

for any g1, . . . , gn, h1, . . . , hn in G.
If G is discrete, we can take ξ to be a characteristic function of a clopen subset of X.

Proof. Let Φ be a two-sided Reiter sequence such that dΦ(W ) = d∗(W ). Let (X, ν, L ×R)
be the regular probability measure-preserving system and ξ the continuous function given 
by Theorem 3.2(2). It remains to show that 

∫
ξ dν ≤ d∗(W ). By construction we have

∫
X

ξ dν = lim
N→∞

1
m(ΘN )m(ΘNsN )

∫
(l,r)∈ΘNsN×ΘN

ξ(lr−1) dm(l) dm(r)

= lim
N→∞

1
m(ΘN )m(ΘNsN )

×
∫

(l,r)∈ΘNsN×ΘN

∫
y,z

ψ(y)1W (y−1lr−1z)ψ̌(z−1) dm(y) dm(z) dm(l) dm(r)

= lim sup
N→∞

1
m(ΘN )m(ΘNsN )

×
∫
y,z

ψ(y)ψ(z)
∫

(l,r)∈ΘNsN×ΘN

1W (y−1lr−1z) dm(l) dm(r) dm(y) dm(z).

By the Fatou lemma this is bounded above by
∫
y,z

ψ(y)ψ(z) lim sup
N→∞

1
m(ΘN )m(ΘNsN )

×
∫

(l,r)∈ΘNsN×ΘN

1W (y−1l(z−1r)−1) dm(l) dm(r) dm(y) dm(z),

and the lim sup above equals dΨ(W ) by the Følner property. Since 
∫
ψ dμ = 1, it follows 

that the integral is bounded above by d∗(W ). �
4. Large sets in WM groups

This section is dedicated to the proof of Theorem 1.15. We also show that, in general, 
Theorem 1.15 fails for left substantial sets, even for countable groups and subsets of 
density 1. We will need some facts about commuting, measure preserving actions of 
WM groups on probability spaces. Recall that two actions T1 and T2 of G are said to 
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commute if T g
1 T

h
2 = Th

2 T
g
1 for all g, h in G. Given an action T of G on a probability 

space (X, B, μ), denote by T × T the induced action of G on the product probability 
space (X ×X, B ⊗ B, μ ⊗ μ).

Definition 4.1. Let T be an action of a locally compact, second countable group G on 
a probability space (X, B, μ). Denote by I (T ) the closed subspace of L2(X, B, μ) con-
sisting of functions invariant under T , and by K (T ) the closed subspace of L2(X, B, μ)
spanned by the finite-dimensional, T -invariant subspaces therein.

Lemma 4.2. For any measure-preserving action T of a locally compact, second countable, 
WM, amenable group G on a probability space (X, B, μ) we have I (T ) = K (T ) and 
I (T × T ) = I (T ) ⊗ I (T ).

Proof. The inclusion I (T ) ⊂ K (T ) is immediate. For the reverse inclusion, consider a 
finite-dimensional, T -invariant subspace H of L2(X, B, μ). It induces a finite-dimensional 
representation of G, which must be trivial because G is WM. Therefore H ⊂ I (T ).

The second assertion follows from the first and the fact that K (T × T ) = K (T ) ⊗
K (T ), which follows from [13]. �
Definition 4.3. Let T be a measure-preserving action of a locally compact, second count-
able, amenable group G on a probability space (X, B, μ) and let D be a T -invariant 
sub-σ-algebra of B. We can think of L2(X, B, μ) as an L∞(X, D , μ) module. Denote 
by K (T |D) the closed subspace of L2(X, B, μ) spanned by the closed, finite-rank, 
T -invariant L∞(X, D , μ) sub-modules.

Lemma 4.4. Let T1 and T2 be measure-preserving actions of a locally compact, second 
countable, amenable group G on probability spaces (X1, B1, μ1) and (X2, B2, μ2) respec-
tively. Let D1 and D2 be T1 and T2 invariant sub-σ-algebras of B1 and B2 respectively. 
Then K (T1|D1) ⊗ K (T2|D2) = K (T1 × T2|D1 × D2).

Proof. The inclusion ⊂ follows from the definition. For the reverse inclusion, note that if 
f1 is orthogonal to K (T1|D1) or f2 is orthogonal to K (T2|D2) then f1⊗f2 is orthogonal 
to K (T1 × T2|D1 ⊗ D2) by the characterization (see [28, Theorem 4.7], for example) of 
the orthogonal complements of these spaces. �

The next definition is [9, Definition 2.5], which is based on a notion introduced in [23].

Definition 4.5. Let T1 and T2 be commuting, measure-preserving actions of a locally 
compact, second countable, amenable group G on a probability space (X, B, μ). We say 
that (T1, T2) is magic if K (T1|I (T2)) = I (T1) ∨ I (T2).

Lemma 4.6. If G is a locally compact, second countable, WM, amenable group and (T1, T2)
is magic, then (T1 × T1, T2 × T2) is also magic.



2152 V. Bergelson et al. / Journal of Functional Analysis 270 (2016) 2126–2167
Proof. Applying Lemma 4.2 and then Lemma 4.4, we have

K (T1 × T1|I (T2 × T2)) = K (T1|I (T2)) ⊗ K (T1|I (T2))

so the conclusion follows upon using the fact that (T1, T2) is magic, noting that

(I (T1) ∨ I (T2)) ⊗ (I (T1) ∨ I (T2)) = (I (T1) ⊗ I (T1)) ∨ (I (T2) ⊗ I (T2))

and further use of Lemma 4.2. �
Given a left Reiter sequence Φ in L1(G, m) and a measurable map u : g �→ ug from G

to C, write

C-lim
g→Φ

ug = lim
N→∞

∫
ΦN (g)ug dm(g)

if this limit exists. Write UC-limgug = u if C-limg→Φug = u for every left Reiter se-
quence Φ, write D-limg→Φug = u if C-limg→Φ|ug − u| = 0, and write UD-limgug = u if 
UC-limg|ug − u| = 0. Write I1 for I (T1), I2 for I (T2), and I12 for I (T1T2).

Theorem 4.7. If G is a locally compact, second countable, WM, amenable group, (T1, T2)
is magic, and (g1, g2) �→ T g1

1 T g2
2 is an ergodic action of G ×G, then

UD-lim
g

∫
f0 · T g

1 f1 · T g
1 T

g
2 f2 dμ

=
∫

E(f0|I1 ∨ I12) · E(f1|I1 ∨ I2) · E(f2|I2 ∨ I12) dμ

for any f0, f1, f2 in L∞(X, B, μ).

Proof. By [9, Lemma 4.4] and our ergodicity assumptions the function

g �→
∫

E(f0|I1 ∨ I12) · T g
1 E(f1|I1 ∨ I2) · T g

1 T
g
2 E(f2|I2 ∨ I12) dμ

is almost periodic. Since G is WM, it is in fact constant. Thus it suffices to prove that

UD-lim
g

∫
f0 · T g

1 f1 · T g
1 T

g
2 f2 dμ = 0 (4.8)

for any f0, f1, f2 in L∞(X, B, μ) satisfying one of the following conditions:

1. f0 ⊥ I1 ∨ I12 ⇐⇒ f0 ⊗ f0 ⊥ I (T1 × T1) ∨ K (T1T2 × T1T2)
2. f1 ⊥ I1 ∨ I2 ⇐⇒ f1 ⊗ f1 ⊥ I (T1 × T1) ∨ I (T2 × T2)
3. f2 ⊥ I2 ∨ I12 ⇐⇒ f2 ⊗ f2 ⊥ I (T2 × T2) ∨ K (T1T2 × T1T2)
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where the equivalences all follow from Lemma 4.2. But (4.8) is equivalent to

UC-lim
g

∫
(f0 ⊗ f0)(T1 × T1)g(f1 ⊗ f1)(T1T2 × T1T2)g(f2 ⊗ f2) d(μ⊗ μ) = 0,

which is true under any of the above conditions by Lemma 4.6 and [9, Corollary 3.6]. �
Corollary 4.9. Let G be a locally compact, second countable, WM, amenable group and 
let T1, T2 be commuting G-actions on a probability space (X, B, μ) such that the induced 
G ×G action (g1, g2) �→ T g1

1 T g2
2 is ergodic. Then

UD-lim
g

∫
f · T g

1 f · T g
1 T

g
2 f dμ ≥

(∫
f dμ

)4

for any 0 ≤ f ≤ 1 in L∞(X, B, μ).

Proof. By [9, Corollary 4.6] the system (X, B, μ, T1, T2) admits an ergodic magic exten-
sion which is denoted by the same symbols. Lifting f to this extension, Theorem 4.7 and 
[8, Lemma 1.6] combined yield

UD-lim
g

∫
f · T g

1 f · T g
1 T

g
2 f dμ

=
∫

E(f |I1 ∨ I12)E(f |I1 ∨ I2)E(f |I2 ∨ I12) dμ

≥
∫

fE(f |I1 ∨ I12)E(f |I1 ∨ I2)E(f |I2 ∨ I12) dμ ≥
(∫

f dμ
)4

as desired. �
We are now in a position to prove Theorem 1.15.

Proof of Theorem 1.15. Let E be a subset of G that is substantial with respect to some 
two-sided Reiter sequence Φ. Put g0 = idG, E0 = E and Ψ0 = Φ. Let also K1 ⊂ K2 ⊂ · · ·
be an exhaustion of G by compact sets given by Lemma 2.3. We construct inductively 
a sequence gi in G, a sequence Ei of measurable subsets of G with gi+1 ∈ Ei, and a 
sequence Ψi of two-sided Reiter sequences in G such that

Ei+1 = g−1
i+1Ei ∩Ei ∩ Eig

−1
i+1, (4.10)

the set Ei is substantial with respect to Ψi and gi /∈ Ki for all i ≥ 0. Assume by induction 
that for some i ≥ 0, we have gj , Ej and Ψj defined for all 0 ≤ j ≤ i and having the 
desired properties.

Since Ei is substantial with respect to Ψi we can find a symmetric, open neighborhood 
U of the identity in G and a measurable subset W of G with dΨi

(W ) > 0 such that Ei ⊃
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UUWUU . Put S = UWU . Since S is substantial, Part 2 of Theorem 3.2 yields commuting 
G actions L and R on a compact, metric probability space (X, B, ν), a two-sided Reiter 
sequence Ψi+1 in G, and a non-negative, continuous function ξ on X such that the G ×G

action induced by L and R is ergodic, 
∫
ξ dν ≥ dΨi

(W ) and

dΨi+1(Sg−1 ∩ S ∩ g−1S) ≥
∫

Lgξ · ξ ·Rg−1
ξ dν =

∫
ξ ·Rgξ ·RgLgξ dν

for all g in G.
By Theorem 4.7 with T1 = R, T2 = L and f = ξ we obtain

UD-lim
g

∫
ξ ·Rgξ ·RgLgξ dν ≥ dΨi

(W )4

so for any ε > 0 the set

Fi = {g ∈ G : dΨi+1(Sg−1 ∩ S ∩ g−1S) ≥ dΨi
(W )4 − ε}

has density 1 with respect to any left Reiter sequence. Thus dΨi
(Fi) = 1 so in particular 

the intersection Fi ∩ Ei is not relatively compact. Choose gi+1 in Fi ∩ Ei \ Ki+1 and 
define Ei+1 by (4.10). To see that Ei+1 is substantial with respect to Ψi+1, note that

Eig
−1
i+1 ∩ Ei ∩ g−1

i+1Ei ⊃ V (Sg−1
i+1 ∩ S ∩ g−1

i+1S)V

where V is the symmetric neighborhood U ∩ gi+1Ug−1
i+1 ∩ g−1

i+1Ugi+1 of the identity. This 
concludes the inductive construction.

It remains to prove that FP(gn) is contained in E. Note that gn belongs to E for each 
n and that (4.10) implies

Ei = ∩{Iα(gn)−1EDβ(gn)−1 : α, β ⊂ {1, . . . , i} and α ∩ β = ∅}

for each i in N by induction on i. Thus Iα(gn)gi+1Dβ(gn) belongs to E for any disjoint 
subsets α, β of {1, . . . , i} as desired. �

We remark that Theorem 1.15 immediately implies the following partition result.

Corollary 4.11. For any measurable partition C1 ∪ · · · ∪ Cr of a locally compact, sec-
ond countable, WM, amenable group one can find 1 ≤ i ≤ r such that, for any open 
neighborhood U of the identity, the set UCiU contains a two-sided finite products set.

Also, in the proof of Theorem 1.15, there are in fact many choices for each gi because 
Fi ∩ Ei has positive density with respect to a two-sided Reiter sequence.

The following example shows that Theorem 1.15 does not extend to general left Følner 
sequences, even in the discrete case.
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Example 4.12. Let A(N) be the finite alternating group on N. As in Example 2.13 we 
can view A(N) as the increasing union of the alternating groups An = A({1, . . . , n}). For 
n ≥ 4 let hn := (1, n)(2, 3) ∈ An and Φn := An−1hn. This is a left Følner sequence, and 
we see from

Φn ⊂ {σ ∈ An : σ(1) = n}

that the sets Φn are pairwise disjoint. Let E := ∪n≥5Φn, so that dΦ(E) = 1. Suppose that 
there exists a sequence (gk) with FPD(gk) ⊂ E. We will show the following statement 
by induction on n.

Claim. Suppose that for some α ∈ F and n ≥ 4 we have Dα(gk) ∈ Φn. Then there exists 
β ∈ F such that Dβ(gk) ∈ Φ4.

Since the assumption is clearly satisfied for some n ≥ 5 and some α ∈ F , we obtain a 
contradiction.

Proof of the claim. For n = 4 the conclusion holds with β = α. Suppose now that the 
claim is known to hold up to some n and assume h := Dα(gk) ∈ Φn+1. Let i > maxα, 
let j be such that gi ∈ Φj , and consider Dα∪{i}(gk) = gih. By the assumption this is an 
element of E. Consider now the following cases.

j > n + 1 We have gih(1) = gi(n + 1) < j and gih(j) = gi(j) < j, so that gih /∈ E, 
contradicting the assumption.

j ≤ n The conclusion follows from the inductive assumption.
j = n + 1 In this case we have gih(1) = gi(n + 1) < n + 1, so that gih /∈ Φn+1. Since 

gih ∈ E ∩ An+1, it follows that gih ∈ Φm for some m ≤ n, and the conclusion 
again follows from the inductive hypothesis. �

In view of [4, Theorem 2.4] this implies that the set E in this example has density 
zero with respect to any right Følner sequence. As discussed in the introduction, this 
answers a question from [12].

For the proof of Theorem 1.19 we need a tool that allows us to deduce that a set 
having positive density in a group has positive density in some coset of any cocompact 
subgroup.

Lemma 4.13. Let G be a locally compact, second countable, amenable group with a left 
(respectively two-sided) Følner sequence Φ. Let H be a closed, normal, cocompact sub-
group of G. Then Φ has a subsequence, denoted by the same symbol, such that for almost 
every z ∈ G/H and any x ∈ z the sequence N �→ x−1(ΦN ∩ z) is a left (respectively 
two-sided) Følner sequence in H.

If E is a measurable subset of G such that dΦ(E) > 0, then for a positive measure set 
of z ∈ G/H we have dΦ∩z(E) > 0.
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Proof. We will prove the result for two-sided Følner sequences, the proof for left Følner 
sequences is nearly identical.

Consider for each x in G the measure mx defined by mx(E) = mH(x−1E) for all Borel 
subsets E of xH. This is a measure on the coset xH and is invariant under left and right 
translation by H. The measure mx only depends on the coset of H that x represents. 
We can therefore define, for each z in G/H, a measure mz on G by mz = mx for any 
x ∈ z. After suitably normalizing the left Haar measure mH , we obtain∫

f dm =
∫∫

f dmz dμ(z),

where μ denotes the Haar measure on G/H, for any f ∈ Cc(G) from [15, Theorem 2.49]. 
In fact, this holds for any f in L1(G, m).

We have

mx(ΦN�gΦN ) ≥ |mx(ΦN ) − mg−1x(ΦN )|

for all N in N and all g, x in G. By the Følner property it follows that
∫ |mz(ΦN ) − mg−1z(ΦN )|

m(ΦN ) dμ(z) ≤ m(ΦN�gΦN )
m(ΦN ) → 0

as N → ∞. Invariance of μ implies

1 =
∫ mz(ΦN )

m(ΦN ) dμ(z) =
∫ mzw(ΦN )

m(ΦN ) dμ(z)

for every w ∈ G/H, so
∫ ∣∣∣∣1 − mw(ΦN )

m(ΦN )

∣∣∣∣ dμ(w) ≤
∫∫ |mzw(ΦN ) − mw(ΦN )|

m(ΦN ) dμ(z) dμ(w) → 0

as N → ∞ by the dominated convergence theorem. Passing to a subsequence, we may 
assume

mz(ΦN )/m(ΦN ) → 1 for almost every z ∈ G/H. (4.14)

By the Følner condition we also have m(ΦN�gΦNh)/m(ΦN ) → 0 locally uniformly 
for g, h ∈ H. Let Kn be a countable collection of relatively compact open sets that covers 
H ×H. We have ∫

Kn

∫ mz(ΦN�gΦNh)
m(ΦN ) dμ(z) d(mH × mH)(g, h) → 0

for every n. Passing to a subsequence, we may assume that the convergence holds point-
wise almost everywhere for every n.
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By Fubini’s theorem it follows that for almost every z ∈ G/H we have

mz(ΦN�gΦNh)
m(ΦN ) → 0

for almost every pair (g, h) in H ×H. Combined with (4.14), this implies

mz(ΦN�gΦNh)
mz(ΦN ) → 0

with the same quantifiers. By the remarks at the start of Section 2.2, ΦN∩z is a two-sided 
Følner sequence in the two-sided H torsor z for almost every z in G/H. It follows that 
x−1(ΦN ∩ z) is a two-sided Følner sequence in H for any x in z.

Suppose now that dΦ(E) > 0. Before performing the above construction we may pass 
to a subsequence of Φ such that dΦ(E) > 0. This ensures dΦ(E) > 0 after passing to 
further subsequences as required by the construction. Now the Fatou lemma justifies

0 < dΦ(E) = lim sup
N→∞

1
m(ΦN )

∫
1ΦN

· 1E dmG

= lim sup
N→∞

∫ 1
m(ΦN )

∫
1ΦN

· 1E dmz dμ(z)

≤
∫

lim sup
N→∞

1
m(ΦN )

∫
1ΦN

· 1E dmz dμ(z)

=
∫

lim sup
N→∞

1
mz(ΦN )

∫
1ΦN

· 1E dmz dμ(z) =
∫

dΦ∩z(E) dμ(z)

so dΦ∩z(E) > 0 for a positive measure set of cosets. �
We now prove Theorem 1.19.

Proof of Theorem 1.19. Let H ≤ G be a closed normal subgroup such that H is WM 
and G/H is compact. For the second part it suffices to take a nonnull compact subset of 
G/H that does not contain the equivalence class of idG and pull it back to G; the fact 
that this is not a set of recurrence will be witnessed by the left translation action of G
on G/H.

For the first part note that H is unimodular by Lemma 2.1, so that G is also uni-
modular. Hence, for a given Borel subset E ⊂ G of positive upper Banach density, the 
density is realized along some two-sided Følner sequence Φ by Proposition 2.10.

It remains to show that E has positive upper density in one of the cosets of H. By 
Lemma 4.13 the sequence Φ is a two-sided Følner sequence in almost every coset of H
and dΦ∩z(E) > 0 for a positive measure set of cosets. Pick a coset z such that this holds 
and Φ ∩ z is a two-sided Følner sequence in z. Now if UEU is a substantial set in G and 
x ∈ z, then x−1UEU ∩H ⊃ (x−1Ux ∩H)(x−1E ∩H)(U ∩H) is a substantial set in H, 
and we can apply Theorem 1.15 to it. �
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Proof of Theorem 1.21. As in the proof of Theorem 1.19, shifting S (on the left or on 
the right) we may assume S = U9EU2, where E = UE0 has positive upper density with 
respect to some left Følner sequence Φ in G, E0 ⊂ G0 has positive upper density in G0
with respect to the Følner sequence N �→ ΦN ∩G0, and U is a symmetric neighborhood 
of the identity in G.

Put g0 = idG, S0 = S, U0 = U , and Ψ0 = Φ. Let also K1 ⊂ K2 ⊂ · · · be an exhaustion 
of G by compact sets given by Lemma 2.3. We construct inductively

1. a nested sequence of subsequences Ψi of Φ
2. a decreasing sequence Si of substantial subsets of G such that Si ⊇ U10

i EiU
2
i with 

dΨi∩G0(Ei) > 0 and symmetric relatively compact neighborhoods of identity Ui in 
G, and

3. a sequence gi in G with gi+1 ∈ Si \Ki such that

Si+1 = g−1
i+1Si ∩ Si. (4.15)

This suffices to conclude FPI(gn) ⊂ S.
Assume by induction that for some i ≥ 0, we have gj , Sj , Uj , and Ej defined for 

all 0 ≤ j ≤ i and having the desired properties. Applying the one-sided correspondence 
principle [4, Theorem 1.1] to Ui(UiEi), we obtain a measure-preserving action T of G on 
a separable probability space (X, B, μ) and a positive function ξ in L∞(X, B, μ) such 
that

dΦ(U2
i Ei ∩ g−1U2

i Ei) ≥
∫

ξ · T gξ dμ

for all g in G. Let ε = 10−1| 
∫
ξ dμ|2.

Recall that

L2(X,B, μ) = K (T ) ⊕ W (T ),

where W (T ) is the closed subspace consisting of the functions f such that for every 
φ ∈ L∞(X) we have

UC-lim
g

∣∣ ∫ φ · T gf dμ
∣∣ = 0. (4.16)

Applying (4.16) with φ = ξ and f = ξ − E(ξ|K (T )) we see that
∣∣∣∣
∫

ξ · T g(ξ − E(ξ|K (T ))) dμ
∣∣∣∣ < ε (4.17)

for a set of g ∈ G with density 1. Let W ⊂ Ui be a neighborhood of identity such that

‖E(ξ|K (T )) − T gE(ξ|K (T ))‖ < ε (4.18)
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for every g ∈ W . Since almost periodic functions on G are trivial on G0, the above 
inequality holds for all g ∈ WEi. The latter set has positive upper density with respect 
to Φ in G, so that there is some g ∈ WEi \KiUi

2 for which both inequalities (4.17) and 
(4.18) hold.

For this g the set U2
i Ei ∩ g−1U2

i Ei has positive upper density in G. Since the latter 
set is contained in U2

i G0, by Lemma 4.13 there exists h ∈ U2 such that h−1(U2
i Ei ∩

g−1U2
i Ei) ∩G0 has positive upper density in G0. It follows that

Ei+1 := U4
i Ei ∩ g−1

i+1U
2
i Ei ∩G0

has positive upper density in G0 with gi+1 = gh ∈ Si \ Ki. Therefore Si ∩ g−1
i+1Si is a 

substantial set of the same special form as Si, and we can continue the induction. �
5. Large sets in groups with von Neumann kernel not cocompact

In this section we extend Straus’s example to locally compact, second countable, 
amenable groups whose von Neumann kernel is not cocompact by proving Theorem 1.11. 
The construction involves the following approximate version of the monotone convergence 
theorem for the finitely additive measure defined by a Følner sequence.

Lemma 5.1. Let G be a locally compact, second countable, amenable group and let Φ be a 
left, right, or two-sided Følner sequence in G. Let i �→ Ai be a sequence of Borel subset 
of G such that dΦ(Ai) exists for every i, the sequence i �→ dΦ(Ai) is summable, and 
dΦ(A1 ∪ · · · ∪ An) exists for every n. Then there exist cocompact subsets A′

i ⊂ Ai such 
that dΦ(C) = lim dΦ(A1 ∪ · · · ∪An), where C = ∪{A′

i : i ∈ N}.

Proof. If G is compact, then dΦ = m, and the conclusion holds with A′
i = Ai by the 

monotone convergence theorem. Hence we may assume that G is not compact.
For each i ∈ N there is some si in N such that

∣∣∣∣m(Ai ∩ ΦN )
m(ΦN ) − dΦ(Ai)

∣∣∣∣ < 1
2i

whenever N ≥ si. We may assume that si+1 > si for all i ∈ N. We will show that the 
conclusion holds for A′

i = Ai \ (Φ1 ∪ · · · ∪ Φsi). Note that m(A′
i∩ΦN )

m(ΦN ) < dΦ(Ai) + 1
2i for 

every N .
Define Bn = A1∪· · ·∪An and Cn = A′

1∪· · ·∪A′
n. Let α = lim dΦ(Bn). Since Cn ⊂ Bn

and Bn \Cn is contained in a compact set we have dΦ(Cn) = dΦ(Bn). From Cn ⊂ Cn+1

it follows that dΦ(C) ≥ α. Thus it remains to show that dΦ(C) ≤ α. For every J and 
every N we have
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m(C ∩ ΦN )
m(ΦN ) ≤ m(CJ ∩ ΦN )

m(ΦN ) +
∞∑

i=J+1

m(A′
i ∩ ΦN )

(ΦN )

≤ m(BJ ∩ ΦN )
m(ΦN ) +

∞∑
i=J+1

dΦ(Ai) + 1
2i .

Letting N → ∞ we obtain

dΦ(C) ≤ dΦ(BJ ) + 2−J +
∞∑

i=J+1
dΦ(Ai).

Now, letting J → ∞, we obtain dΦ(C) ≤ α as required. �
Proof of Theorem 1.11. Fix a left Følner sequence Φ in G and ε > 0. Let K1 ⊂ K2 ⊂ · · ·
be an increasing sequence of compact sets whose union is G, as in Lemma 2.3. For every 
n let fn be the almost periodic function on G given by Lemma 2.17 with the compact set 
Kn and ε/2n+10. Let Xn = {lgfn : g ∈ G}, then (Xn, G) is a topologically transitive, 
equicontinuous topological dynamical system. Therefore (Xn, G) is minimal and uniquely 
ergodic by Theorem 2.18. Let μn be the unique invariant Borel probability measure on 
(Xn, G). By minimality μn has full support. Let ε/2n+5 < rn < ε/2n+4 be such that 
μn(∂Brn(fn)) = 0. (Such rn exist because the boundaries are pairwise disjoint.) Since 
the action l is isometric on Xn and the range of fn is ε/2n+10-dense in [0, 1], there 
are at least 2n+1/ε disjoint images of Un := Brn(fn) in Xn, so μn(Un) ≤ ε/2n+1. Put 
An = RUn

(fn), so that dΦ(An) = μn(Un) ≤ ε/2n+1 by Lemma 2.19.
In order to apply Lemma 5.1 we need to prove that

Bn = A1 ∪ · · · ∪An

has density for every n. To do this consider the action L of G on X1×· · ·×Xn induced by 
applying l in each coordinate. Let Z be the orbit closure of (f1, . . . , fn) under this action. 
By Theorem 2.18 the topological dynamical system (Z, G) is minimal and uniquely 
ergodic. We have

Bn = ∪n
i=1{x ∈ G : lxfi ∈ Ui}

= {x ∈ G : Lx(f1, . . . , fn) ∈ π−1
1 U1 ∪ · · · ∪ π−1

n Un}

so Bn is a set of return times in a uniquely ergodic dynamical system. Let ν be the unique 
invariant probability measure on (Z, G). Each of the coordinate projections πi : Z → Xi

intertwines the actions L and l. Since Xi is uniquely ergodic, this implies that πiν = μi

for each i. Thus
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ν(∂(π−1
1 U1 ∪ · · · ∪ π−1

n Un)) ≤ μ1(∂U1) + · · · + μn(∂Un) = 0

and therefore dΦ(Bn) exists by Lemma 2.19.
It follows from Lemma 5.1 that there exist cocompact subsets A′

n ⊂ An whose union 
C has density at most ε. We claim that the set E := G \ C satisfies the conclusion of 
the theorem. Indeed, let K be an arbitrary symmetric compact subset of G. It suffices 
to show that the complement of KEK is an R∗ set.

By construction we have K ⊂ Kn for some n. Put Dn = G\An and D′
n = G\A′

n. We 
have E ⊂ D′

n so it suffices to prove that G \ (KD′
nK) is R∗. By Corollary 2.24 this is 

equivalent to G \ (KDnK) being an R∗ set. Now

G \ (KDnK) =
⋂

g,h∈K

gAnh =
⋂

g,h∈K

RlgBrn (fn)(lh−1fn) ⊇ RBrn/2(fn)(fn)

since fn is ε/2n+10-invariant under K and G acts isometrically on Xn. The latter set is 
R∗ by Lemma 2.25. �

In Theorem 1.11 the set E depends on the Følner sequence. It is natural to ask whether 
it is possible for E to satisfy the conclusion of Theorem 1.11 and have positive density 
with respect to all left Følner sequences. To see that this is impossible we will show that 
any set satisfying the conclusion of Theorem 1.11 is not piecewise syndetic. In view of 
Example 2.22 it suffices to show the following.

Lemma 5.2. Let G be a locally compact, second countable group that is not compact. 
Then for every piecewise-syndetic subset P of G there exists k ∈ G such that for every 
neighborhood U of idG the set UkP contains a set of the form FPI(gn) with gn → ∞.

Proof. Let P be a piecewise-syndetic subset of G. Fix a compact subset K of G such 
that T = KP is thick. Let n �→ Kn be a sequence of increasing, compact subsets of G
that cover G (see Lemma 2.3).

Using Lemma 2.27 with K = {idG}, choose g1 ∈ G \ K1 such that g1 ∈ T . Assume 
by induction that we have found g1, . . . , gn in G such that H = {Iα(gn) : ∅ �= α ⊂
{1, . . . , n}} is a subset of T and gi /∈ Ki for each 1 ≤ i ≤ n. By Lemma 2.27 there is 
some gn+1 in G \ (H ∪ {idG})−1Kn+1 such that (H ∪ {idG})gn+1 ⊂ T . It follows that T
contains FPI(gn) and Iα(gn) → ∞ as α → ∞.

For each finite set ∅ �= α ⊂ N let kα ∈ K be such that k−1
α Iα(gn) ∈ P . Since G is 

metrizable, by [18, Theorem 1.3] there is a sub-IP-ring such that limα kα = k exists. In 
particular, for every symmetric neighborhood U of idG we have kα ∈ Uk for sufficiently 
large α. Hence Iα(gn) ∈ kαP ⊂ UkP as required. �

Call any subset E of G satisfying the conclusion of Theorem 1.11 a Straus set. It 
follows from Lemma 5.2 that any Straus set E is not piecewise syndetic. In particular, 
E is not syndetic, and therefore its complement is thick. (This follows from the proof of 
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Lemma 2.26.) Now, any thick set T has full density with respect to some Følner sequence 
in G. Indeed, for any Følner sequence Φ in G, one can find for each N some hN ∈ G

such that ΦNhN ⊂ T , so that T has full density with respect to the Følner sequence 
N �→ ΦNhN . Thus it is impossible for a Straus set to have positive upper density with 
respect to every left Følner sequence.

6. Non-piecewise-syndetic sets with large density

By the remarks at the end of Section 5 we see that Straus sets are not piecewise-
syndetic. However, Straus sets only exist in amenable groups whose von Neumann kernel 
is not cocompact. In this section we prove Theorem 1.9, which states that it is possible 
in any locally compact, second countable, amenable group that is not compact to con-
struct a non-piecewise-syndetic set with positive lower density. The proof of Theorem 1.9
requires an ample supply of syndetic sets.

Lemma 6.1. Let G be a group, S ⊂ G be any set, and F ⊂ G be a non-empty set. Then 
there exists a subset S′ ⊂ S such that

1. F−1FS′ ⊇ S;
2. f1S

′ ∩ f2S
′ = ∅ for any f1, f2 ∈ F , f1 �= f2.

Proof. The collection

{T ⊂ S : f1T ∩ f2T = ∅ for any f1 �= f2 ∈ F}

is closed under increasing unions, hence it contains a maximal element S′ by Zorn’s 
Lemma. Suppose that condition (1) fails for S′, that is, there exists s ∈ S \F−1FS′. We 
will show that the set S′′ := S′ ∪ {s} also satisfies condition (2), thereby contradicting 
the maximality of S′. To this end let f1, f2 be two distinct elements of F . We have

f1S
′′ ∩ f2S

′′ = (f1S
′ ∩ f2S

′) ∪ (f1S
′ ∩ f2{s}) ∪ (f1{s} ∩ f2S

′) ∪ (f1{s} ∩ f2{s}) = ∅

by the assumptions that S′ satisfies (2) and that s /∈ F−1FS, as required. �
Lemma 6.2. Let G be a locally compact, second countable, amenable group that is not 
compact. Then for every relatively compact neighborhood U of the identity there exists a 
decreasing sequence S1 ⊃ S2 ⊃ · · · of discrete, syndetic subsets of G such that d∗(USn) →
0 as n → ∞.

Proof. Put S0 = G and let g1, g2, . . . be a sequence in G such that the sets gnU are 
pairwise disjoint. Suppose that Sn has been constructed for some n. Let Sn+1 be given 
by Lemma 6.1 with F = g1U ∪ · · ·∪ gn+1U and S = Sn. The set F is relatively compact, 
so it follows from syndeticity of Sn and Part 1 of Lemma 6.1 that Sn+1 is syndetic. By 
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Part 2 of Lemma 6.1 the sets giUs are pairwise disjoint for i = 1, . . . , n +1 and s ∈ Sn+1. 
This implies that Sn+1 is discrete and d∗(USn+1) ≤ 1

n+1 . �
The final ingredient in the proof of Theorem 1.9 is an appropriate version of 

Lemma 5.1.

Lemma 6.3. Let G be a locally compact, second countable, amenable group with a (left, 
right, or two-sided) Følner sequence Φ and let Ai be a sequence of measurable subsets of 
G. Then for every ε > 0 there exist cocompact subsets A′

i ⊂ Ai such that dΦ(∪iA
′
i) ≤∑

i dΦ(Ai) + ε.

Proof. By definition of the upper density, for every i there exists si such that

m(Ai ∩ ΦN )
m(ΦN ) < dΦ(Ai) + ε

2i

for every N > si. Consider the cocompact subsets A′
i := Ai \∪si

n=1Φn. Then for every N
we have

m(
⋃
i

A′
i ∩ ΦN ) = m(

⋃
i:si<N

A′
i ∩ ΦN ) ≤ m(

⋃
i:si<N

(Ai ∩ ΦN )) ≤
∑

i:si<N

m(Ai ∩ ΦN )

<
∑

i:si<N

(dΦ(Ai) + ε/2i)m(ΦN ) ≤ m(ΦN )
(∑

i

dΦ(Ai) + ε
)

as required. �
Proof of Theorem 1.9. Let (gi)i∈N be a dense subset of G, let U be a symmetric, relatively 
compact neighborhood of idG, and let G ⊃ S1 ⊃ S2 ⊃ · · · be the decreasing sequence of 
syndetic sets from Lemma 6.2. Passing to a subsequence we may assume 

∑
i d∗(Si) < ε. 

By Lemma 6.3 we obtain cocompact subsets S′
i ⊂ USi such that dΦ(∪{giS′

i : i ∈ N}) < ε. 
Consider the set

Q := G \ ∪{giS′
i : i ∈ N}.

It follows from the construction that Q has lower density at least 1 −ε with respect to Φ. 
We claim that Q is not piecewise-syndetic. Suppose Q is piecewise-syndetic, that is, that 
there exists a compact set K ⊂ G such that T := KQ is a thick set. By compactness we 
have K ⊂ Ug−1

1 ∪ · · · ∪ Ug−1
N for some N ∈ N. Thus

KQ ⊆ Ug−1
1 Q ∪ · · · ∪ Ug−1

N Q ⊆ ∪N
i=1 ∪u∈U ug−1

i (G \ giS′
i)

and so

G \KQ ⊇ ∩N
i=1 ∩u∈U uS′

i ⊇ SN \ ∪N
i=1U(USi \ S′

i).
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This is a cocompact subset of the syndetic set SN , hence a syndetic set, contradicting 
thickness of KQ. Hence Q is not piecewise syndetic. �

We next show, using the (rather deep) Jewett–Krieger theorem for countable, 
amenable groups, that if G is a countable, infinite, amenable group then the set E
obtained in Theorem 1.9 can be taken to have density.

Theorem 6.4. For any countably infinite, amenable group G, any left Følner sequence Φ
in G, and any ε > 0 there is a subset Q of G with dΦ(Q) > 1 − ε that is not piecewise 
syndetic.

Proof. Fix ε > 0. Consider an ergodic action of G on a non-atomic space, for example 
the action of G on {0, 1}G given by (g · 1B)(x) = 1B(xg) equipped with a Bernoulli 
measure. By Rosenthal’s Jewett–Krieger theorem [29] this action admits a topological 
model (X, G) that is uniquely ergodic. Let μ be the unique invariant probability measure. 
Since X is infinite, the measure μ is non-atomic. Fix x in the support of μ. For each n
in N, Lemma 2.20 yields an open ball An ⊂ X centered at x with μ(An) < ε/2n and 
μ(∂An) = 0. Since x is in the support of μ, each An has positive measure. Applying 
Lemma 2.19, we obtain dΨ(RAn

(x)) = μ(An) for every left Følner sequence Φ. Thus, 
for each n, the set Sn := RAn

(x) has positive density with respect to every left Følner 
sequence. It follows from this that each of the sets Sn is syndetic.

Let (gi)i∈N be an enumeration of G. Put Bi = g1S1 ∪ · · · giSi. We have

Bi = {g ∈ G : gx ∈ g1A1 ∪ · · · ∪ giAi} = RYi
(x)

where Yi := g1A1 ∪ · · · ∪ giAi. Since μ(∂Yi) = 0 it follows from Lemma 2.19 that dΦ(Bi)
exists. Applying Lemma 5.1, we obtain cofinite subsets S′

i ⊂ Si such that dΦ(∪{giS′
i :

i ∈ N}) < ε.
Put Q = G \ ∪{giS′

i : i ∈ N}. The density of Q exists and is at least 1 − ε. Arguing 
as in the proof of Theorem 1.9 shows that Q is not piecewise syndetic. To this end, note 
that Si1 ∩ · · · ∩ Sik = Sl where l = max{i1, . . . , ik}. Thus the intersection is syndetic. 
Hence its cofinite subset S′

i1
∩ · · · ∩ S′

ik
is also syndetic. �

We will use sets whose existence is ensured by Theorem 6.4 in order to construct 
non-trivial actions of G. Denote by 1∅ the function G → {0, 1} mapping every element 
of G to 0.

Proposition 6.5. Let G be a countably infinite amenable group and let Φ be a Følner 
sequence in G. Suppose Q is a subset of G that has positive upper density but is not 
piecewise-syndetic. Let X be the orbit closure of 1Q in {0, 1}G under the action of G on 
{0, 1}G given by (g · 1B)(x) = 1B(xg). Then {1∅} is the only minimal subsystem of X, 
but there is a non-atomic G-invariant probability measure on X.
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Proof. Let 1B be any point in X and assume that B is syndetic. Let F be a finite set 
such that FB = G. Let H be any finite subset of G. Since 1B is in the orbit closure of 
1Q we can find g ∈ G such that 1Qg and 1B agree on the finite set F−1H. In particular,

FQg ⊃ F (F−1H ∩B) ⊃
⋃
f∈F

f(f−1H ∩B) = H ∩ FB = H,

so FQ contains Hg−1. Since H was arbitrary, Q must be piecewise-syndetic, a contra-
diction. Hence no point of X can correspond to a syndetic set.

Suppose now that Y is a minimal subsystem of X different from {1∅}. Then the set 
C = {ω ∈ {0, 1}G : ω(idG) = 1} has non-empty intersection with Y . Since Y is minimal, 
every point 1B ∈ Y visits C syndetically. In particular, every point corresponds to a 
syndetic set, a contradiction.

For the second assertion, let Ψ be a sub-sequence of Φ such that dΨ(Q) = dΦ(Q) and 
let μ be any limit point of the sequence

μN = 1
|ΨN |

∑
g∈ΨN

δg·1Q

of probability measures on X. We have μ(C) = dΨ(Q) > 0, so μ({1∅}) < 1.
Hence there is a G invariant probability measure with no point mass at 0. Suppose 

now that it has a point mass at some other point 1B. Then the orbit of 1B is finite, so 
it is a minimal subsystem of X different from {1∅}, a contradiction. �

We conclude with an example demonstrating that, in general, the invariant probability 
measure in Proposition 6.5 will not have full support on X, even in the case of a Z-action.

Example 6.6. Let Q ⊂ Z be a non-piecewise-syndetic set of positive lower density. (One 
can take, for instance, a Straus set in Z.) Since Q is not syndetic, its characteristic 
function 1Q has two consecutive zeroes. Translating Q if necessary we may assume that 
0, 1 /∈ Q. Consider now the set Q′ := 2Q ∪ (2Q + 1) ∪ {1}. This set still has positive 
lower density, and is not piecewise-syndetic since it is contained in the union of three 
translates of the non-piecewise-syndetic set 2Q. Moreover, 1 is the only member of Q′

both of whose neighbors are not in Q′. Let now X ⊂ {0, 1}Z be the orbit closure of 
1Q′ and let C := {ω ∈ {0, 1}Z : ω(0) = ω(2) = 0, ω(1) = 1}. Then the cylinder sets 
X ∩ (C + n) = {1Q′+n} are disjoint singletons that are mapped to each other under the 
action of Z. Hence any Z-invariant probability measure assigns zero measure to them. 
Since they are open, an invariant probability measure cannot have full support.
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