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Abstract. Let S be a left amenable semigroup. Say that a subset A of S is
large if there is some left invariant mean µ on S with µ(χA) > 0. A subset

B of S is density recurrent if and only if, whenever A is a large subset of

S, there is some x ∈ B such that x−1A ∩ A is large. We show that the set
DR(S) of ultrafilters on S, every member of which is density recurrent, is a

compact subsemigroup of the Stone-Čech compactification βS of S containing

the idempotents of βS. If S is a group, we show that for every nonprincipal
ultrafilter p on S, p−1p ∈ DR(S), where p−1 = {A−1 : A ∈ p}. We obtain

combinatorial characterizations of sets which are members of a product of k
idempotents and of sets which are members of a product of k elements of

the form p−1p for each k ∈ N. We show that DR(N, +) has substantial

multiplicative structure. We show further that if A is a large subset of S, then

DR(S) ⊆ AA−1, where the quotient set AA−1 = {x ∈ S : (∃y ∈ A)(xy ∈
A)}. For each positive integer n, we introduce the notion of a polynomial
n-recurrent set in N. (Such sets provide a generalization of the polynomial
Szemerédi Theorem.) We show that the ultrafilters, every member of which

is a polynomial n-recurrent set, are a subsemigroup of (βN, +) containing the
additive idempotents and a left ideal of (βN, ·).

1. Introduction

Let A be a subset of the set N of positive integers. The upper asymptotic density
of A is defined by

d(A) = lim sup
n→∞

|A ∩ {1, 2, . . . , n}|/n ,

and the upper Banach density of A is defined by

d∗(A) = lim sup
n→∞

|A ∩ In|
|In|

where the supremum is taken over all sequences of intervals 〈In〉∞n=1 with length
approaching infinity. More formally,

d∗(A) = sup{α : (∀n ∈ N)(∃m ≥ n)(∃a ∈ N)(|A∩{a+1, a+2, . . . , a+m}| ≥ α·m)} .
It has been known for some time that if either d(A) > 0 or d∗(A) > 0, then the
difference set D(A) = {x − y : x, y ∈ A and x > y} has substantial algebraic
structure. In fact, for such results about D(A) it doesn’t matter whether one
assumes that d(A) > 0 or d∗(A) > 0. The reason is, if d∗(A) > 0, then there exists
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B ⊆ N such that d(B) > 0 and D(B) ⊆ D(A). And of course always d∗(A) ≥ d(A).
For example, it is shown in [4, Theorem 2.6], using some results from ergodic
theory, that given any function f : N −→ N, there must exist a sequence 〈xn〉∞n=1

so that
{ ∑

n∈F an · xn : F is a finite nonempty subset of N and for each n ∈ F ,
an ∈ {1, 2, . . . , f(n)}

}
∪

{ ∏
n∈F x

an
n : F is a finite nonempty subset of N and for

each n ∈ F , an ∈ {1, 2, . . . , f(n)}
}
⊆ D(A).

We shall be concerned in this paper with quotient sets of large subsets of left
amenable semigroups. Given such a semigroup (S, ·) and A ⊆ S, we define AA−1 =
{x ∈ S : (∃z ∈ A)(xz ∈ A)}. (If the operation is denoted by + this becomes
A−A = {x ∈ S : (∃z ∈ A)(x+ z ∈ A)}.) The related quotient set

A−1A = {x ∈ S : (∃z ∈ A)(zx ∈ A)}

would arise if we were dealing with right amenable semigroups. If A ⊆ N, then
one has A − A = D(A). We only occasionally assume that our semigroups are
commutative or countable.

We present results about quotient sets and the algebraic structure of the Stone-
Čech compactification βS of S in Section 3. For example, it is a consequence of
Theorem 3.15 that if A ⊆ N, d∗(A) > 0, k ∈ N, p1, p2, . . . , pk are idempotents in
βN, and q1, q2, . . . , ql are any points in βN \ N, then A − A ∈ p1 + p2 + . . . + pk,
A−A ∈ (−q1 + q1) + (−q2 + q2) + . . .+ (−ql + ql), as well as any other sum of the
pi’s and (−qj + qj)’s in any order.

In Section 4 we characterize precisely those subsets of S which are members of a
product of a fixed number of idempotents. For example, a subset A of S is a member
of the product of two idempotents if and only if there exist sequences 〈x1,t〉∞t=1 and
〈x2,t〉∞t=1 in S such that all products of the form

∏
t∈F x1,t

∏
t∈H x2,t are in A where

F and H are finite nonempty subsets of N and maxF < minH. We also obtain
combinatorial descriptions of those sets which are members of all products of the
form p1p2 · · · pn where each pi is an idempotent. We obtain the unsurprising result
that the strength of the assertion that A is a member of a product of n idempotents
decreases as n increases.

In Section 5, in the event S is a group or (N,+), we characterize precisely those
subsets which are members of a product of a fixed number of elements of the form
p−1p.

In Section 6 we restrict our attention to N. We obtain the surprising result
that in (N,+), the assertion that A is a member of a sum of n terms of the form
−p+ p for p ∈ βN \N has no relationship whatever to the corresponding statement
about k terms if k 6= n. We characterize there sets which are members of certain
“polynomials” (such as 2p+ qp) whose terms are additive idempotents.

In this Section 6 we introduce the polynomial n-recurrent sets. A set B ⊆ N is
a polynomial n-recurrent set if and only if whenever A ⊆ N and d∗(A) > 0 and
g1, g2, . . . , gn are polynomials with rational coefficients taking integers to integers
and 0 to 0, there exists k ∈ B such that d∗

(
A∩

⋂n
t=1(−gt(k)+A)

)
> 0. For example

if gt(x) = tx and d∗(A) > 0, then the definition tells us that there will exist length
n + 1 arithmetic progressions in A with increment taken from any polynomial n-
recurrent set. We show that the set of all ultrafilters, all of whose members are
polynomial n-recurrent sets is a subsemigroup of (βN,+). By [8, Theorem 7.3] it
contains the idempotents. We show that it is a left ideal of (βN, ·), and is closed
under subtraction from the left.
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During the course of the paper we introduce several classes of subsets of S as
well as several classes of subsets of βS. In a final section we summarize the results
about these classes as well as relationships among these classes.

2. Preliminaries

Given a semigroup S, let l∞(S) be the Banach space of bounded real valued
functions on S with the supremum norm. A mean on S is a member µ of the dual
space l∞(S)∗ such that ||µ|| = 1 and µ(g) ≥ 0 whenever g ∈ l∞(S) and for all
s ∈ S, g(s) ≥ 0. A left invariant mean on S is a mean µ such that for all s ∈ S
and all g ∈ l∞(S), µ(s · g) = µ(g), where s · g = g ◦ λs and λs : S → S is defined by
λs(t) = st. A semigroup S is left amenable if and only if there exists a left invariant
mean on S. In any left amenable semigroup, there is a natural notion of density
for subsets of S.

Definition 2.1. Let S be a left amenable semigroup and let A ⊆ S. Then

d(A) = sup{µ(χA) : µ is a left invariant mean on S}.

For an arbitrary set X, let Pf (X) be the set of finite nonempty subsets of X. In
[10] Følner established that any amenable group satisfies the Følner Condition.

(FC)
(
∀F ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ F

)(
|sK \K| < ε · |K|

)
In [11] Frey showed that any left amenable semigroup satisfies the Følner condition.
(For a simplified proof see [19, Theorem 3.5].) Later, Argabright and Wilde [1]
showed that a left cancellative semigroup is left amenable if and only if it satisfies
the Strong Følner Condition.

(SFC)
(
∀F ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
∀s ∈ F

)(
|K \ sK| < ε · |K|

)
Notice that for any finite K ⊆ S and any s ∈ S,

|K \ sK|+ |K ∩ sK| = |K| ≥ |sK| = |sK \K|+ |K ∩ sK|
so |K \ sK| ≥ |sK \K| and equality holds if s is left cancelable.

Argabright and Wilde also showed [1] that any semigroup satisfying SFC is
left amenable and that any commutative semigroup satisfies SFC. In particular,
any commutative semigroup is left amenable. (See [17, Section 7] for a simple
elementary proof that any commutative semigroup satisfies SFC.)

If the left amenable semigroup S is left cancellative, the Strong Følner Condition
provides a method of calculation of density on S. We will use this theorem in the
proof of Theorem 3.22.

Theorem 2.2. Let S be a left amenable left cancellative semigroup. For A ⊆ S,

d(A) = sup{α ∈ [0, 1] :
(
∀H ∈ Pf (S)

)(
∀ε > 0

)(
∃K ∈ Pf (S)

)(
(∀s ∈ H)(|K \ sK| < ε · |K|) and |A ∩K| ≥ α · |K|

)
} .

Proof. [16, Theorems 2.12 and 2.14]. �

Using Theorem 2.2 one easily shows that for the semigroup (N,+), and any
A ⊆ N, d(A) = d∗(A). (See [17, Theorem 1.9].)

Given A ⊆ S and x ∈ S, x−1A = {y ∈ S : xy ∈ A}. (There is no requirement
that S have an identity, nor, even if S does have an identity, that x have an inverse.)
We shall need the following simple fact.
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Theorem 2.3. Let S be a left amenable semigroup. Let A ⊆ S and let x ∈ S.
Then d(x−1A) = d(A). If S is left cancellative, then also d(xA) = d(A).

Proof. Let µ be a left invariant mean on S. Then µ(χx−1A) = µ(χA ◦λx) = µ(χA).
If S is left cancellative, then x−1xA = A, so d(A) = d(x−1xA) = d(xA). �

We take the Stone-Čech compactification βS of the discrete semigroup S to be
the set of ultrafilters on S. (An ultrafilter is a maximal filter. Alternatively, an
ultrafilter p on S may be identified with a {0, 1}-valued finitely additive measure µ
on P(S). The statement “µ(A) = 1” then corresponds to the statement “A ∈ p”.)

Given A ⊆ S, A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis for the open
sets (as well as a basis for the closed sets) of βS. We identify the principal ultrafilters
with the points of S and thus pretend that S ⊆ βS. The operation · extends to
βS making (βS, ·) a right topological semigroup (meaning that for each p ∈ βS the
function ρp : βS → βS defined by ρp(q) = q · p is continuous) with S contained
in its topological center (meaning that for each x ∈ S the function λx : βS → βS
defined by λx(q) = x · q is continuous). As is true of any compact Hausdorff right
topological semigroup, βS has idempotents [9, Lemma 1]. If p, q ∈ βS and A ⊆ S,
one has that A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p. We let S∗ = βS \ S.

See [15] for an elementary introduction to the algebraic structure of βS.

3. Quotient sets and density recurrent sets

We begin by introducing the main object of study for this section. See [7] for
more information about density intersective sets, sets of density recurrence, and
their relation to other sets of recurrence.

Definition 3.1. Let S be a left amenable semigroup.
(a) Let B ⊆ S. Then B is density intersective if and only if whenever A ⊆ S

and d(A) > 0, there exists x ∈ B such that x−1A ∩A 6= ∅.
(b) Let B ⊆ S. Then B is a density recurrent set if and only if whenever A ⊆ S

and d(A) > 0, there exists x ∈ B such that d(x−1A ∩A) > 0.
(c) DI(S) = {p ∈ βS : (∀B ∈ p)(B is density intersective)}.
(d) DR(S) = {p ∈ βS : (∀B ∈ p)(B is a density recurrent set)}.

We shall show in Theorem 3.14 below that if S is left cancellative, then DR(S)
is a subsemigroup of βS. (And thus, by Corollary 3.4, if S is countable, then DI(S)
is a subsemigroup of βS.) For that, we will need to show that DR(S) 6= ∅. The
easiest way to do that is to show that DR(S) contains the idempotents of βS.

We do not know in general whether every density intersective set is a set of
density recurrence. However for countable left amenable semigroups the notions
coincide, as we shall verify in Theorem 3.3. The proof involves the notion of a set
of measurable recurrence and is essentially contained in [7]. We present the details
for the convenience of the reader.

Definition 3.2. Let S be a semigroup and let B ⊆ S. Then B is a set of measur-
able recurrence if and only if for every probability space (X,B, µ), every measure
preserving action 〈Tg〉g∈S of S on X, and every A ∈ B such that µ(A) > 0, there
exists g ∈ B such that µ(A ∩ T−1

g [A]) > 0. (The family 〈Tg〉g∈S is a measure
preserving action on (X,B, µ) provided that (1) each Tg : X → X, (2) whenever
g ∈ S and A ∈ B one has µ(T−1

g [A]) = µ(A), and (3) whenever g, h ∈ S, one has
Tg ◦ Th = Tgh.)
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Theorem 3.3. Let S be a countable left amenable semigroup and let B ⊆ S. The
following statements are equivalent.

(a) B is a density recurrent set.
(b) B is density intersective.
(c) B is a set of measurable recurrence.

Proof. That (a) implies (b) is trivial.
That (b) implies (c) is an immediate consequence of [7, Theorem 2.2].
To see that (c) implies (a), assume thatB is a set of measurable recurrence and let

A ⊆ S such that d(A) > 0. Pick a left invariant mean µ on S such that µ(χA) > 0.
Pick by [7, Theorem 2.1] a probability space (X,B, ν), a measure preserving action
〈Tg〉g∈S of S on X, and U ∈ B such that for all g, h ∈ S, ν(T−1

g [U ] ∩ T−1
h [U ]) =

µ(χg−1A∩h−1A). Taking g = h we have that ν(U) = ν(T−1
g [U ]) = µ(χg−1A) =

µ(χA) > 0 so pick g ∈ B such that ν(U ∩ T−1
g [U ]) > 0. Pick any x ∈ S and let

C = x−1A ∩ (gx)−1A.
Then T−1

x

[
U ∩ T−1

g [U ]
]

= T−1
x [U ] ∩ T−1

gx [U ] so

0 < ν(U ∩ T−1
g [U ]) = ν(T−1

x [U ] ∩ T−1
gx [U ]) = µ(χC) ≤ d(C) .

Thus 0 < d(C) = d
(
x−1(A ∩ g−1A)

)
= d(A ∩ g−1A). �

Corollary 3.4. If S is a countable left amenable semigroup, then DR(S) = DI(S).

Definition 3.5. Let S be a semigroup.
(a) If 〈xn〉∞n=1 is a sequence in S, then

FP (〈xn〉∞n=1) = {
∏

n∈F xn : F ∈ Pf (N)} ,

where the products are taken in increasing order of indices.
(b) If m ∈ N and 〈xn〉mn=1 is a finite sequence in S, then

FP (〈xn〉mn=1) =
{ ∏

n∈F xn : ∅ 6= F ⊆ {1, 2, . . . ,m}
}

where the products are taken in increasing order of indices and

FPD(〈xn〉mn=1) =
{∏

d n∈F xn : ∅ 6= F ⊆ {1, 2, . . . ,m}
}

where in
∏
d n∈F xn, the products are taken in decreasing order of indices.

(c) Γ(S) = {p ∈ βS : (∀A ∈ p)(∃〈xn〉∞n=1)(FP (〈xn〉∞n=1) ⊆ A)}.
(d) Γ<ω(S) = {p ∈ βS : (∀A ∈ p)(∀m ∈ N)(∃〈xn〉mn=1)(FP (〈xn〉mn=1) ⊆ A)}.

If the operation in S is denoted by +, we write FS(〈xn〉∞n=1) instead of writing
FP (〈xn〉∞n=1).

It is trivial that Γ(S) ⊆ Γ<ω(S). If S contains a sequence with distinct finite
products, then the inclusion is proper. (The sequence 〈xn〉∞n=1 has distinct finite
products provided that whenever F and H are distinct members of Pf (N), one has∏

t∈F xt 6=
∏

t∈H xt. By [15, Lemma 6.31] any cancellative semigroup contains
a sequence with distinct finite products.) To verify this assertion, let 〈xn〉∞n=1 be
a sequence with distinct finite products and let A =

⋃∞
n=1 FP (〈xt〉2

n−1
t=2n−1). Then

there is no sequence 〈yn〉∞n=1 with FP (〈yn〉∞n=1) ⊆ A. See the proof of Theorem 3.9
for the details of why this fact suffices.

It is an easy exercise to see that, if S is commutative, then Γ<ω(S) is a sub-
semigroup of βS. (Let p, q ∈ Γ<ω(S). To see that pq ∈ Γ<ω(S), let A ∈ pq and
let m ∈ N. Since {x ∈ S : x−1A ∈ q} ∈ p, pick 〈xn〉mn=1 such that FP (〈xn〉mn=1) ⊆
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{x ∈ S : x−1A ∈ q}. Let B =
⋂
{y−1A : y ∈ FP (〈xn〉mn=1)}. Then B ∈ q so pick

〈yn〉mn=1 such that FP (〈yn〉mn=1) ⊆ B. Then FP (〈xnyn〉mn=1) ⊆ A.)
On the other hand, by [15, Exercise 6.1.4] there exist idempotents p and q in

(βN,+) such that q + p /∈ Γ(N,+). In particular, neither the set of idempotents
in (βN,+) nor Γ(N,+) is a semigroup. (The proof outlined in [15, Exercise 6.1.4]
uses the algebraic structure of (βN,+), and establishes a stronger fact. If one
wants a more elementary proof that neither the set of idempotents in (βN,+)
nor Γ(N,+) is a semigroup, take idempotents p ∈

⋂∞
m=1 FS(〈22n〉∞n=m) and q ∈⋂∞

m=1 FS(〈22n+1〉∞n=m), which exist by [15, Lemma 5.11]. Show that

{
∑

n∈F 22n +
∑

n∈G 22n+1 : F,G ∈ Pf (N) and maxF < minG} ∈ p+ q

but this set does not contain FS(〈xn〉∞n=1) for any sequence 〈xn〉∞n=1 in N.)
It is an immediate consequence of [15, Theorem 5.12] that

Γ(S) = c`{p ∈ βS : pp = p} .

Lemma 3.6. Let S be a left amenable semigroup and let A ⊆ S. If d(A) > 1
n

and 〈xt〉nt=1 is a sequence in S, then there exist i 6= j in {1, 2, . . . , n} such that
d(x−1

i A∩x−1
j A) > 0. If S is left cancellative, then there exist i 6= j in {1, 2, . . . , n}

such that d(xiA ∩ xjA) > 0.

Proof. Given x ∈ S, d(x−1A) = d(A) and, if S is left cancellative, then d(xA) =
d(A). Also, left invariant means are finitely additive. �

Lemma 3.7. Let S be a left amenable semigroup, let A ⊆ S, let n ∈ N, assume that
d(A) > 1

n , and let 〈xt〉nt=1 be a sequence in S. There exists y ∈ FPD(〈xt〉nt=1) such
that d(y−1A ∩ A) > 0. If S is left cancellative, then there exists y ∈ FP (〈xt〉nt=1)
such that d(y−1A ∩A) > 0.

Proof. For i ∈ {1, 2, . . . , n}, let zi =
∏
d

i
t=1xt. By Lemma 3.6 pick i < j in

{1, 2, . . . , n} such that d(z−1
i A∩z−1

j A) > 0. Let y =
∏
d

j
t=i+1. Then z−1

i A∩z−1
j A =

z−1
i (A ∩ y−1A) so d(A ∩ y−1A) > 0.

Now assume that S is left cancellative. For i ∈ {1, 2, . . . , n}, let zi =
∏i

t=1 xt. By
Lemma 3.6 pick i < j in {1, 2, . . . , n} such that d(ziA∩zjA) > 0. Let y =

∏j
t=i+1 xt.

Then y−1A ∩ A = z−1
j (ziA ∩ zjA) and, by Theorem 2.3, d

(
z−1
j (ziA ∩ zjA)

)
=

d(ziA ∩ zjA) > 0. �

As an immediate consequence of Lemma 3.7 we have the following.

Lemma 3.8. Let S be a left cancellative, left amenable semigroup. Then Γ<ω(S) ⊆
DR(S).

Proof. Let p ∈ Γ<ω(S) and let B ∈ p. To see that B is density recurrent, let A ⊆ S
such that d(A) > 0. Pick n ∈ N such that d(A) > 1

n . Pick 〈xt〉nt=1 such that
FP (〈xt〉nt=1) ⊆ B and pick y ∈ FP (〈xt〉nt=1) such that d(y−1A ∩A) > 0. �

We pause to observe that the inclusion in Lemma 3.8 can be proper.

Theorem 3.9. Γ<ω(N,+) ⊆6 DR(N,+).

Proof. Let A = {n3 : n ∈ N}. By [12, Theorem 3.16], A is a set of measurable
recurrence. By [7, Theorem 2.7], sets of measurable recurrence are partition regular
(meaning that whenever the finite union of sets is a set of measurable recurrence,
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one of them must be a set of measurable recurrence). Thus by Theorem 3.3 and
[15, Theorem 5.7] there exists p ∈ A ∩ DR(N,+). By a special case of Fermat’s
Last Theorem, which has been known for a long time, A does not contain any
{x1, x2, x1 + x2}. �

If S is a group and p ∈ S∗, then p−1 = {A−1 : A ∈ p} is also in S∗, where
A−1 = {a−1 : a ∈ A}. Note however, that in this case by [15, Theorem 4.36], S∗

is an ideal of βS so p−1p is not the identity of S. If p ∈ N∗, then since N ⊆ Z,
−p = {−A : A ∈ p} ∈ Z∗. Also, by [15, Exercise 4.3.5], N∗ is a left ideal of
(βZ,+) so if p ∈ N∗, then −p+ p ∈ N∗. This fact does not carry over to arbitrary
semigroups that are embeddable in a group. In fact, if S is a subsemigroup of G,
then S∗ is a left ideal of βG if and only if for every x ∈ G, {y ∈ S : xy /∈ S} is finite.
In particular, consider the commutative cancellative countable semigroup (Q+

d ,+)
of positive rationals with the discrete topology. If p ∈ βQ+

d and

{Q ∩ (1, 1 + ε) : ε > 0} ⊆ p ,

then −p+ p /∈ (Q+
d )∗ because {x ∈ Q : x < 0} ∈ −p+ p.

Of course, when we say something like “assume that S is a group or (N,+) and
let p ∈ S∗”, any reference to p−1p should be interpreted as −p+ p if S = (N,+).

In the following lemma, the computation of p−1p is done in βG. It may or may
not be the case that p−1p ∈ βS.

Lemma 3.10. Let S be a subsemigroup of a group G, let 〈xn〉∞n=1 be an injective
sequence in S, let p ∈ S∗ such that {xn : n ∈ N} ∈ p, and let a ∈ N. Then

{x−1
k xn : k, n ∈ N and a < k < n} ∈ p−1p .

Proof. Let A = {x−1
k xn : k, n ∈ N and a < k < n}. Then

{x−1
k : k ∈ N and a < k} ⊆ {y ∈ S : y−1A ∈ p}

so A ∈ p−1p. �

All of our results about p−1p deal with S as either a group or (N,+). We are
not concerned with pp−1 because, on the one hand, if S is a group, then pp−1 =
(p−1)−1p−1, so is already included. If S = (N,+), then by [15, Exercise 4.3.5],
p+ (−p) /∈ N∗.

Lemma 3.11. Let S be a subsemigroup of a group G, let p ∈ S∗, let A ⊆ S, and let
〈Bt〉∞t=1 be a sequence of members of p. If A ∈ p−1p, then there exists an injective
sequence 〈xt〉∞t=1 in S such that for each t, xt ∈

⋂t
j=1Bj, and

{x−1
k xn : k, n ∈ N and k < n} ⊆ A .

Proof. Let C = {x ∈ S : x−1A ∈ p}, and let D = {x ∈ S : xA ∈ p}. Since
A ∈ p−1p, we have that C ∈ p−1 and so D ∈ p. Pick x1 ∈ D ∩B1 and inductively,
given n > 1 and having chosen 〈xk〉n−1

k=1 with each xk ∈ D, pick

xn ∈ D ∩
⋂n−1

k=1 xkA ∩
⋂n

k=1Bk \ {x1, x2, . . . , xn−1} .

(Since D ∩
⋂n−1

k=1 xkA ∩
⋂n

k=1Bk ∈ p, it is infinite.) �

Lemma 3.12. (1) Let S be a group and let A ⊆ S. There exists p ∈ S∗ such
that A ∈ p−1p if and only if there exists an injective sequence 〈xn〉∞n=1 in S
such that {x−1

k xn : k, n ∈ N and k < n} ⊆ A.
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(2) Let A ⊆ N. There exists p ∈ N∗ such that A ∈ (−p+ p) if and only if there
exists an increasing sequence 〈xn〉∞n=1 in N such that
{xn − xk : k, n ∈ N and k < n} ⊆ A.

Proof. (1). Necessity. Pick p ∈ S∗ such that A ∈ p−1p an apply Lemma 3.11.
Sufficiency. Pick p ∈ S∗ such that {xn : n ∈ N} ∈ p and apply Lemma 3.10.
(2). Necessity. We have that p ∈ Z∗ so by (1) there is an injective sequence

〈xn〉∞n=1 in Z such that {xn − xk : k, n ∈ N and k < n} ⊆ A. Since A ⊆ N, the
sequence 〈xn〉∞n=1 is increasing and so must be eventually in N.

Sufficiency. By (1) pick p ∈ Z∗ such that A ∈ (−p+p). Then p ∈ N∗ or p ∈ −N∗.
Since A ∈ (−p+p) we have that (−p+p) ∈ N∗ and therefore by [15, Exercise 4.3.5],
p ∈ N∗. �

Lemma 3.13. Let S be an amenable group or (N,+) and let p ∈ S∗. Then p−1p ∈
DR(S).

Proof. Let B ∈ p−1p and pick by Lemma 3.12 an injective sequence 〈xn〉∞n=1 such
that {x−1

k xn : k, n ∈ N and k < n} ⊆ B. Let A ⊆ S such that d(A) > 0 and pick
n ∈ N such that d(A) > 1

n . Pick by Lemma 3.6 i < j in {1, 2, . . . , n} such that
d(xiA ∩ xjA) > 0. Now x−1

j (xiA ∩ xjA) = A ∩ x−1
j xiA, d

(
x−1

j (xiA ∩ xjA)
)

=
d(xiA ∩ xjA) > 0, and x−1

j xiA = (x−1
i xj)−1A. �

Theorem 3.14. Let S be a left cancellative left amenable semigroup. Then DR(S)
is a subsemigroup of βS containing the idempotents of βS. If S is a group or
(N,+), then DR(S) contains all elements of the form p−1p for p ∈ S∗ as well as
all elements of the form q−1p for q, p ∈ DR(S).

Proof. By Lemma 3.8 we have DR(S) contains the idempotents of βS, and in
particular is nonempty. Let p, q ∈ DR(S). To see that pq ∈ DR(S), let B ∈ pq. To
see that B is density recurrent, let A ⊆ S with d(A) > 0. Let

C = {x ∈ S : x−1B ∈ q} .
Then C ∈ p so pick x ∈ C such that d(x−1A∩A) > 0 and let D = x−1A∩A. Since
x−1B ∈ q, pick y ∈ x−1B such that d(y−1D ∩D) > 0. Then xy ∈ B so it suffices
to show that y−1D ∩ D ⊆ (xy)−1A ∩ A. To this end, let z ∈ y−1D ∩ D. Then
z ∈ D ⊆ A and z ∈ y−1D ⊆ y−1(x−1A) so xyz ∈ A and therefore z ∈ (xy)−1A∩A.

Now assume that S is a group or (N,+). The first part of the assertion is precisely
Lemma 3.13. Now assume that q, p ∈ DR(S) and let B ∈ q−1p. Let A ⊆ S with
d(A) > 0. Let C = {x ∈ S : xB ∈ p}. Then C ∈ q so pick x ∈ C such that
d(x−1A ∩A) > 0. Now A ∩ xA = x(x−1A ∩A) so by Theorem 2.3, d(A ∩ xA) > 0.
Let D = A ∩ xA. Since xB ∈ p, pick y ∈ xB such that d(y−1D ∩ D) > 0. Then
x−1y ∈ B and y−1D ∩D ⊆ (x−1y)−1A ∩A. �

We would like to have Theorem 3.14 without the assumption that S is left
cancellative. Products in decreasing order are produced by Lemma 3.7 without the
left cancellative assumption. Such products are associated with βS when it is taken
to be left topological, rather than right topological as we have done here. But if
we made that choice, then in the proof above we would need d(Ax−1 ∩A) > 0 and
d(Dy−1 ∩D) > 0.

Theorem 3.15. Let S be a left amenable semigroup and let A ⊆ S such that
d(A) > 0. Then DI(S) ⊆ AA−1. In particular DR(S) ⊆ AA−1.
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Proof. Let p ∈ DI(S), suppose that AA−1 /∈ p, and let B = S \AA−1. Then B ∈ p
so pick x ∈ B such that x−1A ∩ A 6= ∅. Pick z ∈ x−1A ∩ A. Then x ∈ AA−1, a
contradiction. �

We have then immediately the following Ramsey Theoretic corollary. Given
F,H ∈ Pf (N) we write F < H to mean maxF < minH. Recall that we take
products in increasing order of indices.

Corollary 3.16. Let S be a left amenable and left cancellative semigroup and let
A ⊆ S such that d(A) > 0. Let m ∈ N and for each i ∈ {1, 2, . . . ,m}, let 〈xi,t〉∞t=1

be a sequence in S. Then

{
∏m

i=1

∏
t∈Fi

xi,t : each Fi ∈ Pf (N) and F1 < F2 < . . . < Fm} ∩AA−1 6= ∅ .
Proof. For each i ∈ {1, 2, . . . ,m}, pick by [15, Lemma 5.11] an idempotent

pi ∈
⋂∞

n=1 FS(〈xi,t〉∞t=n) .

By Theorems 3.14 and 3.15 we have that p1p2 · · · pm ∈ DR(S) ⊆ AA−1. It suffices
to show that if

Bm = {
∏m

i=1

∏
t∈Fi

xi,t : each Fi ∈ Pf (N) and F1 < F2 < . . . < Fm} ,
then Bm ∈ p1p2 · · · pm. We do this by induction on m.

For m = 1, we have that Bm = FP (〈x1,t〉∞t=1) ∈ p1. So let m ∈ N and assume
that Bm ∈ p1p2 · · · pm. We claim that Bm ⊆ {x ∈ S : x−1Bm+1 ∈ pm+1} so that
Bm+1 ∈ p1p2 · · · pm+1. So let x ∈ Bm and pick F1 < F2 < . . . < Fm such that
x =

∏m
i=1

∏
t∈Fi

xi,t. Let r = maxFm. Then FP (〈xm+1,t〉∞t=r+1) ∈ pm+1 and
FP (〈xm+1,t〉∞t=r+1) ⊆ x−1Bm+1. �

We observe that Corollary 3.16 is obtainable directly from Lemma 3.7 without
using βS. Notice the similarities with the proof of Theorem 3.14.

Alternate Proof. We show by induction on m that there exist F1 < F2 < . . . < Fm

in Pf (N) such that, if y =
∏m

i=1

∏
t∈Fi

xi,t, then d(A∩y−1A) > 0 (and in particular
y ∈ AA−1). The case m = 1 follows immediately from Lemma 3.7. So let m ∈ N
and assume that we have F1 < F2 < . . . < Fm in Pf (N) such that d(A∩ z−1A) > 0
where z =

∏m
i=1

∏
t∈Fi

xi,t. Let D = A∩ z−1A, let r = maxFm, and apply Lemma
3.7 to D and the sequence 〈xm+1,t〉∞t=r+1. Pick Fm+1 ∈ Pf (N) with minFm+1 > r
such that if w =

∏
t∈Fm+1

xm+1.t, then d(D ∩ w−1D) > 0. Then D ∩ w−1D ⊆
A ∩ w−1(z−1A) = A ∩ (zw)−1A and zw =

∏m+1
i=1

∏
t∈Fi

xi,t. �

In a similar vein, if G is a group, one has by Theorem 3.14 that p−1p ∈ DR(G)
for all p ∈ G∗. Consequently, one obtains corollaries such as the following.

Corollary 3.17. Let G be an amenable group and let A ⊆ S such that d(A) > 0.
Let 〈xn〉∞n=1 and 〈yn〉∞n=1 be injective sequences in N. Then

{x−1
k xn

∏
t∈F yt : k, n ∈ N , F ∈ Pf (N), and k < n < minF} ∩AA−1 6= ∅ .

Proof. Pick q ∈ G∗ such that {xt : t ∈ N} ∈ q and pick an idempotent p ∈⋂∞
n=1 FS(〈yt〉∞t=n). By Theorems 3.14 and 3.15 we have that q−1qp ∈ DR(G) ⊆

AA−1. Let B = {x−1
k xn

∏
t∈F yt : k, n ∈ N , F ∈ PfN, andk < n < minF}.

It suffices to show that B ∈ q−1qp. Let C = {x−1
k xn : k, n ∈ N and k < n}. By

Lemma 3.10 we have C ∈ q−1q so it suffices to show that C ⊆ {w ∈ G : w−1B ∈ p}.
So let k < n in N. Then FP (〈yt〉∞t=n+1) ⊆ (x−1

k xn)−1B. �
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Again, we see that there is an alternative proof not using βG.

Alternate Proof. By Lemma 3.6 pick k < n in N such that d(xkA ∩ xnA) > 0.
Then d(A ∩ x−1

n xkA) > 0. Let D = A ∩ x−1
n xkA. Pick by Lemma 3.7 some

F ∈ Pf (N) with minF > n such that if w =
∏

t∈F yt, then d(D ∩ w−1D) > 0.
Then D ∩ w−1D ⊆ A ∩ w−1x−1

n xkA = A ∩ (x−1
k xn

∏
t∈F yt)−1A. �

We obtained in Corollaries 3.16 and 3.17 certain configurations which must al-
ways meet AA−1 whenever d(A) > 0. We shall give an illustration in Theorem 3.20
of the fact that such results imply the existence of similar configurations contained
in AA−1. For this, we need the Milliken-Taylor Theorem, which in turn requires
some new notation.

Definition 3.18. (a) Let 〈Fn〉∞n=1 be a sequence in Pf (N). Then(
FU(〈Fn〉∞n=1)

)k

<
= {(

⋃
t∈H1

Ft,
⋃

t∈H2
Ft, . . . ,

⋃
t∈Hk

Ft) :
for each j ∈ {1, 2, . . . , k} , Ht ∈ Pf (N)
and if j < k, then maxHj < minHj+1} .

(b) Let S be a semigroup and let 〈xn〉∞n=1 be a sequence in S. Then 〈yn〉∞n=1 is a
product subsystem of 〈xn〉∞n=1 if and only if there exists a sequence 〈Fn〉∞n=1

in Pf (N) such that for each n, maxFn < minFn+1 and yn =
∏

t∈Fn
xt.

Theorem 3.19 (Milliken-Taylor Theorem). Let k, r ∈ N and let (Pf (N))k =⋃r
i=1Ai. There exist i ∈ {1, 2, . . . , r} and a sequence 〈Fn〉∞n=1 in Pf (N) such that

maxFn < minFn+1 for all n and
(
FU(〈Fn〉∞n=1)

)k

<
⊆ Ai.

Proof. This follows immediately from [20, Lemma 2.2]. (An equivalent version is
proved in [18, Theorem 2.2]. See [15, Section 18.1].) �

We can now illustrate the sort of results that follow from theorems such as
Corollary 3.17.

Theorem 3.20. Let G be a group and let B ⊆ G. Assume that whenever 〈xn〉∞n=1

and 〈yn〉∞n=1 are injective sequences in G, one has

{x−1
k xn

∏
t∈K yt : k, n ∈ N , K ∈ Pf (N), and k < n < minK} ∩B 6= ∅ .

Let injective sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 in G be given. Then there exist a
subsequence 〈wn〉∞n=1 of 〈xn〉∞n=1 and a product subsystem 〈zn〉∞n=1 of 〈yn〉∞n=1 such
that {w−1

k wn

∏
t∈K zt : k, n ∈ N , K ∈ Pf (N), and k < n < minK} ⊆ B.

Proof. By [15, Lemma 6.31] there is a subsequence of 〈yn〉∞n=1 which has distinct
finite products, so we may assume that 〈yn〉∞n=1 has distinct finite products. Let
C1 = B and C2 = G \ C1. For i ∈ {1, 2}, let

Ai = {(H1,H2,H3) ∈
(
Pf (N)

)3 : (xmin H1)
−1xmin H2

∏
t∈H3

yt ∈ Ci} .
Pick i ∈ {1, 2} and a sequence 〈Fn〉∞n=1 as guaranteed by Theorem 3.19.

For n ∈ N, let wn = xmin Fn
and let zn =

∏
t∈Fn

yt. We shall show that

{w−1
k wn

∏
t∈K zt : k, n ∈ N , K ∈ Pf (N), and k < n < minK} ⊆ Ci .

Since {w−1
k wn

∏
t∈K zt : k, n ∈ N , K ∈ Pf (N), and k < n < minK} ∩ B 6= ∅, this

will imply that

{w−1
k wn

∏
t∈K zt : k, n ∈ N , K ∈ Pf (N), and k < n < minK} ⊆ B .
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To this end, let k, n ∈ N and letK ∈ Pf (N) such that k < n < minK. LetH1 = Fk,
let H2 = Fn, and let H3 =

⋃
m∈K Fm. Then (H1,H2,H3) ∈

(
FU(〈Fn〉∞n=1)

)3

<

so (xmin H1)
−1xmin H2

∏
t∈H3

yt ∈ Ci. Since xmin H1 = xmin Fk
= wk, xmin H2 =

xmin Fn
= wn, and

∏
t∈H3

yt =
∏

m∈K

∏
t∈Fm

yt =
∏

m∈K zm we have that

w−1
k wn

∏
m∈K zm ∈ Ci

as required. �

In [6, Theorem 1.5] it was shown that if, in addition to being left cancellative and
left amenable, S is countable, and A ⊆ S with d(A) > 0, then all of the idempotents
of βS are in AA−1. As a consequence of Theorems 3.14 and 3.15, we have without
the countability assumption that the semigroup generated by the idempotents is
contained in

⋂
{AA−1 : A ⊆ S and d(A) > 0}. We do not know the answer to the

following question even in the case that S is (N,+).

Question 3.21. Let S be a left cancellative, left amenable semigroup. Let

T =
⋂
{AA−1 : A ⊆ S and d(A) > 0} .

Is T a subsemigroup of βS?

Let F = Pf (N). Then the semigroup (F,∪) is very non cancellative. We shall
see that the conclusion of Theorem 3.14 remains valid for this semigroup. But,
unfortunately, this is because most of the issues with which we are dealing are
trivial in F, starting with the notion of having positive density.

Theorem 3.22. Let A ⊆ F. The following statements are equivalent.
(a) d(A) > 0.
(b) For all F ∈ F there exists G ∈ A such that F ⊆ G.
(c) d(A) = 1.

Proof. To see that (a) implies (b), assume that d(A) > 0 and let F ∈ F. Then by
Theorem 2.3 d(F−1A) > 0 so F−1A 6= ∅. That is, there is some G ∈ F such that
F ∪G ∈ A.

To see that (b) implies (c), we use Theorem 2.2. So let H ∈ Pf (F) and ε > 0 be
given. Pick G ∈ F such that

⋃
H ⊆ G and let K = {G}. Then given F ∈ H, we

have FK = {F ∪G} = {G} = K so K \ FK = ∅ and A ∩K = K.
That (c) implies (a) is trivial. �

Corollary 3.23. A set B ⊆ F is density recurrent if and only if B 6= ∅. Conse-
quently, DR(F) = βF.

Proof. The necessity is trivial. So assume B 6= ∅ and let A ⊆ F with d(A) > 0.
Pick F ∈ B. Let C = {G ∈ A : F ⊆ G}. Then C ⊆ (F−1A ∩ A) and by Theorem
3.22, d(C) = 1. �

We close this section with some remarks about another question which came up
in the course of our investigations. Recall the standard statements of the Finite
Unions Theorem and the Finite Products Theorem. If 〈Gn〉∞n=1 is a sequence in F
we write FU(〈Gn〉∞n=1) = {

⋃
n∈H Gn : H ∈ Pf (N)}.

Theorem 3.24. (a) (Finite Unions Theorem). Let r ∈ N and let
F =

⋃r
i=1Ai. There exist i ∈ {1, 2, . . . , r} and a sequence 〈Gn〉∞n=1 of

pairwise disjoint members of F such that FU(〈Gn〉∞n=1) ⊆ Ai.
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(b) (Finite Products Theorem). Let S be a semigroup, let r ∈ N, and let S =⋃r
i=1Ai. There exist i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 in S such

that FP (〈xn〉∞n=1) ⊆ Ai.

Proof. [15, Corollaries 5.17 and 5.9]. �

The Finite Unions Theorem easily implies the Finite Products Theorem. (If
S =

⋃r
i=1Ai, then for i ∈ {1, 2, . . . , r}, let Ai = {F ∈ F :

∏
t∈F xt ∈ Ai}.)

And of course, the Finite Products Theorem applies to the semigroup (F,∪).
However, the Finite Products Theorem in F is trivial, even if one demands that the
sequence be injective. If F =

⋃r
i=1Ai, then necessarily some Ai satisfies d(Ai) > 0.

(And one need not resort to a left invariant mean to show this. If for each i there
were some Fi with no superset in Ai, then

⋃r
i=1 Fi could not be in any cell.) Thus

there is a sequence 〈Gn〉∞n=1 in Ai with Gn ⊆6 Gn+1. And FU(〈Gn〉∞n=1) = {Gn :
n ∈ N}.

Now suppose we modify the statement of the Finite Unions Theorem by requiring
that for n 6= m, neither of Gn or Gm contains the other. Can one prove that version
without proving the full Finite Unions Theorem?

4. IPn sets

A subset A of a semigroup S is an IP set if and only if A contains FP (〈xn〉∞n=1)
for some sequence 〈xn〉∞n=1 in S and A is an IP* set if and only if it has nonempty
intersection with each IP set. By [15, Theorem 5.12] A is an IP set if and only if
there is an idempotent p ∈ βS such that A ∈ p. Consequently, A is an IP* set if
and only if for every idempotent p ∈ βS one has A ∈ p. By Theorems 3.14 and
3.15, if S is a left cancellative and left amenable semigroup, A ⊆ S, and d(A) > 0,
then AA−1 is an IP* set. But in fact much more is true as a consequence of those
same theorems. That is, AA−1 is a member of any finite product of idempotents
in βS.

In this section we introduce IPn sets and characterize them as precisely those
sets which are members of a product of a fixed number of idempotents.

Definition 4.1. Let n ∈ N, let S be a semigroup, and let A ⊆ S. Then A is an
IPn set if and only if there exist for each i ∈ {1, 2, . . . , n} a sequence 〈xi,t〉∞t=1 such
that {

∏n
i=1

∏
t∈Hi

xi,t : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < H2 < . . . < Hn} ⊆ A.
Also, A is an IPn∗ set if and only if A has nonempty intersection with every IPn

set in S.

The notion of an IPn set should not be confused with the notion of an IPn set
defined in [5] (which in turn is different from the notion of an IPn set defined in
[14]). There we said that A is an IPn set if and only if whenever S was finitely
partitioned, one cell contained FP (〈xt〉nt=1) for some sequence 〈xt〉nt=1 in S. Thus
by definition, the notion of IPn set is partition regular. We shall show in Corollary
4.6 that the notion of IPn is also partition regular.

Lemma 4.2. Let n ∈ N and for each i ∈ {1, 2, . . . , n} let 〈xi,t〉∞t=1 be a sequence
in S and let pi be an idempotent in βS such that pi ∈

⋂∞
m=1 FP (〈xi,t〉∞t=m). Let

A ∈ p1p2 · · · pn. Then there exist H1,H2, . . . ,Hn ∈ Pf (N) such that such that
H1 < H2 < . . . < Hn and

∏n
i=1

∏
t∈Hi

xi,t ∈ A.



QUOTIENT SETS AND DENSITY RECURRENT SETS 13

Proof. We proceed by induction. For n = 1 we have that

A ∈ p1 and FP (〈x1,t〉∞t=1) ∈ p1

so A ∩ FP (〈x1,t〉∞t=1) 6= ∅.
Now let n > 1 and assume the statement is true for n− 1. Let

B = {y ∈ S : y−1A ∈ pn} .

Then B ∈ p1p2 · · · pn−1 so pick H1,H2, . . . ,Hn−1 ∈ Pf (N) such that such that
H1 < H2 < . . . < Hn−1 and

∏n−1
i=1

∏
t∈Hi

xi,t ∈ B. Let y =
∏n−1

i=1

∏
t∈Hi

xi,t

and let m = maxHn−1 + 1. Then y−1A ∈ pn and FP (〈xn,t〉∞t=m) ∈ pn so pick
Hn ∈ Pf (N) with minHn ≥ m such that

∏
t∈Hn

xn,t ∈ y−1A. �

Theorem 4.3. Let S be a semigroup, let n ∈ N, and let A ⊆ S. Then A is
an IPn set if and only if there exist idempotents p1, p2, . . . , pn in βS such that
A ∈ p1p2 · · · pn.

Proof. Necessity. Pick for each i ∈ {1, 2, . . . , n} a sequence 〈xi,t〉∞t=1 such that
{
∏n

i=1

∏
t∈Hi

xi,t : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < H2 < . . . < Hn} ⊆ A. For
each i ∈ {1, 2, . . . , n} pick by [15, Lemma 5.11] an idempotent

pi ∈
⋂∞

m=1 FP (〈xi,t〉∞t=m) .

To see that A ∈ p1p2 · · · pn suppose instead that S \ A ∈ p1p2 · · · pn. By Lemma
4.2 pick H1,H2, . . . ,Hn ∈ Pf (N) such that such that H1 < H2 < . . . < Hn and∏n

i=1

∏
t∈Hi

xi,t ∈ S \A. This is a contradiction.
Sufficiency. We proceed by induction. If p1 is an idempotent in βS and A ∈ p1,

then by [15, Theorem 5.8] A is an IP set which is the same as an IP1 set. So let n ∈ N
and assume that the implication is valid for n. Let p1, p2, . . . , pn+1 be idempotents
in βS and assume that A ∈ p1p2 · · · pn+1. Let B = {y ∈ S : y−1A ∈ pn+1}. Then
B ∈ p1p2 · · · pn so B is an IPn set. Pick sequences 〈xi,t〉∞t=1 for i ∈ {1, 2, . . . , n} such
that {

∏n
i=1

∏
t∈Hi

xi,t : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < H2 < . . . < Hn} ⊆ B.
For t ∈ {1, 2, . . . , n}, pick xn+1,t arbitrarily. For m > n, let

Cm = {
∏n

i=1

∏
t∈Hi

xi,t : H1,H2, . . . ,Hn ∈ Pf ({1, 2, . . . ,m− 1})
and H1 < H2 < . . . < Hn}

and let Dm =
⋂

y∈Cm
y−1A. Let D?

m = {z ∈ Dm : z−1Dm ∈ pn+1}. Since pn+1

is an idempotent, each D?
m ∈ pn+1. Further by [15, Lemma 4.14], if z ∈ D?

m, then
z−1D?

m ∈ pn+1.
Pick xn+1,n+1 ∈ D?

n+1. Let m > n+1 and assume we have chosen xn+1,k for all
k ∈ {n+ 1, n+ 2, . . . ,m− 1} so that

(∗) if ∅ 6= G ⊆ {n+ 1, n+ 2, . . . ,m− 1} and n+ 1 ≤ k ≤ minG, then∏
t∈G xn+1,t ∈ D?

k .

Pick

xn+1,m ∈ D?
m ∩

⋂m−1
k=n+1

⋂ {( ∏
t∈G xn+1,t

)−1
D?

k : ∅ 6= G ⊆ {k, k + 1, . . . ,m− 1}
}
.

(The listed intersection is an element of pn+1 and so is nonempty.)
To verify (∗), let ∅ 6= G ⊆ {n + 1, n + 2, . . . ,m} and let n + 1 ≤ k ≤ minG. If

m /∈ G, then (∗) holds by assumption, so assume that m ∈ G. If G = {m}, then∏
t∈G xn+1,t = xn+1,m ∈ D?

m ⊆ D?
k. So assume |G| > 1, and let F = G \ {m}.
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Then
∏

t∈F xn+1,t ∈ D?
k and xn+1,m ∈

( ∏
t∈F xn+1,t

)−1
D?

k so
∏

t∈G xn+1,t ∈ D?
k

as required.
The construction being complete, assume that H1,H2, . . . ,Hn+1 ∈ Pf (N) and

H1 < H2 < . . . < Hn+1. Let k = minHn+1 and let y =
∏n

i=1

∏
t∈Hi

xi,t. Then
y ∈ Ck and

∏
t∈Hn+1

xn+1,t ∈ D?
k ⊆ y−1A so

∏n+1
i=1

∏
t∈Hi

xi,t ∈ A as required. �

Corollary 4.4. Let S be a semigroup, let n ∈ N, and let A ⊆ S. Then A is an IPn∗

set if and only if for all idempotents p1, p2, . . . , pn in βS one has A ∈ p1p2 · · · pn.

Proof. The set A is an IPn∗ set if and only if S \A is not an IPn set. �

Corollary 4.5. Let S be a left cancellative left amenable semigroup and let A ⊆ S
with d(A) > 0. Then AA−1 is IPn∗ for every n ∈ N.

Proof. By Theorems 3.15 and 3.14, AA−1 contains a subsemigroup of βS containing
the idempotents so Theorem 4.3 applies. �

Corollary 4.6. Let S be a semigroup, let n ∈ N, let A be an IPn set in S, and let
F be a finite partition of A. Then there exists B ∈ F such that B is an IPn set.

Proof. Pick idempotents p1, p2, . . . , pn in βS such that A ∈ p1p2 · · · pn by Theorem
4.3. Since p1p2 · · · pn is an ultrafilter, there exists B ∈ F such that B ∈ p1p2 · · · pn.
Applying Theorem 4.3 again, we have that B is an IPn set. �

We now set out to verify that the relationship among these notions is what we
would expect.

Theorem 4.7. Let S be a semigroup, let n ∈ N, and let A be an IPn set in S.
Then A is an IPn+1 set in S.

Proof. Pick sequences 〈xi,t〉∞t=1 for i ∈ {1, 2, . . . , n} such that

{
∏n

i=1

∏
t∈Hi

xi,t : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < H2 < . . . < Hn} ⊆ A .

For each t ∈ N, let xn+1,t = xn,t and let H1,H2, . . . ,Hn+1 ∈ Pf (N) such that
H1 < H2 < . . . < Hn+1. For i ∈ {1, 2, . . . , n − 1}, if any, let Gi = Hi and let
Gn = Hn ∪Hn+1. Then

∏n+1
i=1

∏
t∈Hi

xi,t =
∏n

i=1

∏
t∈Gi

xi,t ∈ A. �

A somewhat shorter, though less elementary, proof of Theorem 4.7 is to pick
idempotents p1, p2, . . . , pn such that A ∈ p1p2 · · · pn and let pn+1 = pn so that
A ∈ p1p2 · · · pnpn = p1p2 · · · pn+1.

Now we see that the strength of the assertion that A is an IPn in (N,+) is strictly
decreasing as n increases. For x ∈ N we define supp(x) as the subset of ω = N∪{0}
such that x =

∑
t∈supp(x) 2t. Given a sequence 〈xn〉∞n=1 in N, 〈yn〉∞n=1 is a sum

subsystem of 〈xn〉∞n=1 if and only if there exists a sequence 〈Hn〉∞n=1 in Pf (N) such
that Hn < Hn+1 for each n ∈ N and yn =

∑
t∈Hn

xt. Notice that if 〈yn〉∞n=1 is a
sum subsystem of 〈xn〉∞n=1, then FS(〈yn〉∞n=1) ⊆ FS(〈xn〉∞n=1).

Theorem 4.8. For each n ∈ N there is an IPn+1 set in the semigroup (N,+) which
is not an IPn set.

Proof. Let A = {
∑n+1

i=1

∑
t∈Hi

2t(n+1)+i : H1,H2, . . . ,Hn+1 ∈ Pf (N) and H1 <

H2 < . . . < Hn+1}. Then immediately we have that A is an IPn+1 set.
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Suppose that A is an IPn set and pick for each i ∈ {1, 2, . . . , n} a sequence
〈xi,t〉∞t=1 such that

{
∑n

i=1

∑
t∈Hi

xi,t : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < H2 < . . . < Hn} ⊆ A .

For x ∈ N, let ϕ(x) = {i ∈ {1, 2, . . . , n + 1} : supp(x) ∩
(
(n + 1)N + i

)
6= ∅}.

Notice that if x ∈ A, then ϕ(x) = {1, 2, . . . , n + 1} and for each i ∈ {1, 2, . . . , n},
max

(
supp(x) ∩

(
(n+ 1)N + i

))
< min

(
supp(x) ∩

(
(n+ 1)N + i+ 1

))
.

By [15, Corollary 5.15] we may choose for each i ∈ {1, 2, . . . , n} a sum subsystem
〈yi,t〉∞t=1 of 〈xi,t〉∞t=1 such that ϕ is constant on FS(〈yi,t〉∞t=1). Let ψ(i) be that
constant value. By passing to sum subsystems again, we may presume that for
each i ∈ {1, 2, . . . , n} and each t ∈ N, max supp(yi,t) < min supp(yi,t+1). (See [15,
Exercise 5.2.2].) Finally, by successively thinning the sequences, we may presume
that if i ∈ {1, 2, . . . , n−1} and t ∈ N, then max supp(yi,t) < min supp(yi+1,t+1) and
that {

∑n
i=1

∑
t∈Hi

yi,t : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < H2 < . . . < Hn} ⊆ A.
Now y1,1 + y2,2 + . . . + yn,n ∈ A so

⋃n
i=1

ϕ(yi,i) = ϕ(y1,1 + y2,2 + . . . + yn,n) =
{1, 2, . . . , n + 1} and therefore for some j ∈ {1, 2, . . . , n}, ψ(j) is not a singleton,
and so we have some k < l such that {k, l} ⊆ ψ(j). Now consider

z =
∑j−1

i=1 yi,i + yj,j + yj,j+1 +
∑n

i=j+1 yi,i+1

where
∑j−1

i=1 yi,i = 0 if j = 1 and
∑n

i=j+1 yi,i+1 = 0 if j = n. The support of z has
an element congruent to l (mod n+ 1) (as part of the support of yj,j) followed by
an element congruent to k (mod n + 1) (as part of the support of yj,j+1) and so
z /∈ A, a contradiction. �

We now obtain combinatorial descriptions of IPn∗ sets.

Theorem 4.9. Let S be a semigroup, let n ∈ N, and let A ⊆ S. The following
statements are equivalent.

(a) A is an IPn∗ set.
(b) Whenever 〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xn,t〉∞t=1 are sequences in S, there exists

a sequence 〈Fk〉∞k=1 in Pf (N) such that Fk < Fk+1 for all k ∈ N and
{
∏n

i=1

∏
k∈Hi

∏
t∈Fk

xi,t : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < . . . < Hn} ⊆
A

(c) Whenever 〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xn,t〉∞t=1 are sequences in S, there exist
for each i ∈ {1, 2, . . . , n} a product subsystem 〈yi,k〉∞k=1 of 〈xi,t〉∞t=1 such that
{
∏n

i=1

∏
k∈Hi

yi,k : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < . . . < Hn} ⊆ A.

Proof. (a) implies (b). Let 〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xn,t〉∞t=1 be sequences in S.
Let B0 =

{
(F1, F2, . . . , Fn) ∈

(
Pf (N)

)n :
∏n

i=1

∏
t∈Fi

xi,t ∈ A} and let B1 =(
Pf (N)

)n \B0. Pick by Theorem 3.19, j ∈ {0, 1} and a sequence 〈Fk〉∞k=1 in Pf (N)
such that maxFk < minFk+1 for all k and

(
FU(〈Fk〉∞k=1)

)n

<
⊆ Bj . For each

k ∈ N and each i ∈ {1, 2, . . . , n}, let yi,k =
∏

t∈Fk
xi,t. For each i ∈ {1, 2, . . . , n}

pick by [15, Lemma 5.11] an idempotent pi ∈
⋂∞

m=1 FP (〈yi,k〉∞k=m). By Corollary
4.4, we have that A ∈ p1p2 · · · pn. By Lemma 4.2 pick H1,H2, . . . ,Hn ∈ Pf (N)
such that such that H1 < H2 < . . . < Hn and

∏n
i=1

∏
k∈Hi

yi,k ∈ A. For
i ∈ {1, 2, . . . , n}, let Gi =

⋃
k∈Hi

Fk. Then (G1, G2, . . . , Gn) ∈
(
FU(〈Fk〉∞k=1)

)n

<

and
∏n

i=1

∏
t∈Gi

xi,t =
∏n

i=1

∏
k∈Hi

yi,k ∈ A so j = 0. Consequently,

{
∏n

i=1

∏
k∈Hi

yi,k : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < H2 < . . . < Hn} ⊆ A .
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Trivially (b) implies (c).
(c) implies (a). Suppose that A is not an IPn∗ set, so that S \ A is an IPn set

and pick sequences 〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xn,t〉∞t=1 such that

{
∏n

i=1

∏
t∈Hi

xi,t : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < H2 < . . . < Hn} ⊆ S \A .

If for each i ∈ {1, 2, . . . , n}, 〈yi,t〉∞t=1 is a product subsystem of 〈xi,t〉∞t=1, then
also {

∏n
i=1

∏
t∈Hi

yi,t : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < H2 < . . . < Hn} ⊆
S \A. �

We introduce a stronger notion, whose definition drops the requirement that
H1 < H2 < . . . < Hn. (The “E” in the name stands for “enhanced”.)

Definition 4.10. Let S be a semigroup, let n ∈ N, and let A ⊆ S. Then A is an
EIPn∗ set if and only if whenever 〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xn,t〉∞t=1 are sequences in
S, there exists a sequence 〈Fk〉∞k=1 in Pf (N) such that Fk < Fk+1 for all k ∈ N and
{
∏n

i=1

∏
k∈Hi

∏
t∈Fk

xi,t : H1,H2, . . . ,Hn ∈ Pf (N) ∪ {∅} and some Hi 6= ∅} ⊆ A.

In [8, Definition 6.1], the notion of E-IP∗ set is defined for subsets of Zk for some
k. A subset of Zk is an E-IP∗ set if and only if it is an EIPn∗ set for each n ∈ N as
defined here.

Note that the notions IP1∗ and EIP1∗ are synonymous. However, for n > 1, in
the semigroup (N,+), EIPn∗ is strictly stronger than IPn∗. In fact we have the
following.

Theorem 4.11. There is a set A ⊆ N such that A is an IP n∗ set for every n ∈ N,
but A is not an EIP 2∗ set.

Proof. Let B = {
∑

t∈F1
22t +

∑
t∈F2

22t−1 + . . . +
∑

t∈F2k
22t−1 +

∑
t∈F2k+1

22t :
k ∈ N , F1, F2, . . . , F2k+1 ∈ Pf (N) , k = minF1, and F1 < F2 < . . . < F2k+1} and
let A = N \ B. Thus, if x ∈ B, then min supp(x) = 2k for some k ∈ N and, if the
elements of supp(x) are listed in order, there are precisely 2k alterations between
even and odd.

Suppose first that A is an EIP2∗ set. For each t ∈ N, let x1,t = 22t and let
x2,t = 22t−1. Pick a sequence 〈Fk〉∞k=1 in Pf (N) such that Fk < Fk+1 for all k ∈ N
and

{
∑

k∈H1

∑
t∈Fk

x1,t +
∑

k∈H2

∑
t∈Fk

x2,t :H1,H2 ∈ Pf (N) ∪ {∅}
and some Hi 6= ∅} ⊆ A .

Let H1 = {1, 3, . . . , 2k + 1} and let H2 = {2, 4, . . . , 2k}. Then∑
k∈H1

∑
t∈Fk

x1,t +
∑

k∈H2

∑
t∈Fk

x2,t ∈ B ,

a contradiction.
Now let n ∈ N. We shall show that A is an IPn∗ set. To this end, let sequences

〈x1,t〉∞t=1, 〈x2,t〉∞t=1, . . . , 〈xn,t〉∞t=1 in N be given. Let

C0 = {x ∈ N : supp(x) ⊆ 2ω} ,
C1 = {x ∈ N : supp(x) ⊆ 2ω + 1}, and

C2 = N \ (C0 ∪ C1) .

For each i ∈ {1, 2, . . . , n}, pick by [15, Corollary 5.15] j(i) ∈ {0, 1, 2} and a sum
subsystem 〈yi,t〉∞t=1 of 〈xi,t〉∞t=1 such that FS(〈yi,t〉∞t=1) ⊆ Cj(i).
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Now let D0 = A and D1 = B. For v ∈ {0, 1} let

Ev =
{
(H1,H2, . . . ,Hn) ∈

(
Pf (N)

)n :
∑n

i=1

∑
t∈Hi

yi,t ∈ Dv

}
.

Pick by Theorem 3.19 an increasing sequence 〈Fm〉∞m=1 in Pf (N) and v ∈ {0, 1}
such that

(
FU(〈Fm〉∞m=1)

)n

<
⊆ Ev. For each i ∈ {1, 2, . . . , n} and each m ∈ N,

let zi,m =
∑

t∈Fm
yi,t. Then 〈zi,m〉∞m=1 is a sum subsystem of 〈yi,t〉∞t=1 and so

FS(〈zi,m〉∞m=1) ⊆ Cj(i). Also, 〈zi,m〉∞m=1 is a sum subsystem of 〈xi,t〉∞t=1. Now we
claim that

{
∑n

i=1

∑
m∈Hi

zi,m : H1,H2, . . . ,Hn ∈ Pf (N) and H1 < H2 < . . . < Hn} ⊆ Dv .

To see this let H1 < H2 < . . . < Hn be given and for i ∈ {1, 2, . . . , n} let Li =⋃
m∈Hi

Fm. Then (L1, L2, . . . , Ln) ∈
(
FU(〈Fm〉∞m=1)

)n

<
⊆ Ev so∑n

i=1

∑
m∈Hi

zi,m =
∑n

i=1

∑
t∈Li

yi,t ∈ Dv

as required.
To complete the proof, we show that v = 0. Suppose instead that v = 1. Pick

r ∈ N such that min supp(z1,r) ≥ n Now
∑n

i=1 zi,r+i−1 ∈ D1 = B so min supp(z1,r)
is even. Let 2k = min supp(z1,r). If for some u ∈ {1, 2, . . . , n}, j(u) = 2, then pick
H1,H2, . . . ,Hn ∈ Pf (N) with r = minH1, H1 < H2 < . . . < Hn, and |Hu| = 2k+1.
Then when the elements of the support of

∑n
i=1

∑
m∈Hi

zi,m are written in order,
there are at least 2k+1 alterations between even and odd so

∑n
i=1

∑
m∈Hi

zi,m /∈ B.
Thus, for each i ∈ {1, 2, . . . , n}, we have that j(i) ∈ {0, 1}. But now, if the
elements of the support of

∑n
i=1 zi,r+i−1 are written in order, there are at most

n − 1 alterations between even and odd, and n − 1 < 2k = min supp(z1,r) so∑n
i=1 zi,r+i−1 /∈ B, a contradiction. �

We have by Corollary 4.5 that if (G,+) is an abelian group, A ⊆ G and d(A) > 0,
then A−A is IPn∗ for every n ∈ N. And A−A = {x ∈ G : A ∩ (A− x) 6= ∅}. We
shall see, using some powerful results of Furstenberg and Katznelson, that much
stronger results are true. While Theorem 4.13 is not stated in [13], it is implicitly
contained there. Also, Theorem 4.13 is a corollary of Theorem 4.16, but its proof
is much simpler, so we present that proof separately.

Lemma 4.12. Let (G,+) be a countable abelian group, let A ⊆ G with d(A) > 0,
and let K be a finite set of commuting endomorphisms of G. Then{

x ∈ G : d
(⋂

g∈K

(
A− g(x)

))
> 0

}
is an IP 1∗ set.

Proof. Using Theorem 2.2 pick a sequence 〈Kn〉∞n=1 in Pf (G) such that for each x ∈

G, lim
n→∞

|Kn \ (x+Kn)|
|Kn|

= 0 and d(A) = lim
n→∞

|A ∩Kn|
|Kn|

. (A sequence satisfying

the first of these requirements is called a Følner sequence.) By [3, Theorem 4.17]
pick a probability space (X,B, µ), a measure preserving action 〈Tx〉x∈G of G on X,
and a set B ∈ B such that µ(B) = d(A) and for every F ∈ Pf (G),

d
( ⋂

z∈F (A− z)
)
≥ µ

( ⋂
z∈F T−1

z [A]
)
.

Now let a sequence 〈xn〉∞n=1 in G be given. For n ∈ N and g ∈ K, let R(g)
n =

Tg(xn). Given F ∈ Pf (N) let i1, i2, . . . , il list the elements of F in increasing order
and let for each g ∈ K, S(g)

F = R
(g)
i1
◦R(g)

i2
◦ . . . ◦R(g)

il
. For example, if F = {1, 3, 4},



18 VITALY BERGELSON AND NEIL HINDMAN

then S
(g)
F = R

(g)
1 ◦ R(g)

3 ◦ R(g)
4 = Tg(x1) ◦ Tg(x3) ◦ Tg(x4) = Tg(x1+x3+x4). In general,

if z =
∑

i∈F xi, then S
(t)
F = Tg(z). Pick by [13, Theorem A] some F ∈ Pf (N) such

that µ(
⋂

g∈K (S(g)
F )−1[B]) > 0. Let z =

∑
i∈F xi. Then d

( ⋂
g∈K (A − g(z))

)
≥

µ(
⋂

g∈K T−1
g(z)[B]) > 0. �

Theorem 4.13. Let (G,+) be a countable abelian group, let A ⊆ G with d(A) > 0,
let K be a finite set of commuting endomorphisms of G, and let n ∈ N. Then{

x ∈ G : d
(⋂

g∈K

(
A− g(x)

))
> 0

}
is an IP n∗ set.

Proof. We proceed by induction on n, the case n = 1 being Lemma 4.12.
Let n ∈ N and assume the result is true for n. Let

B = {x ∈ G : d
( ⋂

g∈K (A− g(x))
)
> 0} .

By Corollary 4.4 it suffices to let p1, p2, . . . , pn+1 be idempotents in βG and show
that B ∈ p1 + p2 + . . . + pn+1. To this end, since (again by Corollary 4.4) B ∈
p1 + p2 + . . . + pn it suffices to show that B ⊆ {x ∈ G : −x + B ∈ pn+1}, so let
x ∈ B. Let C =

⋂
g∈K

(
A−g(x)

)
and let D = {y ∈ G : d

(⋂
g∈K

(
C−g(y)

))
> 0}.

Then d(C) > 0 so by Lemma 4.12 D is an IP1∗ set and thus D ∈ pn+1. Given
y ∈ D, one has

⋂
g∈K

(
C − g(y)

)
⊆

⋂
g∈K

(
A− g(x+ y)

)
and so x+ y ∈ B. Thus

−x+B ∈ pn+1 as required. �

The next lemma is a version of Furstenberg’s Correspondence Principle.

Lemma 4.14. Let (G,+) be a countable abelian group, let λ be a left invariant mean
on G, and let A ⊆ G such that λ(χA) > 0. There exist a compact metric space X,
a countably generated σ-algebra B of subsets of X, a clopen set U ∈ B, a countably
additive measure µ on B, and a measure preserving action 〈Sx〉x∈G of G on (X,B, µ)
such that for all F ∈ Pf (G), if B =

⋂
x∈F (A− x), then µ(

⋂
x∈F S

−1
x [U ]) = λ(χB).

Proof. This is what was shown in the proof of [7, Theorem 2.1]. �

Lemma 4.15. Let (G,+) be a countable abelian group, let K be a finite set of
commuting endomorphisms of G, let n ∈ N, and for each i ∈ {1, 2, . . . , n}, let
〈xi,t〉∞t=1 be a sequence in G, let A ⊆ G with d(A) > 0, and let l ∈ N. Then there
exists M ∈ Pf (N) such that minM > l and

d
(
A ∩

⋂ {
A− g(

∑
i∈F

∑
t∈M xi,t) : g ∈ K and ∅ 6= F ⊆ {1, 2, . . . , n}

})
> 0 .

Proof. Pick an invariant mean λ on G such that λ(χA) > 0. Pick (X,B, µ), U , and
〈Sx〉x∈G as guaranteed by Lemma 4.14 for λ and A. For g ∈ K, i ∈ {1, 2, . . . , n},
and H ∈ Pf (N), let T g,i

H = Sg(Σt∈Hxi,t).
Pick by the Main Theorem of [13], an increasing sequence 〈Lk〉∞k=1 in Pf (N) and

M ∈ FU(〈Lk〉∞k=l) such that

µ
(
U ∩

⋂ {
(
∏

i∈F T
g,i
M )−1[U ] : g ∈ K and ∅ 6= F ⊆ {1, 2, . . . , n}

})
> 0 .

(In the notation of the Main Theorem of [13], Σ is the group generated by{
〈T g,i

H 〉H∈Pf (N) : g ∈ K and i ∈ {1, 2, . . . , n}
}
,

F(1) is FU(〈Lk〉∞k=1), r is |K × {1, 2, . . . , n}|, {T (1), T (2), . . . , T (r)} is

{〈T g,i
H 〉H∈Pf (N) : g ∈ K and i ∈ {1, 2, . . . , n}

}
,
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and Λ = {∅,M}. Then
∏

i∈F T
g,i
M =

∏r
t=1 T

(t)
λt

, where

λt = M if T (t) = 〈T g,i
H 〉H∈Pf (N)

and λt = ∅ otherwise.)
Now, given g ∈ K and ∅ 6= F ⊆ {1, 2, . . . , n}, we have that U = (S0)−1[U ] and∏

i∈F T
g,i
M =

∏
i∈F Sg(Σt∈M xi,t)

= SΠi∈F g(Σt∈M xi,t)

= Sg(Σi∈F Σt∈M xi,t) ,

so by Lemma 4.14, if

B = A ∩
⋂ {

A− g(
∑

i∈F

∑
t∈M xi,t) : g ∈ K and ∅ 6= F ⊆ {1, 2, . . . , n}

}
,

then λ(χB) > 0 and consequently d(B) > 0. �

Theorem 4.16. Let (G,+) be a countable abelian group, let A ⊆ G with d(A) > 0,
let K be a finite set of commuting endomorphisms of G, and let n ∈ N. Then{

x ∈ G : d
(⋂

g∈K

(
A− g(x)

))
> 0

}
is an EIP n∗ set.

Proof. Let A1 = A, and by Lemma 4.15 pick M1 ∈ Pf (N) such that, letting
A2 = A1 ∩

⋂ {
A1 − g(

∑
i∈F

∑
t∈M1

xi,t : g ∈ K and ∅ 6= F ⊆ {1, 2, . . . , n}
}
, we

have that d(A2) > 0.
Inductively, given k > 1, Ak, and Mk−1, let l = maxMk−1 and pick by Lemma

4.15, Mk ∈ Pf (N) such that minMk > l and, letting

Ak+1 = Ak ∩
⋂ {

Ak − g(
∑

i∈F

∑
t∈Mk

xi,t : g ∈ K and ∅ 6= F ⊆ {1, 2, . . . , n}
}
,

we have that d(Ak+1) > 0.
The induction being complete, for each i ∈ {1, 2, . . . , n} and each k ∈ N, let

yi,k =
∑

t∈Mk
xi,t. We show by induction on |

⋃n
i=1Hi| that if H1,H2, . . . ,Hn ∈

Pf (N) ∪ {∅}, some Hi 6= ∅, and m = max
⋃n

i=1Hi, then

Am+1 ⊆
⋂

g∈K

(
A− g(

∑n
i=1

∑
k∈Hi

yi,k)
)

so that
∑n

i=1

∑
k∈Hi

yi,k ∈
{
x ∈ G : d

(⋂
g∈K

(
A− g(x)

))
> 0

}
as required.

Assume first that
⋃n

i=1Hi = {m} and let F = {i ∈ {1, 2, . . . , n} : m ∈ Hi}.
Then

Am+1 ⊆
⋂

g∈K

(
Am − g(

∑
i∈F

∑
t∈Mm

xi,t)
)

=
⋂

g∈K

(
Am − g(

∑
i∈F yi,m)

)
⊆

⋂
g∈K

(
A− g(

∑
i∈F yi,m)

)
=

⋂
g∈K

(
A− g(

∑n
i=1

∑
k∈Hi

yi,k)
)
.

Now assume that |
⋃n

i=1Hi| > 1, let m = max
⋃n

i=1Hi, and let

F = {i ∈ {1, 2, . . . , n} : m ∈ Hi} .

For i ∈ {1, 2, . . . , n}, let Di = Hi \ {m} (so if i /∈ F , then Di = Hi). Then
some Di 6= ∅. Let l = max

⋃n
i=1Di. Then by the induction hypothesis we have
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Am ⊆ Al+1 ⊆
⋂

g∈K

(
A− g(

∑n
i=1

∑
k∈Di

yi,k)
)
. Thus

Am+1 ⊆
⋂

g∈K

(
Am − g(

∑
i∈F

∑
t∈Mm

xi,t)
)

=
⋂

g∈K

(
Am − g(

∑
i∈F yi,m)

)
⊆

⋂
g∈K

((
A− g(

∑n
i=1

∑
k∈Di

yi,k)
)
− g(

∑
i∈F yi,m)

)
.

If i ∈ F , then Hi = Di ∪ {m} while if i /∈ F , then Hi = Di so given g ∈ K,(
A− g(

∑n
i=1

∑
k∈Di

yi,k)
)
− g(

∑
i∈F yi,m) =

A− g(
∑n

i=1

∑
k∈Di

yi,k +
∑

i∈F yi,m) =
A− g(

∑n
i=1

∑
k∈Hi

yi,k) .

�

5. ∆n sets

We now turn our attention to ∆n sets. A set A ⊆ N, is a ∆ set if and only if
there is an increasing sequence 〈xn〉∞n=1 in N such that

{xm − xn : n,m ∈ N and n < m} ⊆ A

and we can extend that notion to a subset A of an arbitrary group S by requiring
that there exists an injective sequence 〈xn〉∞n=1 in S with

{x−1
n xm : n,m ∈ N and n < m} ⊆ A .

(In [5] we did not require the sequence to be injective. This has the drawback that
{e} is then a ∆ set, where e is the identity of S.)

Definition 5.1. Let S be a group or (N,+), let A ⊆ S, and let n ∈ N. Then A is a
∆n set in S if and only if there exist for each i ∈ {1, 2, . . . , n} an injective sequence
〈xi,t〉∞t=1 in S such that

{
∏n

i=1(x
−1
i,k(i)xi,m(i)) : k(1),m(1), k(2), . . . , k(n),m(n) ∈ N

and k(1) < m(1) < k(2) < . . . < k(n) < m(n)} ⊆ A .

Also, A is a ∆n∗ set if and only if A has nonempty intersection with every ∆n set
in S.

As with the IPn sets, we set out to characterize the ∆n sets in terms of products
of members of βS.

Lemma 5.2. Let S be a group or (N,+), let n ∈ N, and for i ∈ {1, 2, . . . , n}
let 〈xi,t〉∞t=1 be an injective sequence in S. Assume that for each i ∈ {1, 2, . . . , n},
pi ∈ S∗ ∩ {xi,t : t ∈ N}. Then

{
∏n

i=1(x
−1
i,k(i)xi,m(i)) : k(1),m(1), k(2), . . . , k(n),m(n) ∈ N

and k(1) < m(1) < k(2) < . . . < k(n) < m(n)} ∈
∏n

i=1(p
−1
i pi) .

Proof. We proceed by induction, the case n = 1 following from Lemma 3.10. So let
n ∈ N and assume that the statement is true for n. Let

A = {
∏n+1

i=1 (x−1
i,k(i)xi,m(i)) : k(1),m(1), k(2), . . . , k(n+ 1),m(n+ 1) ∈ N

and k(1) < m(1) < k(2) < . . . < k(n+ 1) < m(n+ 1)}
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and let

B = {
∏n

i=1(x
−1
i,k(i)xi,m(i)) : k(1),m(1), k(2), . . . , k(n),m(n) ∈ N

and k(1) < m(1) < k(2) < . . . < k(n) < m(n)} .

Then B ∈
∏n

i=1(p
−1
i pi) We claim that B ⊆ {y ∈ S : y−1A ∈ p−1

n+1pn+1}, so let
y =

∏n
i=1(x

−1
i,k(i)xi,m(i)) ∈ B. Let

C = {x−1
n+1,k(n+1)xn+1,m(n+1) : k(n+ 1),m(n+ 1) ∈ N

and m(n) < k(n+ 1) < m(n+ 1)} .

By Lemma 3.10, C ∈ p−1
n+1pn+1. Since C ⊆ y−1A, we have that A ∈

∏n+1
i=1 (p−1

i pi)
as required. �

Lemma 5.3. Let S be a group or (N,+), let n ∈ N, and let A ⊆ S. For each
i ∈ {1, 2, . . . , n} let pi ∈ S∗, let 〈Bi,t〉∞t=1 be a sequence of members of pi, and
assume that A ∈

∏n
i=1(p

−1
i pi). There exist for each i ∈ {1, 2, . . . , n} an injective

sequence 〈xi,t〉∞t=1 such that for each t ∈ N, xi,t ∈
⋂t

j=1Bi,j and

{{
∏n

i=1(x
−1
i,k(i)xi,m(i)) : k(1),m(1), k(2), . . . , k(n),m(n) ∈ N

and k(1) < m(1) < k(2) < . . . < k(n) < m(n)} ⊆ A .

In particular, A is a ∆n set.

Proof. We proceed by induction, the n = 1 case following from Lemma 3.11. So let
n ∈ N and assume the implication holds for n. Pick p1, p2, . . . , pn+1 ∈ S∗ such that
A ∈

∏n+1
i=1 (p−1

i pi) and let B = {y ∈ S : y−1A ∈ p−1
n+1pn+1}. Then B ∈

∏n
i=1(p

−1
i pi)

so choose for each i ∈ {1, 2, . . . , n} an injective sequence 〈xi,t〉∞t=1 in S such that
for each t, xi,t ∈

⋂t
j=1Bi,j and

{
∏n

i=1(x
−1
i,k(i)xi,m(i)) : k(1),m(1), k(2), . . . , k(n),m(n) ∈ N

and k(1) < m(1) < k(2) < . . . < k(n) < m(n)} ⊆ B .

For t ≤ 2n, choose xn+1,t ∈
⋂t

j=1Bn+1,j arbitrarily (preserving injectivity). For
l > 2n, let

Cl = {
∏n

i=1(x
−1
i,k(i)xi,m(i)) : k(1),m(1), k(2), . . . , k(n),m(n) ∈ {1, 2, . . . , l − 1}

and k(1) < m(1) < k(2) < . . . < k(n) < m(n)} ,

let Dl =
⋂

y∈Cl
y−1A, and let El = {w ∈ S : wDl ∈ pn+1}. Since Cl ⊆ B,

Dl ∈ p−1
n+1pn+1 and so El ∈ pn+1.

Choose xn+1,2n+1 ∈ E2n+1 ∩
⋂2n+1

j=1 Bn+1,j and for l > 2n+ 1, choose

xn+1,l ∈ El ∩
⋂l−1

t=2n+1 xn+1,tDt ∩
⋂l

j=1Bn+1,j .

Now let k(1),m(1), k(2), . . . , k(n),m(n) ∈ N such that k(1) < m(1) < k(2) < . . . <
k(n+ 1) < m(n+ 1). Then

x−1
n+1,k(n+1)xn+1,m(n+1) ∈ Dk(n+1) and

∏n
i=1(x

−1
i,k(i)xi,m(i)) ∈ Ck(n+1)

so
∏n+1

i=1 (x−1
i,k(i)xi,m(i)) ∈ A as required. �

Theorem 5.4. Let S be a group or (N,+), let n ∈ N, and let A ⊆ S. Then A is a
∆n set if and only if there exist p1, p2, . . . , pn ∈ S∗ such that A ∈

∏n
i=1(p

−1
i pi).
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Proof. Necessity. Choose for each i ∈ {1, 2, . . . , n} an injective sequence 〈xi,t〉∞t=1

in S such that

{
∏n

i=1(x
−1
i,k(i)xi,m(i)) : k(1),m(1), k(2), . . . , k(n),m(n) ∈ N

and k(1) < m(1) < k(2) < . . . < k(n) < m(n)} ⊆ A .

For each i ∈ {1, 2, . . . , n} pick pi ∈ S∗ such that {xi,t : t ∈ N} ∈ pi. By Lemma 5.2,
A ∈

∏n
i=1(p

−1
i pi).

The sufficiency is an immediate consequence of Lemma 5.3. �

We immediately get corollaries corresponding to Corollaries 4.4, 4.5, and 4.6.

Corollary 5.5. Let S be a group or (N,+), let n ∈ N, and let A ⊆ S. Then A is
a ∆n∗ set if and only if if for all p1, p2, . . . , pn in S∗ one has A ∈

∏n
i=1(p

−1
i pi).

Proof. The set A is a ∆n∗ set if and only if S \A is not a ∆n set. �

Corollary 5.6. Let S be an amenable group or (N,+) and let A ⊆ S with d(A) > 0.
Then AA−1 is ∆n∗ for every n ∈ N.

Proof. By Theorems 3.15 and 3.14, AA−1 contains a subsemigroup of βS containing
p−1p for all p ∈ S∗ so Theorem 5.4 applies. �

Corollary 5.7. Let S be a group or (N,+), let n ∈ N, let A be a ∆n set in S, and
let F be a finite partition of A. Then there exists B ∈ F such that B is a ∆n set.

Proof. Pick by Theorem 5.4 p1, p2, . . . , pn in S∗ such that A ∈
∏n

i=1(p
−1
i pi). Since∏n

i=1(p
−1
i pi) is an ultrafilter, there exists B ∈ F such that B ∈

∏n
i=1(p

−1
i pi).

Applying Theorem 5.4 again, we have that B is a ∆n set. �

By contrast with the situation regarding the IPn property, we shall show in The-
orem 6.25 that in (N,+) there is no relationship whatsoever between the properties
∆n and ∆k when n 6= k.

6. Density recurrent, polynomial recurrent, and ∆n sets in N

We begin this section by showing that DR(N,+) has substantial multiplicative
structure. (And consequently, by Theorem 3.15, so does A − A whenever A ⊆ N
with d(A) > 0.)

Theorem 6.1. DR(N,+) is a left ideal of (βN, ·).

Proof. Let p ∈ βN and q ∈ DR(N,+). To see that p · q ∈ DR(N,+), let B ∈ p · q.
To see that B is a density recurrent set let A ⊆ N such that d(A) > 0. Since
B ∈ p · q, pick m ∈ N such that m−1B ∈ q. Pick t ∈ {0, 1, . . . ,m − 1} such that
d
(
A ∩ (mN + t)

)
> 0 and let C = {n ∈ N : mn + t ∈ A}. Then d(C) > 0 so pick

n ∈ m−1B such that d
(
C ∩ (−n+ C)

)
> 0. Then d

(
mC ∩ (−mn+mC)

)
> 0 and

mC∩ (−mn+mC) ⊆ (−t+A)∩ (−mn− t+A) so d
(
(−t+A)∩ (−mn− t+A)

)
> 0

and by Theorem 2.3 d
(
A ∩ (−mn+A)

)
= d

(
(−t+A) ∩ (−mn− t+A)

)
. �

We now turn our attention to sets of multiple recurrence, establishing that much,
but not all, of the structure of DR(N) carries over to the set of ultrafilters all of
whose members satisfy a strong multiple recurrence property.

Definition 6.2. R = {g : g is a polynomial with rational coefficients, g[Z] ⊆ Z,
and g(0) = 0}.
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Theorem 6.3. Let F ∈ Pf (R) and let A ⊆ N with d(A) > 0. Then

{n ∈ N : d
( ⋂

g∈F

(
(A− g(n)

))
> 0}

is an IP∗ set.

Proof. [8, Theorem 7.3]. �

Notice that, since the function 0 ∈ R, the assertion that for each F ∈ Pf (R),
{n ∈ N : d

( ⋂
g∈F (A − g(n)

)
> 0} is an IP∗ set is the same as the assertion that

for each F ∈ Pf (R), {n ∈ N : d
(
A ∩

⋂
g∈F (A− g(n)

)
> 0} is an IP∗ set.

Given a set X and n ∈ N, [X]n = {A ⊆ X : |A| = n}.

Definition 6.4. (a) Let n ∈ N and let B ⊆ N. Then B is a polynomial n-
recurrent set if and only if whenever A ⊆ N with d(A) > 0, and F ∈ [R]n,
there exists k ∈ B such that

d
(
A ∩

⋂
g∈F

(
A− g(k)

))
> 0 .

(b) Let n ∈ N. Then PRn = {p ∈ βN : (∀B ∈ p)(B is a polynomial n-recurrent
set)}.

(c) PR =
⋂∞

n=1 PRn.

Theorem 6.5. Let n ∈ N. Then PRn is a subsemigroup of (βN,+) containing the
idempotents, and consequently so is PR.

Proof. By Theorem 6.3, PRn contains the idempotents and, in particular, PRn 6= ∅.
Now let p, q ∈ PRn and let B ∈ p+ q. To see that B is polynomial n-recurrent,

let A ⊆ N and let F ∈ [R]n. Let C = {m ∈ N : −m+B ∈ q}. Then C ∈ p so pick
m ∈ C such that d

(
A ∩

⋂
g∈F

(
A− g(m)

))
> 0. Let

D = A ∩
⋂

g∈F

(
A− g(m)

)
.

For g ∈ F , define hg(x) = g(m + x) − g(m) and let H = {hg : g ∈ F}. Then
H ∈ [R]n. Pick k ∈ −m + B such that d

(
D ∩

⋂
g∈F

(
D − hg(k)

))
> 0. Then

m + k ∈ B and D ∩
⋂

g∈F

(
D − hg(k)

)
⊆ A ∩

⋂
g∈F

(
A − g(m + k)

)
, so d

(
A ∩⋂

g∈F

(
A− g(m+ k)

))
> 0. �

Theorem 6.6. Let n ∈ N and let p, q ∈ PRn. Then −p+ q ∈ PRn. Therefore, if
p, q ∈ PR, so is −p+ q.

Proof. Let B ∈ −p + q. To see that B is polynomial n-recurrent, let A ⊆ N and
let F ∈ [R]n. For g ∈ F , let fg(x) = g(−x). Let C = {m ∈ N : m + B ∈ q}.
Then C ∈ p so pick m ∈ C such that d

(
A ∩

⋂
g∈F

(
A − fg(m)

))
> 0. Let D =

A∩
⋂

g∈F

(
A−fg(m)

)
. For g ∈ F , define hg(x) = g(x−m)−fg(m) and letH = {hg :

g ∈ F}. Then H ∈ [R]n. Pick k ∈ m+B such that d
(
D ∩

⋂
g∈F

(
D− hg(k)

))
> 0.

Then k − m ∈ B and D ∩
⋂

g∈F

(
D − hg(k)

)
⊆ A ∩

⋂
g∈F

(
A − g(k − m)

)
, so

d
(
A ∩

⋂
g∈F

(
A− g(k −m)

))
> 0. �

Recall from Theorem 3.14 that whenever p ∈ N∗, −p + p ∈ DR(N). We shall
see in Corollary 6.20 that there exists p ∈ N∗ such that −p+ p /∈ PR. We shall see
now that PR does share with DR the property of being a left ideal of (βN, ·).

Theorem 6.7. Let n ∈ N. Then PRn is a left ideal of (βN, ·), and consequently
so is PR.
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Proof. Let p ∈ βN and let q ∈ PRn. Let B ∈ p · q. To see that B is polynomial
n-recurrent, let A ⊆ N and let F ∈ [R]n. Pick m ∈ N such that m−1B ∈ q. For
g ∈ F , define fg ∈ R by fg(x) = g(mx). Pick k ∈ m−1B such that

d
(
A ∩

⋂
g∈F

(
A− fg(k)

))
> 0 .

Then mk ∈ B and d
(
A ∩

⋂
g∈F

(
A− g(mk)

))
> 0. �

As a consequence of Theorem 3.14, we have that DR(N,+) is a subsemigroup
of (βN,+) containing the idempotents, containing all elements of the form −p+ p
for p ∈ N∗, and closed under subtraction with the negative term on the left. By
Theorem 6.1 we have that DR(N,+) is also a left ideal of (βN, ·). And we have
just seen that PR shares all of these properties except that −p+ p need not be in
PR for all p ∈ N∗. Therefore, PR contains all polynomials formed from additive
idempotents as long as the rightmost coefficient is positive. For example, if p, q,
and r are aditive idempotents, then 3pq − 2qr + rqp ∈ PR. It will also contain
things which one does not usually refer to as polynomials, such as p(q + r). (This
is not the same as pq + pr. See [15, Corollary 13.27].) In particular, if A ⊆ N and
d(A) > 0, then A−A is a member of all such expressions.

Given a sequence corresponding to each variable in the polynomial, sums of a
certain form must lie in any member of the polynomial. We make this statement
precise in Theorem 6.10 below. This result is due to Kendall Williams and forms
part of his dissertation at Howard University. We are grateful for his permission to
present the theorem and its proof here.

In the following lemmas, the closure is taken in βQd, where Qd is the set of
rationals with the discrete topology. If the given sequences are sequences of integers,
of course one will have each pj ∈ βZ.

Because of the generality of Theorem 6.10, it can be a bit difficult to understand
what it says. The reader may wish to bear in mind the following special case.
Let g(z1, z2, z3) = − 2

3z1z3 + z3z2 + 3z1z1z3 + z2z1. Assume that for j ∈ {1, 2, 3},
〈xj,t〉∞t=1 is a sequence in N and pj ∈

⋂∞
l=1 FS(〈xj,t〉∞t=l). Given F,G ∈ Pf (N), write

F < G to mean maxF < minG. Then Theorem 6.10 asserts that

{− 2
3 (

∑
t∈F1

x1,t)(
∑

t∈F2
x3,t) + (

∑
t∈F3

x3,t)(
∑

t∈F4
x2,t)

+3(
∑

t∈F5
x1,t)(

∑
t∈F6

x1,t)(
∑

t∈F7
x3,t) + (

∑
t∈F8

x2,t)(
∑

t∈F9
x1,t) :

each Fi ∈ Pf (N) and F1 < F2 < . . . < F9} ∈ g(p1, p2, p3) .

In particular, if p1, p2, and p3 are idempotents, then the listed set will be a poly-
nomial n-recurrent set for each n.

Lemma 6.8. Let m, k, s ∈ N and for j ∈ {1, 2, . . . , k}, let 〈xj,t〉∞t=1 be a sequence
in Q and let pj ∈

⋂∞
l=1 FS(〈xj,t〉∞t=l). Let a ∈ Q \ {0}, let f : {1, 2, . . . ,m} →

{1, 2, . . . , k}, and let s ∈ N. Then

{a(
∑

t∈F1
xf(1),t) · · · (

∑
t∈Fm

xf(m),t) : each Fi ∈ Pf (N) and
{s} < F1 < . . . < Fm} ∈ apf(1) · · · pf(m) .

Proof. We proceed by induction on m. If m = 1, we have that FS(〈xf(1),t〉∞t=s+1) ∈
pf(1) so {a(

∑
t∈F xf(1),t) : F ∈ Pf (N) and s < minF} ∈ apf(1).
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Now assume that m > 1 and the result holds for m− 1. let

B = {a(
∑

t∈F1
xf(1),t) · · · (

∑
t∈Fm

xf(m),t) :

each Fi ∈ Pf (N) and {s} < F1 < . . . < Fm} and let

C ={a(
∑

t∈F1
xf(1),t) · · · (

∑
t∈Fm−1

xf(m−1),t) :

each Fi ∈ Pf (N) and {s} < F1 < . . . < Fm−1} .

Then by assumption C ∈ apf(1) · · · pf(m−1). We claim that

C ⊆ {y ∈ Q : y−1B ∈ pf(m)} ,

so that B ∈ apf(1) · · · pf(m) as required. To this end let y ∈ C and pick F1, F2, . . . ,
Fm−1 ∈ Pf (N) such that {s} < F1 < . . . < Fm−1 and

y = a(
∑

t∈F1
xf(1),t) · · · (

∑
t∈Fm−1

xf(m−1),t) .

Let r = maxFm−1. Then FS(〈xf(m),t〉∞t=r+1) ∈ pf(m) and FS(〈xf(m),t〉∞t=r+1) ⊆
y−1B. �

Lemma 6.9. Let k,m ∈ N, let f : {1, 2, . . . ,m} → {1, 2, . . . , k}, and for j ∈
{1, 2, . . . , k}, let 〈xj,t〉∞t=1 be a sequence in Q and let pj ∈

⋂∞
l=1 FS(〈xj,t〉∞t=l). Let

a ∈ Q \ {0}, let q ∈ βQd, let D ∈ q, and let ϕ : D → N. Then

{y + a(
∑

t∈F1
xf(1),t) · · · (

∑
t∈Fm

xf(m),t) : y ∈ D, each Fi ∈ Pf (N), and
{ϕ(y)} < F1 < . . . < Fm} ∈ q + apf(1) · · · pf(m) .

Proof. Let

B = {y + a(
∑

t∈F1
xf(1),t) · · · (

∑
t∈Fm

xf(m),t) :

y ∈ D, each Fi ∈ Pf (N), and {ϕ(y)} < F1 < . . . < Fm}

We claim that D ⊆ {y ∈ Q : −y +B ∈ apf(1) · · · pf(m)} so that

B ∈ q + apf(1) · · · pf(m) .

So let y ∈ D and let

C ={a(
∑

t∈F1
xf(1),t) · · · (

∑
t∈Fm−1

xf(m),t) :

each Fi ∈ Pf (N) and {ϕ(y)} < F1 < . . . < Fm} .

By Lemma 6.8, C ∈ apf(1) · · · pf(m) and C ⊆ −y +B. �

In the statement of the following theorem, if

g(z1, z2, z3) = − 2
3z1z3 + z3z2 + 3z1z1z3 + z2z1

as in the paragraph before Lemma 6.8, then

hg(y1, y2, . . . , ym) = − 2
3y1y2 + y3y4 + 3y5y6y7 + y8y9

and the function f = {(1, 1), (2, 3), (3, 3), (4, 2), (5, 1), (6, 1), (7, 3), (8, 2), (9, 1)}.
We do not demand that each of the listed variables occur in g.

Theorem 6.10 (Kendall Williams). Let k ∈ N. For j ∈ {1, 2, . . . , k}, let
〈xj,t〉∞t=1 be a sequence in Q and let pj ∈

⋂∞
l=1 FS(〈xj,t〉∞t=l). Let g(z1, z2, . . . , zk)

be a polynomial with rational coefficients. Let m be the number of occurrences of
a variable in g, and let hg(y1, y2, . . . , ym) be the polynomial obtained by replacing
the ith occurrence of a variable by yi. Define f : {1, 2, . . . ,m} → {1, 2, . . . , k}
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by f(i) = j if the ith occurrence of a variable is zj. (Then g(z1, z2, . . . , zk) =
hg(zf(1), zf(2), . . . , zf(m)). Let

B ={hg(
∑

t∈F1
xf(1),t, . . . ,

∑
t∈Fm

xf(m),t) :

each Fi ∈ Pf (N), and F1 < . . . < Fm} .
Then B ∈ g(p1, p2, . . . , pk).

Proof. We proceed by induction on the number of terms in g. If g has one term,
the result follows from Lemma 6.8. So assume that g has n > 1 terms and the
result is valid for polynomials with n− 1 terms.

Let r be the number of occurrences of variables in the nth term of g, so that this
term is anzf(m−r+1)zf(m−r+2) · · · zf(m). Let ĝ consist of the first n− 1 terms of g,
so that ĝ(z1, z2, . . . , zk) = hĝ(y1, y2, . . . , ym−r). Let

D ={hĝ(
∑

t∈F1
xf(1),t, . . . ,

∑
t∈Fm−r

xf(m−r),t) :

each Fi ∈ Pf (N), and F1 < . . . < Fm−r} .
Then by assumption D ∈ ĝ(p1, p2, . . . , pk). Also,

g(p1, p2, . . . , pk) = ĝ(p1, p2, . . . , pk) + anpf(m−r+1)pf(m−r+2) · · · pf(m) .

Given y ∈ D, pick F1, F2, . . . , Fm−r ∈ Pf (N) with F1 < F2 < . . . < Fm−r and
define ϕ(y) = maxFm−r.

Let

C ={y + an(
∑

t∈Fm−r+1
xf(m−r+1),t) · · · (

∑
t∈Fm

xf(m),t) :

y ∈ D, each Fi ∈ Pf (N) , and {ϕ(y)} < Fm−r+1 < . . . < Fm} .
By Lemma 6.9, C ∈ g(p1, p2, . . . , pk) and C ⊆ B. �

The following example of the sort of combinatorial consequences of Theorems
6.5, 6.7, and 6.10 is a very special case of a general phenomenon.

Corollary 6.11. Let 〈xt〉∞t=1, 〈yt〉∞t=1, and 〈wt〉∞t=1 be sequences in N. Let

B = {2(
∑

t∈F1
xt)(

∑
t∈F2

yt) + 3(
∑

t∈F3
wt)(

∑
t∈F4

wt)(
∑

t∈F5
xt) :

each Fi ∈ Pf (N) and F1 < F2 < F3 < F4 < F5} .
Then B is a polynomial n-recurrent set for every n ∈ N.

Proof. Let g(z1, z2, z3) = 2z1z2 + 3z3z3z1. Pick by [15, Lemma 5.11] idempotents
p ∈

⋂∞
m=1 FS(〈xt〉∞t=m), q ∈

⋂∞
m=1 FS(〈yt〉∞t=m), and r ∈

⋂∞
m=1 FS(〈wt〉∞t=m). By

Theorem 6.10, B ∈ g(p, q, r) and by Theorems 6.5 and 6.7, g(p, q, r) ∈ PR. �

The assertion that a set B “is a polynomial n-recurrent set for every n ∈ N”
is the same as saying that for each H ∈ Pf (R) and each A ⊆ S with d(A) > 0,
B ∩ {n ∈ N : d

( ⋂
g∈H (A− g(n)

)
> 0} 6= ∅.

Corollary 6.12. Let 〈xt〉∞t=1, 〈yt〉∞t=1, and 〈wt〉∞t=1 be sequences in N, let A ⊆ N
with d(A) > 0, and let H ∈ Pf (R). There exist sum subsytems 〈ut〉∞t=1 of 〈xt〉∞t=1,
〈vt〉∞t=1 of 〈yt〉∞t=1 , and 〈zt〉∞t=1 of 〈wt〉∞t=1 such that

B = {2(
∑

t∈F1
ut)(

∑
t∈F2

vt) + 3(
∑

t∈F3
zt)(

∑
t∈F4

zt)(
∑

t∈F5
ut) :

each Fi ∈ Pf (N) and F1 < F2 < F3 < F4 < F5}
⊆ {n ∈ N : d

( ⋂
g∈H (A− g(n)

)
> 0} .
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Proof Sketch. Use Theorem 3.19 as in the proof of Theorem 3.20. �

A stronger result than that of Corollary 6.12 is available. According to [8,
Theorem 7.3] one can demand that F1 = F2 = F3 = F4 = F5, or that just some of
these sets are equal. We note that such a conclusion cannot be derived from the fact
that B ∩ {n ∈ N : d

( ⋂
g∈H (A− g(n)

)
> 0} 6= ∅ for each choice of 〈xt〉∞t=1, 〈yt〉∞t=1,

and 〈wt〉∞t=1. For example, let C = N \ {x2 : x ∈ N}. Then given any sequence
〈xn〉∞n=1 in N, one has {(

∑
t∈F1

xt)(
∑

t∈F2
xt) : F1, F2 ∈ Pf (N) and F1 < F2}∩C 6=

∅ and so given any sequence 〈xn〉∞n=1 in N, there will exist a sum subsystem 〈yn〉∞n=1

of 〈xn〉∞n=1 such that {(
∑

t∈F1
yt)(

∑
t∈F2

yt) : F1, F2 ∈ Pf (N) and F1 < F2} ⊆ C.
One clearly cannot require F1 = F2.

Many other results can be proved in a similar manner. For example, if p, q ∈ N∗
and r is an idempotent in N∗, then p(−q + q) + 3pr ∈ DR(N). As a consequence,
we get the following theorem, whose proof we leave to the reader.

Theorem 6.13. Let 〈xn〉∞n=1, 〈yn〉∞n=1, and 〈wn〉∞n=1 be injective sequences in
N. Then for each n ∈ N, {xj(ym − yk) + 3xl(

∑
t∈F wt) : j, k,m, l ∈ N , F ∈

Pf (N), and j < k < m < l < minF} is a polynomial n-recurrent set.

There is an intricate relationship between members of polynomials on βN and
the ability to find expressions using sum subsystems and subsequences of specified
sequences in certain subsets of N. It is our intention to explore this relationship in
quite some detail in a forthcoming paper which we expect to write with Kendall
Williams. We shall illustrate aspects of this relationship with a few results involving
a specific polynomial, namely f(p, q) = 2p+ qp.

Theorem 6.14. Let p and q be idempotents in βN and let A ∈ 2p + qp. There
exist sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 in N such that

{2
∑

t∈F1
xt+(

∑
t∈F2

yt)(
∑

t∈F3
xt) : F1, F2, F3 ∈ Pf (N) and F1 < F2 < F3} ⊆ A .

Proof. Let B = 2−1{x ∈ N : −x+A ∈ qp}. Then B ∈ p. Let

B?(p) = {x ∈ B : −x+B ∈ p} .
By [15, Lemma 4.14], B?(p) ∈ p and if x ∈ B?(p), then −x + B?(p) ∈ p. Pick
x1 ∈ B?(p) and let C1 = −2x1 +A. Then C1 ∈ qp. Let D1 = {y ∈ N : y−1C1 ∈ p}.
Then D1 ∈ q. Pick y1 ∈ D?

1(q) and let E1 = y−1
1 C1. Then E1 ∈ p.

Pick x2 ∈ B?(p) ∩
(
− x1 +B?(p)

)
∩ E?

1 (p). Let

C2 = (−2x1 +A) ∩ (−2x2 +A) ∩ (−2(x1 + x2) +A) .

Then C2 ∈ pq. Let D2 = {y ∈ N : y−1C2 ∈ p}. Then D2 ∈ q. Pick

y2 ∈ D?
2(q) ∩

(
− y1 +D?

1(q)
)
.

Let E2 = y−1
1 C1 ∩ (y1 + y2)−1C1 ∩ y−1

2 C2. Then E2 ∈ p.
Inductively, let k ≥ 2 and assume that we have chosen 〈xt〉kt=1, 〈yt〉kt=1, 〈Ct〉kt=1,

〈Dt〉kt=1, and 〈Et〉kt=1. For l,m ∈ {1, 2, . . . , k} with l ≤ m, let

Ml,m = {
∑

t∈F xt : ∅ 6= F ⊆ {l, l + 1, . . . ,m} and l ∈ F}
and let

Nl,m = {
∑

t∈F yt : ∅ 6= F ⊆ {l, l + 1, . . . ,m} and l ∈ F} .
Assume that for each m ∈ {1, 2, . . . , k} the following induction hypotheses hold.

(1) If l ∈ {1, 2, . . . ,m} and z ∈Ml,m, then z ∈ B?(p).
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(2) If m > 1, l ∈ {2, 3, . . . ,m}, and z ∈Ml,m, then z ∈ E?
l−1(p).

(3) Cm =
⋂m

l=1

⋂
z∈Ml,m

(−2z +A).
(4) Dm = {y ∈ N : y−1Cm ∈ p} and Dm ∈ q.
(5) If l ∈ {1, 2, . . . ,m} and z ∈ Nl,m, then z ∈ D?

l (q).
(6) Em =

⋂m
l=1

⋂
z∈Nl,m

z−1Cl and Em ∈ p.
All hypotheses are satisfied for m = 1 and m = 2. By hypothesis (1) we have⋂k

l=1

⋂
z∈Ml,k

(
−z+B?(p)

)
∈ p. By hypothesis (2),

⋂k
l=2

⋂
z∈Ml,k

(
−z+E?

l−1(p)
)
∈

p. Pick xk+1 ∈ B?(p)∩
⋂k

l=1

⋂
z∈Ml,k

(
−z+B?(p)

)
∩

⋂k
l=2

⋂
z∈Ml,k

(
−z+E?

l−1(p)
)
.

Then hypotheses (1) and (2) hold for m = k+1. In particular, if l ∈ {1, 2, . . . , k+1}
and z ∈ Ml,k+1, then −2z + A ∈ qp. Let Ck+1 =

⋂k+1
l=1

⋂
z∈Ml,k+1

(−2z + A)
and let Dk+1 = {y ∈ N : y−1Ck+1 ∈ p}. Then Ck+1 ∈ qp so Dk+1 ∈ q. By
hypothesis (5) we have that

⋂k
l=1

⋂
z∈Nl,k

(
− z +D?

l (q)
)
∈ q. Pick yk+1 ∈ D?

k+1 ∩⋂k
l=1

⋂
z∈Nl,k

(
− z+D?

l (q)
)
. Then hypotheses (3), (4), and (5) hold for m = k+1.

Let Ek+1 =
⋂k+1

l=1

⋂
z∈Nl,k+1

z−1Cl Given l ∈ {1, 2, . . . , k + 1} and z ∈ Nl,k+1 we
have that z ∈ D?

l (q) so z−1Cl ∈ p. Thus Ek+1 ∈ p.
The construction being complete, let F1, F2, F3 ∈ Pf (N) and assume that

maxF1 ≤ minF2 and maxF2 < minF3 .

Let l = minF3. By hypothesis (2),
∑

t∈F3
xt ∈ El−1. Let u = minF2. Then∑

t∈F2
yt ∈ Nu,l−1 so by hypothesis (6), El−1 ⊆ (

∑
t∈F2

yt)−1Cu so

(
∑

t∈F2
yt)(

∑
t∈F3

xt) ∈ Cu .

Let v = minF1. Then
∑

t∈F1
xt ∈Mv,u so by hypothesis (3), Cu ⊆ −2(

∑
t∈F1

xt)+
A so 2(

∑
t∈F1

xt) + (
∑

t∈F2
yt)(

∑
t∈F3

xt) ∈ A as required. �

Note that a set A satisfying any (and hence all) of the statements in the following
theorem must be quite large. By way of contrast, any finite partition of N will yield
some set which is a member of 2p+ qp for any p and qp.

Theorem 6.15. Let A ⊆ N. The following statements are equivalent.
(a) Whenever p and q are idempotents in (βN,+), A ∈ 2p+ qp.
(b) Whenever 〈xn〉∞n=1 and 〈yn〉∞n=1 are sequences in N, there exist F1, F2, F3 ∈

Pf (N) such that F1 < F2 < F3 and 2
∑

t∈F1
xt + (

∑
t∈F2

yt)(
∑

t∈F3
xt) ∈

A.
(c) Whenever 〈xn〉∞n=1 and 〈yn〉∞n=1 are sequences in N, there exist a sum sub-

system 〈un〉∞n=1 of 〈xn〉∞n=1 and a sum subsystem 〈vn〉∞n=1 of 〈yn〉∞n=1 such
that

{2
∑

t∈F1
ut+(

∑
t∈F2

vt)(
∑

t∈F3
ut) : F1, F2, F3 ∈ Pf (N) and F1 < F2 < F3} ⊆ A .

Proof. (a) ⇒ (b). Pick by [15, Lemma 5.11] idempotents p ∈
⋂∞

m=1 FS(〈xt〉∞t=m)
and q ∈

⋂∞
m=1 FS(〈yt〉∞t=m). Let g(z1, z2) = 2z1 + z2z1. By Theorem 6.10 we have

that

{2
∑

t∈F1
xt + (

∑
t∈F2

yt)(
∑

t∈F3
xt) :

F1, F2, F3 ∈ Pf (N) and F1 < F2 < F3} ∈ 2p+ qp .

Thus this set has a nonempty intersection with A.
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(b) ⇒ (a). Let p and q be idempotents in (βN,+) and suppose that A /∈ 2p+pq.
By Theorem 6.14 there exist sequences 〈xn〉∞n=1 and 〈yn〉∞n=1 in N such that

{2
∑

t∈F1
xt + (

∑
t∈F2

yt)(
∑

t∈F3
xt) :

F1, F2, F3 ∈ Pf (N) and F1 < F2 < F3} ⊆ N \A .

But then A ∩ (N \A) 6= ∅, a contradiction.
(b) ⇒ (c). Use Theorem 3.19 as in the proof of Theorem 3.20.
(c) ⇒ (b). This is trivial. �

We now turn our attention to ∆n sets in N, developing some strong contrasts with
IPn sets. Recall that by Corollary 5.6, if A ⊆ N and d(A) > 0, then A−A is a ∆n∗

set for each n ∈ N. Further A−A = {x ∈ N : A∩(A−x) 6= ∅}. We have by Lemma
4.12 that if B ⊆ N and d(B) > 0, then {x ∈ N : d

(
B ∩ (B − x) ∩ (B − 2x)

)
> 0}

is an IP∗ set. We shall see in Corollary 6.19 that for each n ∈ N, there is a subset
B ⊆ N such that d(B) > 0 and {x ∈ N : B ∩ (B − x) ∩ (B − 2x) 6= ∅} is not a ∆n∗

set.
The construction used in Theorem 6.18 is a minor modification of a construction

in [12, pp. 177-178]. Therein we let T = R/Z, representing the points of T by
elements of [0, 1). Given θ ∈ [0, 1), we let ||θ|| = min{θ, 1 − θ}. Further, given
θ, φ ∈ [0, 1), θ+φ denotes the addition in T, that is, the element of [0, 1) congruent
to the ordinary sum mod 1.

Lemma 6.16. Let α be an irrational element of [0, 1), let β ∈ (0, 1), and let
0 < δ < ε. For each m ∈ N, there exists n ∈ N with n > m such that ||n2α−β|| < ε
and ||nα|| < δ.

Proof. Define a transformation T of T × T by T (θ, φ) = (θ + α, θ + φ). Let µ =
min{δ, ε−δ

2 }. By [12, Lemma 1.25] {Tn(0, 0) : n ∈ N} is dense in T × T and

for n ∈ N, Tn(0, 0) = (nα,
(
n
2

)
α). Pick n > m such that ||nα|| < µ and

||
(
n
2

)
α− β

2 || < µ. Then ||n2α− β|| ≤ ||(n2 − n)α− β||+ ||nα|| < ε− δ + δ. �

Lemma 6.17. Let (X,B, µ) be a probability measure space, let a > 0, and assume
that for each n ∈ N, An ∈ B and d(An) = a. Then there exists C ⊆ N such that
d(C) > 0 and for any F ∈ Pf (C), µ(

⋂
n∈F An) > 0.

Proof. [2, Theorem 1.1]. �

Theorem 6.18. Let k ∈ N. There exist a set B ⊆ N such that d(B) > 0 and an
increasing sequence 〈st〉∞t=1 in N such that{ ∑

t∈F jtst : F ∈ Pf (N) , |F | = k, and each jt ∈ {1,−1}
}
∩

{n ∈ N : d
(
B ∩ (B − n) ∩ (B − 2n)

)
6= ∅} = ∅ .

Proof. Let ε = 1
12+2k2 . Choose s1 ∈ N such that ||s21α − 1

2k || < ε. Inductively,
having chosen increasing s1, s2, . . . , st, choose by Lemma 6.16 st+1 > st such that

||s2t+1α−
1
2k
|| < ε and ||st+1α|| <

ε

st
.
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(So for m ∈ {1, 2, . . . , t}, ||smst+1α|| < ε.) Then, for any F ∈ Pf (N) with |F | = k,
and any choice of jt ∈ {1,−1} for t ∈ F we have

||(
∑

t∈F jtst)2α− 1
2 || ≤

∑
t∈F ||s2tα− 1

2k ||+
∑
{||2smstα|| : m, t ∈ F and m 6= t}

< kε+ (k2 − k)ε

= k2ε .

Now let T× T have normalized Lebesgue measure µ, so that µ(T× T) = 1, and
let T be the transformation of T × T defined in the proof of Lemma 6.16. Let
A = {(θ, φ) ∈ T× T : ||θ|| < ε and ||φ|| < ε}. Then µ(A) = 4ε2 > 0.

Let D = {n ∈ N : A∩ T−n[A]∩ T−2n[A] 6= ∅}. Then as shown in [12, page 178],
if n2 ∈ D, then ||n2α|| < 6ε. We claim that

D ∩
{ ∑

t∈F jtst : F ∈ Pf (N) , |F | = k, and each jt ∈ {1,−1}
}

= ∅ .

Indeed, suppose that n is in this intersection. Then as we saw above, ||n2α− 1
2 || <

k2ε while ||n2α|| < 6ε. So 1
2 < (k2 + 6)ε = 1

2 , a contradiction.
Now pick by Lemma 6.17 a set B ⊆ N such that d(B) > 0 and for any F ∈ Pf (B),

µ(
⋂

n∈F T−n[A]) > 0. We claim that B is as required. So suppose instead that
we have n ∈ N, F ∈ Pf (N) such that |F | = k and for each t ∈ F , jt ∈ {−1, 1},
n =

∑
t∈F jtst, and B∩(B−n)∩(B−2n) 6= ∅. Pick x ∈ B∩(B−n)∩(B−2n) and

pick y ∈ T−x[A] ∩ T−n−x[A] ∩ T−2n−x[A]. Then T x(y) ∈ A ∩ T−n[A] ∩ T−2n[A],
so n ∈ D, a contradiction. �

Corollary 6.19. Let n ∈ N. There is a set B ⊆ N such that d(B) > 0 and
{x ∈ N : B ∩ (B − x) ∩ (B − 2x) 6= ∅} is not a ∆n∗ set.

Proof. In Theorem 6.18, let k = 2n. Given F ∈ Pf (N) with |F | = k, let t1, t2, . . . , tk
be the elements of F in increasing order and for i ∈ {1, 2, . . . , k}, let jti

= (−1)i. �

Recall that by Lemma 3.13, if p ∈ N∗, then −p + p ∈ DR(N). So the next
corollary provides a contrast between DR(N) and PR.

Corollary 6.20. There exists p ∈ N∗ such that −p+ p /∈ PR2.

Proof. In Theorem 6.18 let k = 2 and pick B ⊆ N and an increasing sequence
〈st〉∞t=1 in N such that d(B) > 0 and whenever r < t,

st − sr /∈ {n ∈ N : d
(
B ∩ (B − n) ∩ (B − 2n)

)
6= ∅} .

Pick p ∈ N∗ such that {st : t ∈ N} ∈ p. Then by Lemma 3.10,

C = {st − sr : r < t} ∈ −p+ p .

Thus −p+ p /∈ PR2. �

As our final contrast between IPn sets and ∆n sets, we show, as promised, that
there is no relationship at all between ∆n sets and ∆k sets when n 6= k. We fix the
following notation for the rest of this section.

Definition 6.21. Let g < k ≤ r in ω. Let

Ar,k,g = {
∑k

i=g+1(2
rm(i)+i − 2rn(i)+i) : n(g + 1),m(g + 1), . . . , n(k),m(k) ∈ N

and n(g + 1) < m(g + 1) < n(g + 2) < . . . < n(k) < m(k)} .

We have immediately that Ar,k,g is a ∆k−g set in (N,+). Notice also that any



QUOTIENT SETS AND DENSITY RECURRENT SETS 31

member of Ar,k,g has a binary expansion with exactly k− g blocks of 1’s, and each
of these blocks has length divisible by r.

Lemma 6.22. Let g < k ≤ r in ω and let v > k − g. Then Ar,k,g is not a ∆v set.

Proof. It suffices to show that there do not exist a ∈ N and an increasing sequence
〈xi,t〉∞t=1 for each i ∈ {1, 2, . . . , k − g} such that

{a+
∑k−g

i=1 (xi,m(i) − xi,n(i)) : n(1),m(1), n(2), . . . , n(k − g),m(k − g) ∈ N
and n(1) < m(1) < n(2) < . . . < n(k − g) < m(k − g)} ⊆ Ar,k,g

so suppose we have such a and such sequences. Pick l1 ∈ N such that 2l1 > a. Pick
n(1) < m(1) such that x1,n(1) ≡ x1,m(1) (mod 2l1 +1). Given i ∈ 1, 2, . . . , k − g − 1
and m(i), pick li+1 such that 2li+1 > xi,m(i) and pick n(i + 1) and m(i + 1) such
that m(i) < n(i+ 1) < m(i+ 1) and

xi+1,n(i+1) ≡ xi+1,m(i+1) (mod 2li+1 + 1) .

Then the binary expansion of a+
∑k−g

i=1 (xi,m(i)−xi,n(i)) has at least k−g+1 blocks
of 1’s so a+

∑k−g
i=1 (xi,m(i) − xi,n(i)) /∈ Ar,k,g. �

Lemma 6.23. Let g < k ≤ r in ω with k − g > 1. Then Ar,k,g is not a ∆1 set.

Proof. Suppose that we have an increasing sequence 〈yt〉∞t=1 in N such that

{ys − yt : s, t ∈ N and t < s} ⊆ Ar,k,g .

For each t ∈ N \ {1}, pick n(t, g+ 1),m(t, g+ 1), n(t, g+ 2), . . . , n(t, k),m(t, k) ∈ N
such that n(t, g + 1) < m(t, g + 1) < n(t, g + 2) < . . . < n(t, k) < m(t, k) and
yt−y1 =

∑k
i=g+1(2

rm(t,i)+i−2rn(t,i)+i). We may presume by thinning the sequences
that for each i ∈ {g + 1, g + 2, . . . , k}, the sequence 〈n(t, i)〉∞t=2 is either constant
or strictly increasing and the sequence 〈m(t, i)〉∞t=2 is either constant or strictly
increasing. Further, if 〈n(t, i)〉∞t=2 is constant, so are the sequences 〈n(t, j)〉∞t=2 and
〈m(t, j)〉∞t=2 for all j < i. And if 〈m(t, i)〉∞t=2 is constant, so are the sequences
〈n(t, j)〉∞t=2 for j ≤ i and 〈m(t, j)〉∞t=2 for j < i. We also know that the sequence
〈m(t, k)〉∞t=2 is strictly increasing.

Therefore we must have either

(1) there is l ∈ {g + 1, g + 2, . . . , k} such that 〈m(t, l)〉∞t=2 is strictly increasing
and 〈n(t, j)〉∞t=2 is constant for j ≤ l and 〈m(t, j)〉∞t=2 is constant for j < l,
if any; or

(2) there is l ∈ {g + 1, g + 2, . . . , k} such that 〈n(t, l)〉∞t=2 is strictly increasing
and 〈n(t, j)〉∞t=2 and 〈m(t, j)〉∞t=2 are constant for j < l, if any.

Assume first that (1) holds. Pick t such that m(t, l) > m(2, k). Then

yt − y2 =
∑k

i=l+1(2
rm(t,i)+i − 2rn(t,i)+i) + (2rm(t,l)+l − 2rm(2,k)+k)

+
∑k

i=l+1(2
rn(t,i)+i − 2rm(t,i−1)+i−1) .

Since each block of 1’s in the binary expansion of yt − y2 has length divisible by r,
by considering the term 2rm(t,l)+l − 2rm(2,k)+k, we conclude that l = k. But then,
yt − y2 = 2rm(t,l)+l − 2rm(2,r)+k, so there is only one block of 1’s in the binary
expansion of yt − y2, while k − g > 1, a contradiction.
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Now assume that (2) holds. Pick t such that n(t, l) > m(2, k). Then

yt − y2 =
∑k

i=l+1(2
rm(t,i)+i − 2rn(t,i)+i) + (2rm(t,l)+l − 2rn(t,l)+l − 2rm(2,k)+k)

+
∑k

i=l+1(2
rn(t,i)+i − 2rm(t,i−1)+i−1) + 2rn(2,l)+l .

Then the binary expansion of yt − y2 has 2(k − l) + 3 blocks of 1’s, one of which
has length 1, so yt − y2 /∈ Ar,k,g. �

Lemma 6.24. Let i ≤ r in N and let 〈yt〉∞t=1 be an increasing sequence in N. If
{yb − ya : a, b ∈ N and a < b} ⊆ {2rm+i − 2rn+i : m,n ∈ N and n < m} = Ar,i,i−1,
then there is some d ∈ Z such that

{
t ∈ N : yt ∈ {2rm+i + d : m ∈ N}

}
is infinite.

Proof. For each t ∈ N \ {1} pick n(t) < m(t) in N such that yt − y1 = 2rm(t)+i −
2rn(t)+i. By thinning the sequences we may assume that the sequence 〈m(t)〉∞t=2

is strictly increasing and the sequence 〈n(t)〉∞t=2 is either strictly increasing or con-
stant. But if 〈n(t)〉∞t=2 were strictly increasing, we could pick t such that n(t) > m(2)
so that yt − y2 = 2rm(t)+i − 2rn(t)+i − 2rm(2)+i + 2rn(2)+i, a number whose binary
expansion has three blocks of 1’s and is thus not in Ar,i,i−1. Thus we have some
c ∈ N such that for each t ∈ N \ {1}, n(t) = c and so yt = 2rm(t)+i + d where
d = y1 − 2rc+i. �

Theorem 6.25. Let g < k ≤ r in ω and let v ∈ N. Assume that for each j ∈
{1, 2, . . . , v}, 〈yj,t〉∞t=1 is an increasing sequence in N and

{
∑v

j=1(yj,b(j) − yj,a(j) : a(1), b(1), a(2), . . . , a(v), b(v) ∈ N
and a(1) < b(1) < a(2) < . . . < a(v) < b(v)} ⊆ Ar,k,g .

Then v = k− g and for each j ∈ {1, 2, . . . , v} there exists dj ∈ Z such that {t ∈ N :
yj,t ∈ {2rm+g+j + dj : m ∈ N}

}
is infinite. In particular, if v 6= k − g, then Ar,k,g

is not a ∆v set.

Proof. We have by Lemma 6.22 that if v > k− g, then Ar,k,g is not a ∆v set. Thus
we shall assume that v ≤ k − g and prove the statement by induction on k − g.
Assume first that k − g = 1, so that v = 1 and Lemma 6.24 applies.

Now assume that k − g > 1 and the statement holds for smaller values. We
claim that for each t < s in N, there exist u(t, s) ∈ {1, 2, . . . , v− 1} and n(t, s, 1) <
m(t, s, 1) < n(t, s, 2) < . . . < n

(
t, s, u(t, s)

)
< m

(
t, s, u(t, s)

)
in N such that y1,s −

y1,t =
∑u(t,s)

i=g+1(2
rm(t,s,i)+i − 2rn(t,s,i)+i). To this end let t < s be given and pick

l ∈ N such that 2l > y1,s − y1,t. For j ∈ {2, 3, . . . , v} pick a(j) and b(j) such
that yj,a(j) ≡ yj,b(j) (mod 2l+1) and s < a(2) < b(2) < . . . < a(v) < b(v). Then∑v

j=2(yj,b(j)−yj,a(j))+(y1,s−y1,t) =
∑k

i=g+1(2
rm(i)+i−2rn(i)+i) for some n(g+1) <

m(g + 1) < n(g + 2) < . . . < n(k) < m(k). The right hand side of this equation
has a binary expansion consisting of k − g blocks of 1’s and the binary expansion
of the left hand side has a 0 ocurring between the expansion of (y1,s− y1,t) and the
expansion of

∑v
j=2(yj,b(j) − yj,a(j)). So u(t, s), n(t, s, j), and m(t, s, j) must exist

as claimed.
By Ramsey’s Theorem, there must exist some infinite B ⊆ N and some u ∈

{1, 2, . . . , v − 1} such that for all t < s in B, u(t, s) = u. Then {y1,s − y1,t : s, t ∈
B and t < s} ⊆ Ar,u,g so by Lemma 6.23 we must have that u = g + 1. Further,
by Lemma 6.24, we may pick d1 such that {t ∈ N : y1,t ∈ {2rm+g+1 + d1 : m ∈ N}

}
is infinite.
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Now fix t < s in B and pick l such that 2l > y1,s−y1,t. By thinning the sequences
〈yj,w〉∞w=1 for j ∈ {2, 3, . . . , v} we may presume that yj,w ≡ yj,z (mod 2l+1) for all
w and z. We claim that

{
∑v

j=2(yj,b(j) − yj,a(j) :a(2), b(2), a(3), . . . , a(v), b(v) ∈ N
and s < a(2) < b(2) < a(3) . . . < a(v) < b(v)} ⊆ Ar,k,g+1 .

To this end, let a(2) < b(2) < . . . < a(v) < b(v) be given with s < a(2). Pick
n(g + 1) < m(g + 1) < . . . < n(k) < m(k) such that

(y1,s − y1,t) +
∑v

j=2(yj,b(j) − yj,a(j)) =
∑k

i=g+1(2
rm(i)+i − 2rn(i)+i) .

Then y1,s − y1,t = 2rm(g+1)+g+1 − 2rn(g+1)+g+1 so∑v
j=2(yj,b(j) − yj,a(j)) =

∑k
i=2(2

rm(i)+i − 2rn(i)+i) ∈ Ar,k,g+1

as claimed. By the induction hypothesis v−1 = k− (g+1) and for j ∈ {2, 3, . . . , v}
we may pick dj such that {t ∈ N : yj,t ∈ {2rm+g+j + d : m ∈ N}

}
is infinite. �

We see in the following corollary that we have sets whose closure contains almost
all of the semigroup generated by {−p+ p : p ∈ N∗}.

Corollary 6.26. Let k ≤ r in N and let B = N\Ar,k,0. Let T be the subsemigroup
of (βN,+) generated by {−p+ p : p ∈ N∗}. Then all members of T are in B except
those of the form

∑k
i=1(−pi +pi) where for each i ∈ {1, 2, . . . , k} there exists di ∈ Z

such that {2rm+i + di : m ∈ N} ∩ N ∈ pi. That is

T \B =
{ ∑k

i=1(−pi + pi) : (∀i ∈ {1, 2, . . . , k})
(
pi ∈ N∗ and

(∃di ∈ Z)({2rm+i + di : m ∈ N} ∩ N ∈ pi)
)}
.

Proof. First assume that we have v ∈ N and for each i ∈ {1, 2, . . . , v} some pi ∈ N∗
such that

∑v
i=1 ∈ T \ B. By Theorem 6.25, v = k. Let j ∈ {1, 2, . . . , k} and

suppose that for all d ∈ Z, {2rm+j + d : m ∈ N} ∩ N /∈ pj . For t ∈ N, let
Bj,t = N \

⋃t
d=−t{2rm+j + d : m ∈ N}. For i ∈ {1, 2, . . . , k} \ {j} and t ∈ N

let Bi,t = N. Pick by Lemma 5.3 for each i ∈ {1, 2, . . . , k} an injective sequence
〈yi,t〉∞t=1 in N such that for each t ∈ N, yi,t ∈

⋂t
l=1Bi,l and

{
∑k

i=1(yi,b(i) − yi,a(i)) : a(1)bm(1), a(2), . . . , a(k),m(k) ∈ N
and a(1) < b(1) < a(2) < . . . < a(k) < b(k)} ⊆ Ar,k,0 .

Pick by Theorem 6.25 some dj ∈ Z such that
{
t ∈ N : yj,t ∈ {2rm+j +dj : m ∈ N}

}
is infinite. This is a contradiction, since for all t ≥ dj , yj,t /∈ {2rm+j + dj : m ∈ N}.

Now assume that for all i ∈ {1, 2, . . . , k} we have pi ∈ N∗ and di ∈ Z such that
{2rm+i + di : m ∈ N} ∩ N ∈ pi and suppose that

∑k
i=1(−pi + pi) ∈ B. For each

i ∈ {1, 2, . . . , k} and each t ∈ N, let Bi,t = {2rm+i + di : m ∈ N} ∩ N. Pick by
Lemma 5.3 for each i ∈ {1, 2, . . . , k} an injective sequence 〈yi,t〉∞t=1 in N such that
for each t ∈ N, yi,t ∈

⋂t
j=1Bi,j and

{
∑k

i=1(yi,b(i) − yi,a(i)) : a(1)bm(1), a(2), . . . , a(k),m(k) ∈ N
and a(1) < b(1) < a(2) < . . . < a(k) < b(k)} ⊆ B .

In particular,
∑k

i=1(yi,2i − yi,2i−1) ∈ B. We may presume that each 〈yi,t〉∞t=1 is
increasing. For i ∈ {1, 2, . . . , k} pick m(i) and n(i) such that yi,2i = 2rm(i)+i + di
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and yi,2i−1 = 2rn(i)+i+di. Then
∑k

i=1(yi,2i−yi,2i−1) =
∑k

i=1(2
rm(i)+i−2rn(i)+i) ∈

Ar,k,0, a contradiction. �

7. Summary of results about the classes

In this section we list the various classes of subsets of S and classes of subsets of
βS which we have discussed, and summarize the main results about each and the
relations among them.

Subsets of S

Density intersective set
• Defined for left amenable semigroups. (Definition 3.1.)
• Implied by density recurrent. (Trivial.)
• Same as density recurrent set and set of measurable recurrence if S is

countable and left amenable. (Theorem 3.3.)

Density recurrent set
• Defined for left amenable semigroups. (Definition 3.1.)
• Implies density intersective. (Trivial.)
• Same as density intersective set and set of measurable recurrence if S is

countable and left amenable. (Theorem 3.3.)

Set of measurable recurrence
• Defined for arbitrary semigroups. (Definition 3.2.)
• Same as density intersective set and density recurrent set if S is countable

and left amenable. (Theorem 3.3.)

IPn set
• Defined for arbitrary semigroups. (Definition 4.1.)
• A is IPn set if and only if there exist idempotents p1, p2, . . . , pn in βS such

that A ∈ p1p2 · · · pn. (Theorem 4.3.)
• Implies IPn+1. (Theorem 4.7.)
• In (N,+), strictly stronger than IPn+1. (Theorem 4.8.)

IPn* set
• Defined for arbitrary semigroups. (Definition 4.1.)
• A is IPn set if and only if for all idempotents p1, p2, . . . , pn in βS, A ∈
p1p2 · · · pn. (Corollary 4.4.)

• For left amenable and left cancellative S, if A ⊆ S and d(A) > 0, then
AA−1 is IPn∗. (Corollary 4.5.)

• Two combinatorial characterizations. (Theorem 4.9.)
• In (N,+), strictly weaker than EIP2∗ for n ≥ 2. (Theorem 4.11.)
• For countable abelian groups, a recurrence condition sufficient to guarantee

IPn∗. (Theorem 4.13.)

EIPn* set
• Defined for arbitary semigroups. (Definition 4.10.)
• Implies IPn∗. (Trivial.)
• In (N,+), EIP2∗ strictly stronger than IPn∗ for some n ≥ 2. (Theorem

4.11.)
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• For countable abelian groups, a recurrence condition sufficient to guarantee
IPn∗. (Theorem 4.16.)

∆n set
• Defined for groups and (N,+). (Definition 5.1.)
• A is IPn set if and only if there exist p1, p2, . . . , pn in S∗ such that A ∈∏n

i=1(p
−1
i pi). (Theorem 5.4.)

• Partition regular. (Corollary 5.7.)
• For each n, there is a subset of (N,+) which is a ∆n set but not a ∆k set

for any k 6= n. (Theorem 6.25.)

∆n∗ set
• Defined for groups and (N,+). (Definition 5.1.)
• A is IPn∗ set if and only if for all p1, p2, . . . , pn in S∗, A ∈

∏n
i=1(p

−1
i pi).

(Corollary 5.5.)
• If S is an amendable group or (N,+), and d(A) > 0, then AA−1 is ∆n∗ for

each n. (Corollary 5.6.)
• For n ∈ N there is a set B ⊆ N such that d(B) > 0 and
{x ∈ N : B ∩ (B − x) ∩ (B − 2x) 6= ∅} is not a ∆n∗ set. (Theorem 6.19.)

Polynomial n-recurrent set
• Defined for (N,+). (Definition 6.4.)
• Examples. (Corollary 6.11 and Theorem 6.13.)

Subsets of βS

DI(S)
• Defined for left amenable semigroups. (Definition 3.1.)
• Contains DR(S). (Trivial.)
• Equal to DR(S) if S is countable and left amenable. (Corollary 3.4.)
• If d(A) > 0, then contained in AA−1. (Theorem 3.15.)

DR(S)
• Defined for left amenable semigroups. (Definition 3.1.)
• Contained in DI(S).
• Equal to DI(S) if S is countable and left amenable. (Corollary 3.4.)
• Contains Γ<ω(S) if S left cancellative and left amenable. (Lemma 3.8.)
• Properly contains Γ<ω(N,+)). (Theorem 3.9.)
• If S is amenable group or (N,+), then includes p−1p for all p ∈ S∗. (Lemma

3.13.)
• If S is left cancellative, then is semigroup and includes q−1p for all q, p ∈
DR(S). (Theorem 3.14.)

• DR(N,+) is a left ideal of DR(N, ·). (Theorem 6.1.)

Γ(S)
• Defined for arbitrary semigroups. (Definition 4.1.)
• Is contained in Γ<ω(S). (Trivial.)
• Γ(N,+) not a semigroup. (Two paragraphs before Lemma 3.6.)

Γ<ω(S)
• Defined for arbitrary semigroups. (Definition 4.1.)
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• Contains Γ(S). (Trivial.)
• Is a semigroup if S is commutative. (Three paragraphs before Lemma 3.6.)
• Is contained in DR(S) if S left cancellative and left amenable. (Lemma

3.8.)
• Is properly contained in DR(N). (Theorem 3.9.)

PRn

• Defined for (N,+). (Definition 6.4.)
• Subsemigroup of (βN,+) containing the idempotents. (Theorem 6.5.)
• Closed under subtraction from the left. (Theorem 6.6.)
• Left ideal of (βN, ·). (Theorem 6.7.)
• There is p ∈ N∗ such that −p+ p /∈ PR2. (Corollary 6.20.)

PR
• Defined for (N,+). (Definition 6.4.)
• Subsemigroup of (βN,+) containing the idempotents. (Theorem 6.5.)
• Closed under subtraction from the left. (Theorem 6.6.)
• Left ideal of (βN, ·). (Theorem 6.7.)
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