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0. Introduction.

Our goal in this paper is to exhibit a connection between two seemingly disparate areas:

Ramsey theory and the theory of unitary representations of a class of locally compact groups.

The class of groups that we are interested in consists of the so-called ”minimally periodic

groups” introduced by von Neumann in [N]; namely, groups having the property that they do

not admit non-trivial almost periodic functions. This, in turn, is equivalent to the property

of not having non-trivial finite dimensional unitary representations. One can show that yet

another equivalent form of the above condition is that any ergodic measure preserving action

of such a group on a finite measure space is actually weakly mixing. It is this aspect that will

interest us and so we call these groups WM groups, and the class of these is denoted WM.

As we shall see WM groups that are also amenable have unexpected Ramsey-theoretical

properties.

Here are some examples of WM groups:

(i) SL(2,R), or more generally, any simple non-compact Lie group with finite center.

(ii) The group Alt(N) of even permutations of N, or more generally, any group which is

a direct limit of compact simple groups.

Note that the examples in (i) are non-amenable and those in (ii) are amenable.

Amenability of a locally compact group can be defined in two ways. One of these is in

terms of an invariant mean, that is, a functional on either bounded continuous functions or

bounded Borel measurable functions having the same value on a function as on its translate:

m(f) = m(fu), where fu(g) = f(ug). An alternative characterization is in terms of Følner

sequences. A sequence of compact sets (Fn) in G is called (left) Følner sequence, if for any

g ∈ G one has
|Fn ∩ gFn|
|Fn|

→ 1 as n→∞,

where vertical lines refer to Haar measure. In an amenable group there is also a notion of

1The first author was supported by the NSF grant DMS-0600042

1



”invariant density” for Borel sets, d(E), defined either as m(1E) or by

lim
n→∞

|E ∩ Fn|
|Fn|

for an appropriately refined Følner sequence. Note that d(E) = d(gE) for each g in G.

We now shift our discussion to Ramsey theory.

Ramsey theory treats the phenomenon that large subsets of appropriately chosen struc-

tures have rich combinatorial properties. In the earlier examples, the notion of largeness was

to be one of the several subsets into which a structure is divided in an arbitrary partition to

finitely many sets. For example, the classical van der Waerden theorem states that for any

finite partition of Z, one of the cells of the partition is AP-rich, i.e. contains arbitrarily long

arithmetic progressions. Van der Waerden’s theorem is a consequence of the deeper result of

Szemerédi which says that any set which has positive density with respect to some sequence

of intervals [an, bn] where bn − an → ∞ as n → ∞, is AP-rich. It is customary to say that

Szemerédi’s theorem is a density version of van der Waerden’s. (See [GRS].)

On the other hand, there are partition results which do not necessarily generalize to, for

example, sets of positive density (and for which the underlying notion of largeness can often

be expressed in the language of ultrafilters). For example, Schur’s theorem stipulates that

for any finite coloring of N, there is a monochromatic triple of the form {x, y, x + y}, but

clearly there is no such triple in the set of 2N + 1 which has density 1/2 with respect to any

sequence of intervals. This observation equally applies to Hindman’s theorem which forms

a far reaching generalization of Schur’s result.

Hindman’s Theorem ([H]). For any finite partition of an infinite semigroup S, one of the

cells of the partition contains a ”finite products” set, namely a set FP (xi) comprised of an

infinite sequence (xi) together with all finite products of the form

xi1xi2 · · ·xik , i1 < i2 < ... < ik, k ∈ N.

The finite products sets (or finite sums sets, in the case of additive notation) are also

called IP sets and play fundamental role in combinatorial applications of ergodic theory and

topological dynamics (see for example [F2], [FK], [FW], [B1], [B2], [BM].)
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One of our principal observations is that for WM amenable locally compact groups, a

sufficient condition for a set E to contain a Schur triple, and even to contain an entire

IP set, is that d∗(E) > 0, where d∗(E) := sup{d(E), d a left-invariant density}. Indeed,

provisionally defining a set E to be large if d∗(E) > 0, we will prove

Theorem 1. A locally compact amenable group is a WM group if and only if any large set

in G contains and IP set.

One of the approaches to Hindman’s theorem involves the topological algebra in Stone-

Čech compactifications. In particular, if the group G is countable, and discrete Hindman’s

theorem is implied by the fact that given an idempotent ultrafilter p in βG, any member of

p contains an IP set. It is also known that any IP set in G is a member of some idempotent

in βG. If G is a countable discrete abelian group, then the (two sided) ideal of βG which

consists of ultrafilters p with the property that every E ∈ p satisfies d∗(E) > 0, is strictly

larger than the closure of all the idempotents in the smallest ideal of βG. (See [HS, Exercise

6.1.4 and Theorem 7.28].) The following corollary of Theorem 1 shows that the structure of

βG for any amenable WM group G is quite different.

Theorem 2. If G is a discrete, countable amenable WM group, then any large set in G is

a member an idempotent ultrafilter.

The following result demonstrates yet another peculiarity of WM groups.

Theorem 3. Let G be a locally compact amenable WM group and d(·) an invariant density.

If A and B are two Borel subsets satisfying d(A) > 0, d(B) > 0, the product set AB has

density one with respect to any Følner sequence. If G is, in addition, countable and discrete,

then AB is a member of any minimal idempotent in βG.

1. A Weak Correspondence Principle for Amenable Groups.

For a topological group G we speak of a measure preserving action of G if we have

a representation of G by measure preserving transformations {Tg}g∈G of a measure space

(Ω,B, µ) such that the map (g, A) → T−1
g A is jointly continuous from G×B → B, where

the topology on B is given by the (pseudo-)metric: ρ(B1, B2) = µ(B1 M B2). We say the

action is ergodic if for B1, B2 ∈ B with µ(B1), µ(B2) > 0 ∃g ∈ G with µ(B1 M g−1B2) > 0.
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The action is weakly mixing if the corresponding action on (Ω×Ω,B×B, µ×µ) is ergodic.

In this case the action on (Ω × Ω,B ×B, µ × µ) is again weakly mixing. WM groups are

characterized by the fact that the two notions coincide.

G is amenable if there is a left-invariant mean on Borel functions on G, m(f), i.e., for any

γ ∈ G, m(f) = m(Lγf), where Lγf(g) ≡ f(γ−1g). The invariant mean determines a notion

of density for Borel sets, d(B) = m(1B), with d(B) = d(γ−1B) for γ ∈ G. The invariant

mean for an amenable group is (generally) not unique and we can define the upper density

d∗(B) for a Borel set B as sup{d(B), d a left-invariant density}. We remark for future

reference that for weakly mixing actions of an amenable group, if µ(B1) > 0 and µ(B2) > 0,

then

d∗({g : µ(g−1B1 ∩B2) = 0}) = 0

(cf. [BR, Theorem 4.1]).

For an amenable locally compact group acting ergodically on a space Ω one has the

ergodic theorem, which roughly speaking, implies that if a bounded measurable function on

Ω is lifted to the group via the group action on almost any point, this correspondence will

identify group ”averages” with ”space averages”. One exact version of this, for an ergodic

measure preserving action of G on (Ω,B, µ), is that for any measurable sets B1, B2, . . . , Bk

there are sets S1, S2, . . . , Sk in G and an invariant density d(·), so that for {gij : 1 ≤ i ≤

k, 1 ≤ j ≤ li} ⊂ G the identity

(1.1) d

(⋂
i,j

g−1
ij Si

)
= µ

(⋂
i,j

T−1
gij
Bi

)

holds.

In this section we shall show how to invert the direction, going rather from subsets in G

to ergodic actions and a family of corresponding subsets of the space, again retrieving the

identity (1.1). It is not too difficult to do this for discrete groups and here we can formulate

the following (strong) correspondence principle in which d(·) is some invariant density:

Let S1, S2, . . . , Sk be arbitrary subset of G. There exists a measure preserving action of G

on a space (Ω,B, µ) and sets B1, B2, . . . , Bk ∈ B, so that for any {gij : 1 ≤ i ≤ k, 1 ≤ j ≤ li}

d

(⋂
i,j

g−1
ij Si

)
= µ

(⋂
i,j

T−1
gij
Bi

)
.
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When G = Zn this principle has been used to deduce Szemerédi type theorems from

multiple recurrence results for Zn-actions. (See, for example, [F1], [FK], [BL], [BM].)

We shall be interested in an analogous result for non-discrete groups. We shall also

be interested in obtaining ergodic actions which for WM groups are automatically weakly

mixing. This will give us great flexibility in using the correspondence. The price that will

be paid is that we won’t achieve equality as in (1.1), but we can still conclude that when the

right hand side in (1.1) is positive, the left hand side will not vanish.

We begin with a preliminary result in which we don’t achieve ergodicity, but it will clar-

ify the steps we take in going from discrete to non-discrete groups. For this part of the

discussion G is a topological amenable group and d(·) is a fixed left invariant density. The

following definition is related to this density.

Definition 1.1. A Borel subset S is substantial if S ⊃ UW for some non-empty open set U

and a Borel set W with d(W ) > 0.

Remark. This notion appears (albeit not under this name) in [FKW].

For a discrete amenable group, the condition for substantiality reduces to d(S) > 0. Note

that the open set in the definition can be chosen to be a neighborhood of the identity.

We can now formulate a weak correspondence principle. We remark that from the proof

of this weakened form one can easily deduce the stronger version for the case of discrete

countable group. See also a counterexample in [BBB, Section 4], which shows that the

”strong” correspondence principle does not, in general, hold for locally compact groups.

Theorem 1.1. Let S1, S2,. . . ,Sk be substantial sets in an amenable, locally compact group

G. There exists a measure preserving action of G on a space (Ω,B, µ), sets B1, B2,. . . , Bk

of positive measure in B and positive constants c1, c2, . . . , ck so that for any {gij : 1 ≤ i ≤

k, 1 ≤ j ≤ li} in G

(1.2) d

(⋂
i,j

g−1
ij Si

)
≥

(∏
i

clii

)
µ

(⋂
i,j

T−1
gij
Bi

)
.

Moreover, when the expression on the right is positive, the set
⋂
g−1

ij Si appearing on the left

is again substantial.
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In the proof of this theorem the space Ω will be the compact space turning up in the

Gelfand representation of a particular algebra of functions on G. The group G will act on

this algebra by automorphisms and these induce homeomorphisms of Ω which will give us the

representation g 7→ Tg. We use the following notion of ”left-uniformly continuous” functions:

Definition 1.2. A function f(g) on G is LUC if for any ε > 0 there exists a neighborhood

V of the identity so that

|f(vg)− f(g)| < ε

for all v ∈ V and g ∈ G.

We denote by LUC the algebra of all bounded complex-valued functions on G. With the

sup norm LUC is a commutative C∗-algebra with involution. It is not hard to check that

Lγ, defined by Lγ(f)(g) = f(γ−1g), takes LUC to itself defining an automorphism.

For G locally compact we can use Haar measure to define convolution of functions in

L1(G) and L∞(G) respectively:

ψ ∗ f(g) =

∫
ψ(h)f(h−1g)dh.

The convolution of two such functions is always LUC. It is natural to interpret ψ ∗ f as

a limit of finite linear combinations of translates of f . Taking into account that m is left

invariant, we arrive at the following convenient formula.

(1.3) m(ψ ∗ f) =

∫
ψ(h)dh ·m(f).

We now consider the Gelfand representation LUC ∼→ C(Ω). Denote by f̃ the function

on Ω associated to a function f ∈ LUC. The automorphisms Lγ−1 induce automorphisms

of C(Ω); these take maximal ideals to maximal ideals, thereby defining maps Tγ : Ω → Ω

satisfying f̃(Tγω) = (Lγ−1f)∼(ω).

Finally, we can transfer the invariant mean m(f) from LUC to C(Ω), and by the usual

properties we find that there exists a measure µ on Ω such that

m(f) =

∫
Ω

f̃(ω)dµ(ω).
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Since we have∫
f̃(Tγω)dµ(ω) =

∫
(Lγ−1f)∼(ω)dµ(ω) = m(Lγ−1f) = m(f) =

∫
f̃(ω)dµ(ω)

and since every function in C(Ω) is the image of a function in LUC, the foregoing identity

implies that µ is invariant under each Tγ.

To complete the construction of a measure preserving action ofG we still need to check the

continuity of the map (g,B) → T−1
g B. More generally, we shall have that (g, f) 7→ f ◦ g−1 is

jointly continuous where f ∈ L1(Ω,B, µ). It is convenient to denote the operator f 7→ f ◦g−1

by Tgf .

Tg is an isometry on L1 and it can be seen that the continuity in question will follow from

continuity restricted to the dense subset L̃UC ⊂ L1, and here it follows from the definition

of LUC.

Turn now to the substantial sets S1, S2, . . . , Sk in the statement of theorem 1.1. We

have for each i, Si ⊃ UiWi with d(Wi) > 0 and Ui a non-empty open set. Let ψi ≥ 0 be

continuous with support in Ui and

0 <

∫
ψi(g)dg ≤ 1.

By definition of the convolution we see that ψi ∗ 1Wi
(g) 6= 0 only for g ∈ UiWi ⊂ Si so

that

(1.4) 1Si
≥ ψi ∗ 1Wi

We will use (1.4) to prove our theorem. We begin by defining for each i the set Bi and

the constant ci > 0. Namely, since ψi ∗ 1Wi
∈ LUC, the function ϕi = (ψi ∗ 1Wi

)∼ is defined

on Ω with ϕi ≥ 0 and∫
ϕidµ = m(ψi ∗ 1Wi

) =

(∫
ψi(h)dh

)
d(Wi) > 0.

Thus ϕi(ω) > 0 for some set of positive µ-measure and we can write

ϕi(ω) > ci1Bi
(ω)

for all ω and for appropriate ci, Bi, where µ(Bi) > 0.
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We turn to (1.2) replacing sets by functions:

d

(⋂
i,j

g−1
ij Si

)
= m

(∏
i,j

Lg−1
ij

1Si

)
≥ m

(∏
i,j

Lg−1
ij
ψi ∗ 1Wi

)
.

The latter can be evaluated as an integral over Ω:∫ ∏
i,j

(Lg−1
ij
ψi ∗ 1Wi

)∼(ω)dµ(ω) =

∫ ∏
i,j

(ψi ∗ 1Wi
)∼(Tgij

(ω))dµ(ω)

≥
∏

i

clii

∫ ∏
i,j

1Bi
(Tgij

(ω))dµ(ω) =
∏

i

clii µ
(⋂

Tg−1
ij
Bi

)
.

This proves the first part of the theorem. To prove the second part we make the following

observation. If S ⊃ UW , where U is non-empty open neighborhood of identity, we can find

non-empty open neighborhoods of identity U ′,U ′′ with U ′U ′′ ⊂ U so that S ⊃ U ′(U ′′W ),

therefore a substantial set always contains a ”thickening” of a smaller substantial set.

Turning to S1, S2, . . . , Sk in our theorem we can suppose Si ⊃ U ′iS
′
i. We can also suppose

without loss of generality that the sets U ′i are neighborhoods of identity. The first part of

the theorem is valid for the sets S ′i for an appropriate measure preserving action, sets Bi,

and constants ci. We now use the fact that⋂
i,j

g−1
ij U

′
iS
′
i ⊃

(⋂
i,j

g−1
ij U

′
igij

)
·

(⋂
ij

g−1
ij S

′
i

)
= U ′′W ′′

we conclude that when
⋂
i,j

g−1
ij S

′
i has positive density, then

⋂
i,j

g−1
ij Si is substantial.

In the foregoing theorem, there is no reason that the action on (Ω,B, µ) be ergodic.

To achieve ergodicity we need another condition which need not hold for arbitrary substan-

tial sets. For, suppose we have a correspondence Si ↔ Bi with µ(Bi) > 0. If the action

is ergodic then there exist group elements γi with µ

(⋂
i

T−1
γi
Bi

)
> 0. This should imply

d

(⋂
i

γ−1
i Si

)
> 0. So we need to assume that a condition of this type is given. We make

this precise in the following:

Definition 1.3. A family of sets {Si}1≤i≤k in G is coalescent if ∃ {γi}1≤i≤k with

d∗
(⋂

i

γ−1
i Si

)
> 0.

Note that we are not fixing a particular invariant mean here.
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Definition 1.4. A family of Borel sets {Si}1≤i≤k in G is coherent if for each i, Si ⊃ UiWi,

where Ui is a non-empty open set, and the family {Wi}1≤i≤k is coalescent.

Remark. The sets of a coherent family are necessarily substantial for some invariant density

d(·).

For discrete groups the two notions of the foregoing definitions coincide. Note also that

the open sets {Ui} in Definition 1.4 can be assumed to be neighborhoods of the identity.

The main result in this section is the following:

Theorem 1.2. Let {S1, S2, . . . , Sk} be a coherent family of Borel sets in G. There is an

ergodic action of G on a space (Ω,B, µ) and sets B1,B2,. . . ,Bk ∈ B with µ(Bi) > 0, so that

for any {gij : 1 ≤ i ≤ k, 1 ≤ j ≤ li} in G, if

(1.5) µ

(⋂
i,j

T−1
gij
Bi

)
> 0

then

(1.6) d∗

(⋂
i,j

g−1
ij Si

)
> 0.

Proof. We write Si ⊃ UiWi, 1 ≤ i ≤ k, and having assumed that the Ui are neighborhoods

of the identity and setting U =
⋂
i

Ui we have Si ⊃ UWi, where furthermore {Wi} forms a

coalescent family. We can find an invariant density and elements γi ∈ G with d

(⋂
i

γ−1
i Wi

)
>

0. We follow the construction in the proof of theorem 1.1, using the Gelfand representation

of LUC to C(Ω) to obtain an action of G on (Ω,B, µ) with m(f) =
∫
f̃dµ for all functions

f ∈ LUC. If the resulting action on (Ω,B, µ) is ergodic we are through. Otherwise consider

the ergodic decomposition

µ =

∫
Θ

µθ dσ(θ)

where the measures µθ are ergodic (i.e., they are invariant under {Tg}g∈G, and the actions

are ergodic). We shall show that for some θ the ergodic action on (Ω,B, µθ) provides the

desired correspondence.

As in the proof of theorem 1.1, let ψ ∈ L1(G) with ψ(g) ≥ 0 and having support in⋂
i

γiUγ
−1
i . Moreover, we suppose that

∫
ψ(g)dg = 1.
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Convolution with ψ is an averaging process and so we can write

(1.7)
∏

i

ψ ∗
(
Lγ−1

i
1Wi

)
=
∏

i

ψ ∗
(
Lγ−1

i
1Wi

)k

≥ ψ ∗
∏

i

(
Lγ−1

i
1Wi

)
= ψ ∗ 1T

γ−1
i Wi

Convolution with ψ preserves mean and so

m

(∏
i

ψ ∗
(
Lγ−1

i
1Wi

))
> 0

and by the correspondence LUC ∼= C(Ω) we have

(1.8)

∫ ∏
i

(ψ ∗ (Lγ−1
i

1Wi
))∼dµ > 0.

Since µ =
∫
µθ dσ we can find θ with

(1.9)

∫ ∏
i

(ψ ∗ (Lγ−1
i

1Wi
))∼dµθ > 0.

Write µ′ = µθ. We can find a set B ∈ B with µ′(B) > 0, and a positive constant c, so that

(1.10)
∏

i

(ψ ∗ (Lγ−1
i

1Wi
))∼ ≥ c1B.

on Ω. We set Bi = Tγi
B.

Note that (1.10) implies that for each i

(ψ ∗ (Lγ−1
i

1Wi
))∼ ≥ c1B

and so

Tγi

(
ψ ∗ (Lγ−1

i
1Wi

)
)∼

≥ c1Bi

or (
Lγi

(
ψ ∗ Lγ−1

i
1Wi

))∼
≥ c1Bi

We can write

(1.11) (ψi ∗ 1Wi
)∼ ≥ c1Bi

,

where ψi(g) = ψ(γ−1
i gγi). By our assumption on ψ, the function ψi ∗ 1Wi

≤ 1Si
and we shall

use this to relate the two expressions in our theorem. To do this we define a new invariant

mean on the bounded Borel functions on G. Namely, for f ∈ LUC we define

m′(f) =

∫
f̃dµ′
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and we extend m′ from LUC to all bounded Borel functions using the Hahn-Banach extension

theorem. Corresponding to this meanm′ there is an invariant density d′, and by the foregoing

inequality , for any {gij}

d′

(⋂
i,j

g−1
ij Si

)
= m′

(∏
i,j

L−1
gij

1Si

)
≥ m′

(∏
i,j

L−1
gij
ψi ∗ 1Wi

)
=

∫ ∏
i,j

T−1
gij

(ψi ∗ 1Wi
)∼ dµ′

≥ c
P

liµ′
(⋂

T−1
gij
Bi

)
.

Since d∗ for a set in G is the sup of d for all invariant densities the foregoing inequality

is valid with d∗ instead of d′. Thus the action of G on (Ω,B, µ′) is the ergodic action that

we seek.

We take as a final definition of largeness for arbitrary amenable locally compact groups:

S ⊃ UW , where U is non-empty open set, and d∗(W ) > 0. Then it is easily seen, imitating

the argument in the proof of Theorem 1.1, that in Theorem 1.2, when (1.5) is positive, the

set appearing in (1.6) is large.

2. Variations on a theme of Hindman.

Given a sequence (xi) ⊂ G we use the notation xα :=
∏

i∈α xi, where α = {i1, . . . , ik} is a

finite non-empty subset in N and the product is taken in the order of the increasing indices

(that is, we assume that i1 < i2 < · · · < ik and
∏

i∈α xi = xi1xi2 · · ·xik).

We call xα even, if |α| is even and odd if |α| is odd.

Theorem 2.1. Let G be a locally compact WM group and let S0, S1 ⊂ G be a coherent pair

of sets. Then there exists a sequence (gi)i∈N such that gα ∈ S0 for all even gα and gα ∈ S1

for all odd gα.

Before giving the proof, we need the following lemma.

Lemma 2.2. Let S1, S2, S3 be large sets in a locally compact amenable WM group G and

assume that S1 and S2 are coherent. There exists g ∈ S3 such that, simultaneously, S1∩g−1S2

and S2 ∩ g−1S1 are large.

Proof. Let (X,B, µ, (Tg)g∈G) be the weakly mixing measure preserving system ”generated”

by S1, S2 and let C1, C2 be the corresponding images of S1, S2 in B. Utilizing the fact that
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the product system (X ×X,B ⊗B, µ× µ, (Tg × Tg)g∈G) is also weakly mixing, we can find

g ∈ S3 such that

(µ× µ)
(
(C1 × C2)

⋂
(Tg × Tg)(C2 × C1)

)
> 0.

This implies µ(C1∩TgC2) > 0 and µ(C2∩TgC1) > 0, which, by the correspondence principle,

implies that the sets S1 ∩ g−1S2 and S2 ∩ g−1S1 are large.

Proof of Theorem 2.1. The proof is based on repeated application of the above lemma. Start

with picking g1 ∈ S0 so that the sets S0 ∩ g−1
1 S1 and S1 ∩ g−1

1 S0 are large.

Now pick g2 ∈ S0 ∩ g−1
1 S1 (note that g2 ∈ S0 and g1g2 ∈ S1) so that the sets

(S0 ∩ g−1
1 S1)

⋂
g−1
2 (S1 ∩ g−1

1 S0)

and

(S1 ∩ g−1
1 S0)

⋂
g−1
2 (S0 ∩ g−1

1 S1)

are large.

At the next stage we pick g3 ∈ (S0 ∩ g−1
1 S1)

⋂
g−1
2 (S1 ∩ g−1

1 S0) so that the sets[
(S0 ∩ g−1

1 S1)
⋂

g−1
2 (S1 ∩ g−1

1 S0)
]⋂

g−1
3

[
(S1 ∩ g−1

1 S0)
⋂

g−1
2 (S0 ∩ g−1

1 S1)
]

and [
(S1 ∩ g−1

1 S0)
⋂

g−1
2 (S0 ∩ g−1

1 S1)
]⋂

g−1
3

[
(S0 ∩ g−1

1 S1)
⋂

g−1
2 (S1 ∩ g−1

1 S0)
]

are large. Note that our choice of g3 implies that all gα with |α| ≤ 3 satisfy the assertion

of the theorem. Continuing this process, we arrive at the sequence (gi)i∈N with the desired

properties.

Remarks. (i) Taking S0 = S1 we obtain Theorem 1 formulated in the Introduction.

(ii) For a discrete countable amenable group G, existence of coherent families of sets

{S1, . . . , Sk} in G follows from the correspondence, implicit in equation (1.1), between sets

B1, . . . , Bk in Ω for an ergodic measure preserving action of G on (Ω,B, µ) and subsets

S1, . . . , Sk in G. In particular, a natural example of a pair of coherent sets in a discrete

countable amenable group is given by {S, Sc}, where both S and Sc are sets of positive

density.

(iii) Theorem 2.1 is easily extended to a coherent family {S0, S1, . . . , Sk−1}, where in the

conclusion of the theorem the parity of |α| is replaced by |α| mod k.
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Theorem 2.3. Let G be a locally compact amenable WM group. Let k ∈ N and assume

that for each α ⊂ {1, 2, . . . , k} we are given coherent large sets Sα ⊂ G. Then there exist

g1, . . . , gk ∈ G such that gα ∈ Sα for any α ⊂ {1, 2, . . . , k}.

Proof. We shall show how to prove the result for k = 3, the general case is entirely similar.

Pick g1 ∈ S1 so that the sets S2∩g−1
1 S12, S3∩g−1

1 S13 and S23∩g−1
1 S123 are large (the fact

that we can choose such g1 follows from an obvious modification of the above Lemma 2.2.

This remark also applies to the choices of g2 and g3 made below.)

Now pick g2 ∈ S2 ∩ g−1
1 S12 so that (S3 ∩ g−1

1 S13) ∩ g−1
2 (S23 ∩ g−1

1 S123) is large. Note that

g2 ∈ S2, g1g2 ∈ S12.

Finally, pick g3 ∈ (S3∩g−1
1 S13)∩g−1

2 (S23∩g−1
1 S123). Then g3 ∈ S3, g1g3 ∈ S13, g2g3 ∈ S23,

g1g2g3 ∈ S123 and we are done.

Remark. For a similar phenomenon in the framework of the so called quasirandom finite

groups see [G, Theorem 5.2].

We conclude this section with an observation that the fact that large sets always con-

tain infinite IP sets actually characterizes the locally compact amenable groups with WM

property.

Theorem 2.4. A locally compact amenable group G is a WM group if and only if any large

set in G contains an IP set.

Proof. In light of Theorem 1 from the Introduction (which, in turn, is a corollary of The-

orem 2.1 in this section) we need only to prove one direction. We shall presently see that

already a weaker result, namely the fact that any large set contains a triple {x, y, xy} implies

the WM property.

Indeed, assume that G is not a WM group. Then there exists a nontrivial unitary

representation (Ug)g∈G on a finite-dimensional space V .

Pick a non-zero element f ∈ V and consider the orbit closureK = {Ugf, g ∈ G}. Clearly,

K is a compact subset of V . Let ε > 0 and let {f1, f2, . . . , fk} be an ε-separating set in K.

(This means that ‖fi − fj‖ ≥ ε for i 6= j and that for any ϕ ∈ K there exists i ∈ {1, . . . , k}

such that ‖ϕ − fi‖ ≤ ε). Note now that for any ε1 > 0 and any i, j ∈ {1, . . . , k} the set

S = {g ∈ G : ‖Ugfi − fj‖ < ε1} is large.
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But if i 6= j and ε1 is small enough, the set S cannot contain a triple {x, y, xy}.

3. Some unexpected properties of the Stone-Čech

compactification of a countable WM group.

In this section we restrict to countable WM groups and make a connection between large

sets in G (in the sense defined in Section 1) and properties of idempotents in βG, the Stone-

Čech compactification of G. We start with a very brief review of some basic definitions. For

more information see [B2] and [HS].

The elements of βG are ultrafilters, namely families of sets in G which are maximal with

respect to the finite intersection property. It is convenient to think of an ultrafilter p on G

as a {0, 1}-valued, finitely additive probability measure on the power set of G. If A ⊂ G has

p-measure 1, we write A ∈ p and say that A is p-large.

The group operation on G extends naturally to βG by the rule

A ∈ p · q ⇔ {g ∈ G : Ag−1 ∈ p} ∈ q.

For A ⊂ G, let Ā = {p ∈ βG : A ∈ p}. One can check that the family A = {Ā : A ⊂ G}

is a basis for a topology on βG and that, under this topology and under the operation

introduced above, βG becomes a compact Hausdorff left topological semigroup. (The last

condition means that for any fixed q ∈ βG, the map p→ q · p is continuous.)

By a theorem of Ellis ([E]), any compact left topological semigroup has an idempotent.

One can show that βG has 2c idempotents and that an ultrafilter p belongs to the closure

of the set of idempotents if and only if every p-large set contains an IP set. Moreover, one

can show that any IP set is p-large for some idempotent p ∈ βG. See [BH, Lemma 5.11].

Let now A ⊂ G be a large set. Since, as we have seen in the previous section, A contains

an IP set, we have the following fact.

Theorem 3.1. If A ⊂ G is large then A is p-large for some idempotent p ∈ βG.

Remark. As was mentioned in the Introduction, this is special for WM groups. One can,

for example, show that if G is a countable discrete abelian group then for any ε > 0 there

exists a set A ⊂ G which has density larger than 1 − ε and yet contains no shift of an IP
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set. (This fact, in the framework of (N,+), was first established by E. Strauss, see [BBHS,

Theorem 2.20].)

To formulate our next result we need to introduce a few more notions. A right ideal

(respectively, left ideal) in βG is a set J ⊂ βG such that for every q ∈ βG and every p ∈ J ,

p · q ∈ J (respectively, q · p ∈ J .) An ideal is a set I ⊂ βG which is both a left and right

ideal. A minimal right ideal is a nonempty right ideal J , containing no proper nonempty set

which is itself a right ideal.

Let K be the union of minimal right ideals in βG. Then one can show that K is a two-

sided ideal and, in fact, the smallest two-sided ideal. It contains (plenty of) idempotents

and any idempotent p ∈ K is called minimal.

The significance of minimal idempotents in Ramsey theory stems from the fact that sets

which are members of minimal idempotents (these sets are called central sets) have very rich

combinatorial properties. For example, central sets in (Z,+) not only contain IP sets but

also contain arbitrarily long arithmetic progressions. See [F2]. (The notion of central sets

in Z is defined in [F2] in terms of topological dynamics; the fact that a set in Z is central if

and only if it is a member of a minimal idempotent in βZ is established in [BH].)

It is not hard to show that if a set A ⊂ G has density 1 with respect to some invariant

mean, then A is p-large for some minimal idempotent p ∈ βG. Moreover, if a set B ⊂ G has

the property that it has density 1 with respect to any invariant mean (for example, for any

large set A ⊂ G, the set B = {g : A ∩ g−1A is large} has this ”universal” property), then B

is p-large for any minimal idempotent p. Note now that if A is large then

A−1A = {g ∈ G : A ∩ g−1A 6= ∅} ⊃ {g ∈ G : A ∩ g−1A is large}.

The above remarks can now be summarized in the following statement.

Theorem 3.2. Let G be a countable WM group. If A ⊂ G is large, then A−1A is p-large

for any minimal idempotent p ∈ βG.

A set T ⊂ G is called thick if for any finite set F there exists x ∈ G such that Fx ⊂ T . It

is not hard to show that any thick set is central, i.e. is a member of a minimal idempotent.

[reference] We can apply this fact to WM groups as follows. Let A,B ⊂ G be two large, not

necessarily coherent sets. One can show (see [J], [BFW], [BBF]) that the product set AB is

15



not just large, but is piecewise syndetic, i.e. is an intersection of a syndetic set with a thick

set. Moreover, the set AB is actually a piecewise Bohr set (see [BFW] and [BBF] for the

details). The relevant corollary of this fact for the situation at hand is that if G is a WM

group then AB has actually to be thick. This implies the following statement.

Theorem 3.3. If G is a countable WM group and A, B are (not necessarily coherent) large

sets in G, then AB = {xy : x ∈ A, y ∈ B} is a central set.
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