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ABSTRACT. Let S be a left amenable semigroup. Say that a subset A of S is
large if there is some left invariant mean g on S with u(X4) > 0. A subset
B of S is density recurrent if and only if, whenever A is a large subset of
S, there is some z € B such that 71A N A is large. We show that the set
DR(S) of ultrafilters on S, every member of which is density recurrent, is a
compact subsemigroup of the Stone-Cech compactification 3S of S containing
the idempotents of 3S. If S is a group, we show that for every nonprincipal
ultrafilter p on S, p~'p € DR(S), where p—1 = {A~! : A € p}. We obtain
combinatorial characterizations of sets which are members of a product of k
idempotents and of sets which are members of a product of k elements of
the form p~lp for each k € N. We show that DR(N,+) has substantial
multiplicative structure. We show further that if A is a large subset of S, then
DR(S) € AA-1, where the quotient set AA™! = {z € S: (Jy € A)(zy €
A)}. For each positive integer n, we introduce the notion of a polynomial
n-recurrent set in N. (Such sets provide a generalization of the polynomial
Szemerédi Theorem.) We show that the ultrafilters, every member of which
is a polynomial n-recurrent set, are a subsemigroup of (8N, +) containing the
additive idempotents and a left ideal of (ON,-).

1. INTRODUCTION

Let A be a subset of the set N of positive integers. The upper asymptotic density
of A is defined by B
d(A) =lim sup |[AN{1,2,...,n}|/n,

n—oo

and the upper Banach density of A is defined by
AN,
d*(A) = lim sup M
n—oo  |In]
where the supremum is taken over all sequences of intervals (I,,)° ; with length
approaching infinity. More formally,

d*(A) = sup{a: (Vn € N)(Im > n)(Ja € N)(|JAN{a+1,a+2,...,a+m}| > a-m)}.

It has been known for some time that if either d(A) > 0 or d*(A) > 0, then the
difference set D(A) = {& —y : 2,y € A and = > y} has substantial algebraic
structure. In fact, for such results about D(A) it doesn’t matter whether one
assumes that d(A) > 0 or d*(A) > 0. The reason is, if d*(A) > 0, then there exists
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B C N such that d(B) > 0 and D(B) C D(A). And of course always d*(A) > d(A).
For example, it is shown in [4, Theorem 2.6], using some results from ergodic
theory, that given any function f : N — N there must exist a sequence (x,)> ;
so that {ZneF Gn - Tp, ¢ F' is a finite nonempty subset of N and for each n € F|
an € {1,2,...,f(n)}} U{Il,cpa% : F is a finite nonempty subset of N and for
eachn € F, a, € {1,2,..., f(n)}} C D(A).

We shall be concerned in this paper with quotient sets of large subsets of left
amenable semigroups. Given such a semigroup (S, -) and A C S, we define AA™! =
{r € §:(3z € A)(xz € A)}. (If the operation is denoted by + this becomes
A—A={zxeS:(3z€ A)(x + 2z € A)}.) The related quotient set

A'A={z e S:(Fzc A)(zx € A)}

would arise if we were dealing with right amenable semigroups. If A C N, then
one has A — A = D(A). We only occasionally assume that our semigroups are
commutative or countable.

We present results about quotient sets and the algebraic structure of the Stone-
Cech compactification 58S of S in Section 3. For example, it is a consequence of
Theorem 3.15 that if A C N, d*(A) > 0, k € N, p1,pa,...,pr are idempotents in
ON, and q1,¢2,...,q are any points in SN\ N, then A — A € p; + p2 + ... + px,
A-Ae(~q+q)+ (2 +q)+...+(—a +q), as well as any other sum of the
pi’s and (—g; + ¢;)’s in any order.

In Section 4 we characterize precisely those subsets of S which are members of a
product of a fixed number of idempotents. For example, a subset A of S is a member
of the product of two idempotents if and only if there exist sequences (z1,)52; and
(r2,¢)§2, in S such that all products of the form [[,c » #1,¢ [[;c 5 @2, are in A where
F and H are finite nonempty subsets of N and max F' < min H. We also obtain
combinatorial descriptions of those sets which are members of all products of the
form p1ps - - - pn, where each p; is an idempotent. We obtain the unsurprising result
that the strength of the assertion that A is a member of a product of n idempotents
decreases as n increases.

In Section 5, in the event S is a group or (N, 4), we characterize precisely those
subsets which are members of a product of a fixed number of elements of the form
p~'p.

In Section 6 we restrict our attention to N. We obtain the surprising result
that in (N, +), the assertion that A is a member of a sum of n terms of the form
—p+p for p € BN\ N has no relationship whatever to the corresponding statement
about k terms if k # n. We characterize there sets which are members of certain
“polynomials” (such as 2p + gp) whose terms are additive idempotents.

In this Section 6 we introduce the polynomial n-recurrent sets. A set B C N is
a polynomial n-recurrent set if and only if whenever A C N and d*(A) > 0 and
g1, 92, .- .,gn are polynomials with rational coefficients taking integers to integers
and 0 to 0, there exists k € B such that d* (AN, (—g:(k)+A)) > 0. For example
if g¢(x) = to and d*(A) > 0, then the definition tells us that there will exist length
n + 1 arithmetic progressions in A with increment taken from any polynomial n-
recurrent set. We show that the set of all ultrafilters, all of whose members are
polynomial n-recurrent sets is a subsemigroup of (6N, +). By [8, Theorem 7.3] it
contains the idempotents. We show that it is a left ideal of (8N, ), and is closed
under subtraction from the left.
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During the course of the paper we introduce several classes of subsets of S as
well as several classes of subsets of 35. In a final section we summarize the results
about these classes as well as relationships among these classes.

2. PRELIMINARIES

Given a semigroup S, let I (S) be the Banach space of bounded real valued
functions on S with the supremum norm. A mean on S is a member u of the dual
space 1o (S)* such that [|u|| = 1 and u(g) > 0 whenever g € Io(S) and for all
s €S, g(s) >0. A left invariant mean on S is a mean p such that for all s € S
and all g € 1,(S5), p(s-g) = u(g), where s- g = go Ag and Ag : S — S is defined by
As(t) = st. A semigroup S is left amenable if and only if there exists a left invariant
mean on S. In any left amenable semigroup, there is a natural notion of density
for subsets of S.

Definition 2.1. Let S be a left amenable semigroup and let A C S. Then
d(A) = sup{u(X4) : p is a left invariant mean on S}.

For an arbitrary set X, let P;(X) be the set of finite nonempty subsets of X. In
[10] Fglner established that any amenable group satisfies the Falner Condition.

(FO) (VF € Ps(9)) (Ve > 0) (3K € Ps(S5)) (Vs € F)(|sK \ K| < e |K])
In [11] Frey showed that any left amenable semigroup satisfies the Fglner condition.
(For a simplified proof see [19, Theorem 3.5].) Later, Argabright and Wilde [1]

showed that a left cancellative semigroup is left amenable if and only if it satisfies
the Strong Folner Condition.

(SFC) (VE € P#(S)) (Ve > 0) (3K € Ps(5)) (Vs € F) (|K \ sK| < e-|K])
Notice that for any finite K C S and any s € .5,
|K\ sK|+ |KNsK|=|K|>|sK|=|sK\ K|+ |KNsK]|

so |[K \ sK| > |sK \ K| and equality holds if s is left cancelable.

Argabright and Wilde also showed [1] that any semigroup satisfying SFC is
left amenable and that any commutative semigroup satisfies SFC. In particular,
any commutative semigroup is left amenable. (See [17, Section 7] for a simple
elementary proof that any commutative semigroup satisfies SFC.)

If the left amenable semigroup S is left cancellative, the Strong Fglner Condition
provides a method of calculation of density on S. We will use this theorem in the
proof of Theorem 3.22.

Theorem 2.2. Let S be a left amenable left cancellative semigroup. For A C S,
d(A) =sup{a € [0,1] : (VH € Ps(S)) (Ve > 0) (IK € Ps(5))
(Vse H)(|K\ sK|<e-|K|) and [ANK| > - |K|)}.
Proof. [16, Theorems 2.12 and 2.14]. O

Using Theorem 2.2 one easily shows that for the semigroup (N, +), and any
ACN, d(A) =d*(A). (See [17, Theorem 1.9].)

Given AC Sandz € S, z7'A = {y € S: xzy € A}. (There is no requirement
that S have an identity, nor, even if S does have an identity, that  have an inverse.)
We shall need the following simple fact.
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Theorem 2.3. Let S be a left amenable semigroup. Let A C S and let x € S.
Then d(x=1A) = d(A). If S is left cancellative, then also d(zA) = d(A).

Proof. Let p1 be a left invariant mean on S. Then pu(X,-14) = u(Xa0Ag) = p(Xa).
If S is left cancellative, then 2 'z A = A, so d(A) = d(z~ 'z A) = d(xA). O

We take the Stone-Cech compactification 5S of the discrete semigroup S to be
the set of ultrafilters on S. (An ultrafilter is a maximal filter. Alternatively, an
ultrafilter p on S may be identified with a {0, 1}-valued finitely additive measure
on P(S). The statement “u(A) =17 then corresponds to the statement “A € p”.)

Given AC S, A={pec 3S:Acp} Theset {A: AC S}is a basis for the open
sets (as well as a basis for the closed sets) of 55. We identify the principal ultrafilters
with the points of S and thus pretend that S C 5S. The operation - extends to
BS making (39, -) a right topological semigroup (meaning that for each p € 85 the
function p, : 35S — (3S defined by p,(¢) = ¢ - p is continuous) with S contained
in its topological center (meaning that for each x € S the function A, : 8S — 35
defined by A;(¢) = z - q is continuous). As is true of any compact Hausdorff right
topological semigroup, 85 has idempotents [9, Lemma 1]. If p,q € 35S and A C S,
one has that A € p- ¢ if and only if {v € S: 27 1A € q} € p. We let S* =55\ S.

See [15] for an elementary introduction to the algebraic structure of S.

3. QUOTIENT SETS AND DENSITY RECURRENT SETS

We begin by introducing the main object of study for this section. See [7] for
more information about density intersective sets, sets of density recurrence, and
their relation to other sets of recurrence.

Definition 3.1. Let S be a left amenable semigroup.

(a) Let B C S. Then B is density intersective if and only if whenever A C S
and d(A) > 0, there exists € B such that x71AN A # 0.

(b) Let B C S. Then B is a density recurrent set if and only if whenever A C S
and d(A) > 0, there exists € B such that d(x=1AN A) > 0.

(c) DI(S) ={p € BS : (VB € p)(B is density intersective)}.

(d) DR(S) ={p € 8S: (VB € p)(B is a density recurrent set)}.

We shall show in Theorem 3.14 below that if S is left cancellative, then DR(S)
is a subsemigroup of 3S. (And thus, by Corollary 3.4, if S is countable, then DZ(S)
is a subsemigroup of 8S5.) For that, we will need to show that DR(S) # 0. The
easiest way to do that is to show that DR(S) contains the idempotents of 3S.

We do not know in general whether every density intersective set is a set of
density recurrence. However for countable left amenable semigroups the notions
coincide, as we shall verify in Theorem 3.3. The proof involves the notion of a set
of measurable recurrence and is essentially contained in [7]. We present the details
for the convenience of the reader.

Definition 3.2. Let S be a semigroup and let B C S. Then B is a set of measur-
able recurrence if and only if for every probability space (X, B, i), every measure
preserving action (Tg)ges of S on X, and every A € B such that p(A) > 0, there
exists g € B such that u(A N T, '[A]) > 0. (The family (Ty),es is a measure
preserving action on (X, B, 1) provided that (1) each T, : X — X, (2) whenever
g €S and A e Bone has u(T, '[A]) = u(A), and (3) whenever g,h € S, one has
Tg o Th = Tgh~)
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Theorem 3.3. Let S be a countable left amenable semigroup and let B C S. The
following statements are equivalent.

(a) B is a density recurrent set.
(b) B is density intersective.
(¢) B is a set of measurable recurrence.
Proof. That (a) implies (b) is trivial.
That (b) implies (c) is an immediate consequence of [7, Theorem 2.2].
To see that (¢) implies (a), assume that B is a set of measurable recurrence and let
A C S such that d(A) > 0. Pick a left invariant mean p on S such that p(X4) > 0.
Pick by [7, Theorem 2.1] a probability space (X, B, ), a measure preserving action
(Ty)ges of S on X, and U € B such that for all g,h € S, v(T, U] N T,'U) =

1(Xg-14nn-14). Taking g = h we have that v(U) = v(T;'[U]) = p(Xg-14) =

1(Xa) > 0 so pick g € B such that v(UNT, '[U]) > 0. Pick any = € S and let
C=z"1AN(gz) A
Then T, ' [U N T, *U]] = T, ' [U] N T, U] so
0<v(UNT, U] =v(T; [UINT, ' [U]) = p(Xe) < d(C).
Thus 0 < d(C) =d(z7'(ANg™tA4)) =d(AngtA). O
Corollary 3.4. If S is a countable left amenable semigroup, then DR(S) = DI(S).
Definition 3.5. Let S be a semigroup.
(a) If {x,)2 is a sequence in S, then
FP(<J:TL>$LO:1) = {HnEF A S Pf(N)}v

where the products are taken in increasing order of indices.
(b) If m € N and (x,)7"_; is a finite sequence in S, then

FP((zn)7)) = {[Lep @n: 0 # F C{1,2,...,m}}

where the products are taken in increasing order of indices and
FPp({zn)my) = {Hpepan: 0 # F C{1,2,...,m}}

where in [, . » 2, the products are taken in decreasing order of indices.

(¢) T(S) = {p € BS : (VA € p) Bl )32y (FP((w,)32,) € A)}.
(d) Teu(S) = {p € BS : (VA € p)(vm € N)(Eawa) ) (FP({wa)y) € A)}.

If the operation in S is denoted by +, we write F.S((x,)52 ) instead of writing

FP((xn)5Z1)-
It is trivial that I'(S) C I',,(S). If S contains a sequence with distinct finite
products, then the inclusion is proper. (The sequence (x,)%2 ; has distinct finite

products provided that whenever F' and H are distinct members of P¢(N), one has
[licr 2t # Ilicyg 7. By [15, Lemma 6.31] any cancellative semigroup contains
a sequence with distinct finite products.) To verify this assertion, let (z,)5 ; be
a sequence with distinct finite products and let A = (J72 | FP({x >f:;n1,1). Then
there is no sequence (y,)2 ; with FP({y,)52,) C A. See the proof of Theorem 3.9
for the details of why this fact suffices.

It is an easy exercise to see that, if S is commutative, then ', (S) is a sub-
semigroup of 5S. (Let p,q € T'«,,(S). To see that pg € T',(S5), let A € pg and

let m € N. Since {x € S: 2714 € ¢} € p, pick (x,)"; such that FP((z,)™ ;) C
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{reS:z27tAeq}. Let B={y '4A:y € FP((x,)™,)}. Then B € ¢ so pick
(yn)™ 4 such that FP({y,)" ;) € B. Then FP((z,y,)n,) C A.)

On the other hand, by [15, Exercise 6.1.4] there exist idempotents p and ¢ in
(BN, +) such that ¢ +p ¢ T'(N,+). In particular, neither the set of idempotents
in (BN, +) nor I'(N, +) is a semigroup. (The proof outlined in [15, Exercise 6.1.4]
uses the algebraic structure of (8N, +), and establishes a stronger fact. If one
wants a more elementary proof that neither the set of idempotents in (SN, +)
nor I'(N, +) is a semigroup, take idempotents p € (-_, FS((227)¢2,) and ¢ €

Noo_y FS((227+1)ee ), which exist by [15, Lemma 5.11]. Show that
{3 ner 22"+ cc 22" F,G € P¢(N) and maxF <minG} € p+gq

but this set does not contain FS({x,),) for any sequence (z,)22; in N.)
It is an immediate consequence of [15, Theorem 5.12] that

I'(S) =ct{pepS:pp=p}.
Lemma 3.6. Let S be a left amenable semigroup and let A C S. If d(A) > L

n
and (x:)}_, is a sequence in S, then there exist i # j in {1,2,...,n} such that
d(ac;lAﬂx;lA) > 0. If S is left cancellative, then there existi # j in {1,2,...,n}

such that d(z;ANxz;A) > 0.

Proof. Given z € S, d(z7'A) = d(A) and, if S is left cancellative, then d(xA) =
d(A). Also, left invariant means are finitely additive. O

Lemma 3.7. Let S be a left amenable semigroup, let A C S, let n € N, assume that
d(A) > L, and let (x4)7_, be a sequence in S. There exists y € FPp((w¢)7—) such
that d(y"*AN A) > 0. If S is left cancellative, then there exists y € FP({x)" ;)
such that d(y=*AnN A) > 0.

Proof. For i € {1,2,...,n}, let z; = Hizlxt. By Lemma 3.6 pick i < j in
{1,2,...,n} such that d(z;lAﬂzj*lA) >0. Lety = ld_['Z:H_l. Then z;lAﬂzj*lA =
z7 ANy tA) sod(Any~tA) > 0.

Now assume that S is left cancellative. Fori € {1,2,...,n},let z; = Hi:l ;. By
Lemma 3.6 pick ¢ < jin {1,2,...,n} such that d(z;ANz;A) > 0. Let y = Hi:iﬂ Ty
Then y!ANA = z;l(ziA N z;A) and, by Theorem 2.3, d(z;l(ziA Nz;A)) =
d(z;ANz;A) > 0. O

As an immediate consequence of Lemma 3.7 we have the following.

Lemma 3.8. Let S be a left cancellative, left amenable semigroup. Then T'<,,(S) C
DR(S).

Proof. Let p € T',(S) and let B € p. To see that B is density recurrent, let A C S
such that d(A) > 0. Pick n € N such that d(A) > 1. Pick (z)7_, such that
FP({(z)? ;) C B and pick y € FP({z4)? ;) such that d(y=*AN A) > 0. O

We pause to observe that the inclusion in Lemma 3.8 can be proper.
Theorem 3.9. I',(N,+) C DR(N, +).

Proof. Let A = {n® : n € N}. By [12, Theorem 3.16], A is a set of measurable
recurrence. By [7, Theorem 2.7], sets of measurable recurrence are partition regular
(meaning that whenever the finite union of sets is a set of measurable recurrence,



QUOTIENT SETS AND DENSITY RECURRENT SETS 7

one of them must be a set of measurable recurrence). Thus by Theorem 3.3 and
[15, Theorem 5.7] there exists p € AN DR(N,+). By a special case of Fermat’s
Last Theorem, which has been known for a long time, A does not contain any
{IL‘l,JZQ,.Tl +$2} O

If Sis a group and p € S*, then p~! = {47! : A € p} is also in S*, where
A7l ={a7!:a € A}. Note however, that in this case by [15, Theorem 4.36], S*
is an ideal of 3S so p~!p is not the identity of S. If p € N*, then since N C Z,
—p={-A: A € p} € Z* Also, by [15, Exercise 4.3.5], N* is a left ideal of
(BZ,+) so if p € N* then —p + p € N*. This fact does not carry over to arbitrary
semigroups that are embeddable in a group. In fact, if S is a subsemigroup of G,
then S* is a left ideal of BG if and only if for every x € G, {y € S : xy ¢ S} is finite.
In particular, consider the commutative cancellative countable semigroup (Q:}'7 +)
of positive rationals with the discrete topology. If p € ﬁQI and

{QNn(1,1+¢€):e>0} Cp,

then —p+p ¢ (QF)* because {r € Q: 2 <0} € —p +p.
Of course, when we say something like “assume that S is a group or (N, +) and
let p € S*”, any reference to p~!p should be interpreted as —p + p if S = (N, +).
In the following lemma, the computation of p~!p is done in SG. It may or may
not be the case that p~!p € 58S.

Lemma 3.10. Let S be a subsemigroup of a group G, let {x,)2, be an injective
sequence in S, let p € S* such that {x,, : n € N} € p, and let a € N. Then

{z; 'z, :k,neNanda<k<n}ep'p.
Proof. Let A= {z;'x, :k,n€Nand a <k < n}. Then
{z;':keNanda<k}C{yeS:y tAecp}
so A€ pip. (]

All of our results about p~!p deal with S as either a group or (N,+). We are
not concerned with pp~! because, on the one hand, if S is a group, then pp~! =
(p~H~1p~L, so is already included. If S = (N, +), then by [15, Exercise 4.3.5],
p+(-p) ¢ N*.

Lemma 3.11. Let S be a subsemigroup of a group G, letp € S*, let A C S, and let
(By)$2, be a sequence of members of p. If A € p~ip, then there exists an injective
sequence ()52, in S such that for each t, x; € ﬂ;:1 Bj, and

{z; 'z, k,neNandk <n} CA.

Proof. Let C = {x € S : 27'A € p}, and let D = {z € S : zA € p}. Since

A € p~'p, we have that C € p~! and so D € p. Pick z; € DN B; and inductively,

given n > 1 and having chosen (x3)}~] with each x; € D, pick

x, €DN ﬂz;ll erk AN p—y Be \ {z1,22, ..., 2n_1}.
(Since D NN\7Z; 2 AN;_, Bx € p, it is infinite.) O

Lemma 3.12. (1) Let S be a group and let A C S. There exists p € S* such
that A € p~'p if and only if there exists an injective sequence (x,)°%; in S
such that {z; 'z, 1 k,n € N and k < n} C A.
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(2) Let A CN. There exists p € N* such that A € (—p+ p) if and only if there
exists an increasing sequence (Xn,)02q in N such that
{xn—2k:k,ne€Nand k <n} CA.

Proof. (1). Necessity. Pick p € S* such that A € p~!p an apply Lemma 3.11.

Sufficiency. Pick p € S* such that {z,, : n € N} € p and apply Lemma 3.10.

(2). Necessity. We have that p € Z* so by (1) there is an injective sequence
()22 in Z such that {x, — 2 : k,n € Nand k < n} C A. Since A C N, the
sequence (x,)5% ; is increasing and so must be eventually in N.

Sufficiency. By (1) pick p € Z* such that A € (—p+p). Thenp € N* or p € —N*.
Since A € (—p+p) we have that (—p+p) € N* and therefore by [15, Exercise 4.3.5],
p e N*. [l

Lemma 3.13. Let S be an amenable group or (N,+) and let p € S*. Then p~'p €
DR(S).

Proof. Let B € p~!p and pick by Lemma 3.12 an injective sequence (,,)5°; such
that {z; 'z, : k,n € Nand k < n} C B. Let A C S such that d(A) > 0 and pick
n € N such that d(A) > L. Pick by Lemma 3.6 i < j in {1,2,...,n} such that
d(z;ANz;A) > 0. Now acj_l(xiA Nxz;A) = AN xj_lxiA, d(xj_l(a:iA Nxz;A)) =
d(z;ANz;A) >0, and :cj_lzviA = (v; 'z;) 1A O

Theorem 3.14. Let S be a left cancellative left amenable semigroup. Then DR(S)
is a subsemigroup of BS containing the idempotents of 5S. If S is a group or
(N, +), then DR(S) contains all elements of the form p~tp for p € S* as well as
all elements of the form q~'p for q,p € DR(S).

Proof. By Lemma 3.8 we have DR(S) contains the idempotents of 35, and in
particular is nonempty. Let p,q € DR(S). To see that pg € DR(S), let B € pq. To
see that B is density recurrent, let A C .S with d(A) > 0. Let

C={zxecS:27'Beq}.

Then C € p so pick x € C such that d(z7*ANA) > 0 and let D =27t AN A. Since
27 1B € q, pick y € 7B such that d(y='D N D) > 0. Then zy € B so it suffices
to show that y= DN D C (xy)"*AN A. To this end, let z € y~!D N D. Then
ze€DCAand z €y~ 'D Cy Yz 1A) so zyz € A and therefore z € (zy) " LANA.

Now assume that S is a group or (N, +). The first part of the assertion is precisely
Lemma 3.13. Now assume that q,p € DR(S) and let B € ¢~ !p. Let A C S with
d(A) > 0. Let C = {x € S: zB € p}. Then C € ¢ so pick ¢ € C such that
d(z7*ANA) > 0. Now ANzA = z(z7*AN A) so by Theorem 2.3, d(ANzA) > 0.
Let D = ANzA. Since 2B € p, pick y € B such that d(y~'D N D) > 0. Then
rlye Bandy 'DNDC (z71y)"tAN A. O

We would like to have Theorem 3.14 without the assumption that S is left
cancellative. Products in decreasing order are produced by Lemma 3.7 without the
left cancellative assumption. Such products are associated with 35S when it is taken
to be left topological, rather than right topological as we have done here. But if
we made that choice, then in the proof above we would need d(Az~1 N A) > 0 and
d(Dy='n D) > 0.

Theorem 3.15. Let S be a left amenable semigroup and let A C S such that
d(A) > 0. Then DI(S) C AA~1. In particular DR(S) C AA~1L.
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Proof. Let p € DI(S), suppose that AA~! ¢ p, and let B =S\ AA~!. Then B € p
so pick z € B such that 2 7'ANA # (). Pick z € 27 'ANA. Then 2 € AA™!, a
contradiction. O

We have then immediately the following Ramsey Theoretic corollary. Given
F,H € P;(N) we write F' < H to mean maxF < minH. Recall that we take
products in increasing order of indices.

Corollary 3.16. Let S be a left amenable and left cancellative semigroup and let
A C S such that d(A) > 0. Let m € N and for each i € {1,2,...,m}, let (z; )22,
be a sequence in S. Then

{I1% Tier, @iz each Fy € Pp(N) and Fy < Fo < ... < F}NAA™L £0.
Proof. For each i € {1,2,...,m}, pick by [15, Lemma 5.11] an idempotent
pi € Moty FS((wie)i,) -

By Theorems 3.14 and 3.15 we have that p1ps - - - p, € DR(S) C AA~L. Tt suffices
to show that if

B, ={[1:~, [licr, @it :each F; € Py(N) and Fy < Fy < ... < Fp},

then B,, € p1p2 - - pm. We do this by induction on m.

For m = 1, we have that B, = FP((x1+){2;) € p1. So let m € N and assume
that By, € pip2- - pm. We claim that B, C {z € S : x’leH € Pm+1} so that
Biy1 € p1p2- - Pmy1- So let ¢ € B, and pick F} < Fy < ... < F,, such that
v = [[iZ [liep, @it Let v = max Fp,. Then FP((%m414)2,41) € Pmt1 and
FP((m41,0)41) € @ B O

We observe that Corollary 3.16 is obtainable directly from Lemma 3.7 without
using 3S. Notice the similarities with the proof of Theorem 3.14.

Alternate Proof. We show by induction on m that there exist ] < Fy < ... < F,,
in Py(N) such that, if y = [T;2 [[,ep, @i, then d(ANy~"A) > 0 (and in particular
y € AA™). The case m = 1 follows immediately from Lemma 3.7. So let m € N
and assume that we have F} < Fy < ... < F,, in P#(N) such that d(Anz"1A) >0
where z =[], [licr, ®it Let D= AN 271A, let r = max F},,, and apply Lemma
3.7 to D and the sequence (Tp41,4)72, 1. Pick F,p 1 € Pp(N) with min Fy, .y > 7
such that if w = [[,cp Tma1t, then d(D Nw™tD) > 0. Then DNw™'D C

m1

ANw ' (z71A) = AN (z2w) A and zw = [} [licr, it O

In a similar vein, if G is a group, one has by Theorem 3.14 that p~1p € DR(G)
for all p € G*. Consequently, one obtains corollaries such as the following.

Corollary 3.17. Let G be an amenable group and let A C S such that d(A) > 0.
Let (x,)22 1 and (y,)$2, be injective sequences in N. Then

{z; 'z, [Ticp vt :ksneN, FePs(N),and k <n <min F} N AA™ £ 0.
Proof. Pick ¢ € G* such that {z; : t € N} € ¢ and pick an idempotent p €
Moy FS((y)2,,). By Theorems 3.14 and 3.15 we have that ¢ 'gp € DR(G) C
AA-L. Let B = {a} 'z, [licp vt : k,n € N, F € PgN,andk < n < min F}.
It suffices to show that B € ¢ lgp. Let C = {x;lxn :k,n € Nand k < n}. By

Lemma 3.10 we have C' € ¢~ !¢ so it suffices to show that C C {w € G : w™'B € p}.
So let k < n in N. Then FP((y;)$2,, 1) C (x3 '2,) "' B. O
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Again, we see that there is an alternative proof not using SG.

Alternate Proof. By Lemma 3.6 pick k¥ < n in N such that d(zxA Nz, A) > 0.
Then d(A Nz, 'z A) > 0. Let D = AN a,zpA. Pick by Lemma 3.7 some
F € Py(N) with min F > n such that if w = [[,cp w, then d(DNw™'D) > 0.
Then DNw ™D C Anw ez toyA=AN (x,?lzn [Licr yy) LA. O

We obtained in Corollaries 3.16 and 3.17 certain configurations which must al-
ways meet AA~! whenever d(A) > 0. We shall give an illustration in Theorem 3.20
of the fact that such results imply the existence of similar configurations contained
in AA~!. For this, we need the Milliken-Taylor Theorem, which in turn requires
some new notation.

Definition 3.18. (a) Let (F,,)22 be a sequence in P¢(N). Then

FUCERZD)L = AUien, FoUiem, Froe- - Usen, F) -
for each j € {1,2,...,k}, H; € Pf(N)
and if j < k, then max H; < min Hj 1} .
(b) Let S be a semigroup and let (z,)5%; be a sequence in S. Then (y,,)52; is a
product subsystem of (x,)$2 ; if and only if there exists a sequence (F,,)52 ;
in P¢(N) such that for each n, max F,, < min F,, ;1 and y,, = Htan Ty,

Theorem 3.19 (Milliken-Taylor Theorem). Let k,r € N and let (P;(N))¥ =
Ui_, Ai. There exist i € {1,2,...,r} and a sequence (F,)>2, in Ps(N) such that
max F,, < min Fy,1 for all n and (FU((Fn>°° ))Z C A;.

n=1
Proof. This follows immediately from [20, Lemma 2.2]. (An equivalent version is
proved in [18, Theorem 2.2]. See [15, Section 18.1].) O

We can now illustrate the sort of results that follow from theorems such as
Corollary 3.17.

Theorem 3.20. Let G be a group and let B C G. Assume that whenever (x,)52 4

and (yn )52, are injective sequences in G, one has

{a:,;lxn]_[teK Yy k,neN, KePp(N),and k<n<mnK}NB#0.

Let injective sequences (x,)2, and (yn)22, in G be given. Then there exist a
subsequence (wn)22 1 of (x5)22 1 and a product subsystem (z,)02 1 of (Yn )2y such
that {wy, 'wy, [T,ere 2t k,n €N, K € P¢(N), and k <n <minK} C B.

Proof. By [15, Lemma 6.31] there is a subsequence of (y,)52; which has distinct
finite products, so we may assume that (y,)5°; has distinct finite products. Let
Ci =B and Cy = G\Cl For i € {1,2}, let
3 _
A; = {(Hy,Hz,Hs) € (Pr(N))" : (#min #1,) ™ Tmin i [licw, ye € Ci}.

Pick i € {1,2} and a sequence (F}, )22 ; as guaranteed by Theorem 3.19.
For n € N, let w,, = Tpmin r, and let 2, = Htan y¢. We shall show that

{w;; "wn [lex 2t kyn €N, K € P¢(N), and k <n <min K} C C;.

Since {wy, "wn [[,ex 2t - k,n € N, K € Pp(N), and k <n < min K} N B # 0, this
will imply that

{w;lwnnteK zi k,neN, KePyN),and k<n<minK} CB.
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To this end, let k,n € N and let K € P;(N) such that ¥ < n < min K. Let Hy = Fy,
let Hy = Fy, and let Hy = U,,cxc Fm. Then (Hi, Ha, Hs) € (FU((F)52,))"
5O (Tmin i#,) ™ Tmin iy [Liepy, Yt € Civ Since Tminer, = TminF, = Wk, TminHy =

Tmin 7, = Wny and [[ie g, ve = [nex Hier, ¥ = [Lnex #m We have that
—1
wy, Wn [[ ek 2m € Ci

as required. O

In [6, Theorem 1.5] it was shown that if, in addition to being left cancellative and
left amenable, S is countable, and A C S with d(A) > 0, then all of the idempotents
of 35 are in AA—1. As a consequence of Theorems 3.14 and 3.15, we have without
the countability assumption that the semigroup generated by the idempotents is
contained in (J{AA~!: A C S and d(A) > 0}. We do not know the answer to the
following question even in the case that S is (N, +).

Question 3.21. Let S be a left cancellative, left amenable semigroup. Let
T=N{AA"1:ACS and d(A) > 0}.
Is T a subsemigroup of BS?

Let F = P;(N). Then the semigroup (F,U) is very non cancellative. We shall
see that the conclusion of Theorem 3.14 remains valid for this semigroup. But,
unfortunately, this is because most of the issues with which we are dealing are
trivial in F, starting with the notion of having positive density.

Theorem 3.22. Let A C F. The following statements are equivalent.
(a) d(A) > 0.
(b) For all F € F there exists G € A such that F C G.
(c) d(A) =1.

Proof. To see that (a) implies (b), assume that d(A) > 0 and let F' € F. Then by
Theorem 2.3 d(F~'A) > 0so F~1A # (. That is, there is some G € F such that
FuGe A

To see that (b) implies (c), we use Theorem 2.2. So let H € P(F) and € > 0 be
given. Pick G € F such that [JH C G and let £ = {G}. Then given F' € H, we
have FC ={FUG} ={G} =K so K\ FK =0 and ANK =K.

That (c) implies (a) is trivial. O

Corollary 3.23. A sct B C F is density recurrent if and only if B # (). Conse-
quently, DR(F) = B.F.

Proof. The necessity is trivial. So assume B # () and let A C F with d(A) > 0.
Pick FeB. Let C={G € A: F C G}. Then C C (F~'AN A) and by Theorem
3.22, d(C) = 1. O

We close this section with some remarks about another question which came up
in the course of our investigations. Recall the standard statements of the Finite
Unions Theorem and the Finite Products Theorem. If (G,,)02, is a sequence in F
we write FU((Gn)ply) = {Upey Gn: H € Py(N)}.

Theorem 3.24. (a) (Finite Unions Theorem). Let r € N and let
F = Ui_, Ai. There exist i € {1,2,...,r} and a sequence (G,)2, of
pairwise disjoint members of F such that FU((Gp)22,) C A;.
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(b) (Finite Products Theorem). Let S be a semigroup, let r € N, and let S =
Ui_, Ai. There exist i € {1,2,...,7} and a sequence (x,)52, in S such
that FP({x,)22 ;) C A;.

Proof. [15, Corollaries 5.17 and 5.9]. O

The Finite Unions Theorem easily implies the Finite Products Theorem. (If
S=U_, A, thenfor i € {1,2,...,r}, let A; ={F € F:[[,cpas € Ai}.)

And of course, the Finite Products Theorem applies to the semigroup (F,U).
However, the Finite Products Theorem in F is trivial, even if one demands that the
sequence be injective. If F = Ji_, A;, then necessarily some A; satisfies d(A;) > 0.
(And one need not resort to a left invariant mean to show this. If for each i there
were some F; with no superset in A;, then U:Zl F; could not be in any cell.) Thus
there is a sequence (Gn)52; in A; with G, C Gry1. And FU((GR)Zy) = {Ghn :
n € N}.

Now suppose we modify the statement of the Finite Unions Theorem by requiring
that for n # m, neither of G,, or G,,, contains the other. Can one prove that version
without proving the full Finite Unions Theorem?

4. IP™ SETS

A subset A of a semigroup S is an IP set if and only if A contains F'P({(x,)22,)
for some sequence (,,)72; in S and A is an IP* set if and only if it has nonempty
intersection with each IP set. By [15, Theorem 5.12] A is an IP set if and only if
there is an idempotent p € 35 such that A € p. Consequently, A is an IP* set if
and only if for every idempotent p € 35S one has A € p. By Theorems 3.14 and
3.15, if S is a left cancellative and left amenable semigroup, A C S, and d(A) > 0,
then AA~! is an IP* set. But in fact much more is true as a consequence of those
same theorems. That is, AA~! is a member of any finite product of idempotents
in 8S.

In this section we introduce IP™ sets and characterize them as precisely those
sets which are members of a product of a fixed number of idempotents.

Definition 4.1. Let n € N, let S be a semigroup, and let A C S. Then A is an
IP™ set if and only if there exist for each ¢ € {1,2,...,n} a sequence (z;)$2; such
that {[[;_, [[,cq, ®is : Hi, Hoy ..., Hy € Pp(N) and Hy < Hy < ... < H,} C A.
Also, A is an IP™ set if and only if A has nonempty intersection with every IP"
set in S.

The notion of an IP" set should not be confused with the notion of an IP,, set
defined in [5] (which in turn is different from the notion of an IP,, set defined in
[14]). There we said that A is an IP,, set if and only if whenever S was finitely
partitioned, one cell contained FP({x:)}_;) for some sequence (x:)7 ; in S. Thus
by definition, the notion of IP,, set is partition regular. We shall show in Corollary
4.6 that the notion of IP" is also partition regular.

Lemma 4.2. Let n € N and for each i € {1,2,...,n} let (x;1)52, be a sequence
in S and let p; be an idempotent in BS such that p; € (\oo_y FP({;4)$2,,). Let
A € pipa---pn. Then there exist Hi, Ha,...,H, € P¢(N) such that such that
Hy < Hy <...<Hp and [[\_, [Tyepn, ®is € A.
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Proof. We proceed by induction. For n = 1 we have that
A€p; and FP({(x14)121) € P1

so AN FP((x1,)i2,) # 0.
Now let n > 1 and assume the statement is true for n — 1. Let

B={yecS:y 'Acp,}.

Then B € pip2---pn—1 so pick Hy, Ha,...,H,_1 € P¢(N) such that such that
H < Hy < ...< H,_; and H?:_ll HteHi iy € B. Let y = H:-:ll HteHi Tit
and let m = maxH,,_1 + 1. Then y~'A € p, and FP({(z,,)2,,) € pn so pick
H,, € P¢(N) with min H,, > m such that [[,cy 2n: € yLA. O

Theorem 4.3. Let S be a semigroup, let n € N, and let A C S. Then A is
an IP" set if and only if there exist idempotents p1,po,...,pn n BS such that
A€ pip2-pn-

Proof. Necessity. Pick for each i € {1,2,...,n} a sequence (x;.);2; such that
{ITizy Iien, wie : Hi, Ha, ..., Hy € Py(N) and Hy < Hy < ... < H,} € A. For
each i € {1,2,...,n} pick by [15, Lemma 5.11] an idempotent

Pi € Moy FP((2i,6)720,) -
To see that A € p1ps - - - p, suppose instead that S\ A € pips---p,. By Lemma
4.2 pick Hy, Hos,...,H, € P;(N) such that such that H; < Hy < ... < H, and
[T-: [Tiem, ®ie € S\ A. This is a contradiction.

Sufficiency. We proceed by induction. If p; is an idempotent in 8S and A € py,
then by [15, Theorem 5.8] A is an IP set which is the same as an IP! set. Soletn € N
and assume that the implication is valid for n. Let p1,pa, ..., pnt1 be idempotents
in 35 and assume that A € pipy-- ppr1. Let B={y € S:ytA € p,i1}. Then
B € pip2 - - - py s0 B is an IP” set. Pick sequences (x;¢);24 for ¢ € {1,2,...,n} such
that {H?:l HtEH,i Titt H{,H,,...,H, € Pf(N) and Hi < Hy < ... < Hn} C B.
For t € {1,2,...,n}, pick ;41 arbitrarily. For m > n, let

Cm ={ILiz1 Ien, wie s Hy, Hao oo, Hy € Pr({1,2,...,m — 1})
and Hy < Hy < ...< H,}

and let Dy, = (\,cq, ¥ A Let D}, = {2 € Dy : 27" Dy € prya}. Since ppyy
is an idempotent, each D}, € p,11. Further by [15, Lemma 4.14], if z € D},, then
—1p*
27 Dy, € pnti1.
Pick p41,n41 € Dy, . Let m > n+1 and assume we have chosen 41 for all
ke{n+1,n+2,...,m— 1} so that

(%) f0AGC{n+1,n+2,...,m—1}and n+1 < k < minG, then
HtEG Tpt+1,t € D;
Pick

.’Iln+17m S D:n N ﬂ;cn:_n1+1 ﬂ {(HtEG mn-i—l,t)_lDz : (Z) 7é G g {k,k + 1,. Lo, — 1}} .

(The listed intersection is an element of p,, 11 and so is nonempty.)

To verify (x),let 0 £ G C{n+1,n+2,...,m}and let n+1 < k < minG. If
m ¢ G, then (%) holds by assumption, so assume that m € G. If G = {m}, then
[licq a1t = Tny1,m € Dy, € Df. So assume |G| > 1, and let F' = G\ {m}.
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Then [[,cp Tny1,e € Df and pq1m € (HteF xn+1)t)_1D; 0 [[;eq Tnt1,t € D
as required.
The construction being complete, assume that Hq, Ha,..., Hyy1 € Pp(N) and
Hy < Hy < ... < Hpyy1. Let k = minH, 41 and let y = [, [lien, ®is- Then
n+1

y€Crand [[icqy . wnv1,e € Df Cy ' Aso [T [lien, wie € A as required. O
Corollary 4.4. Let S be a semigroup, letn € N, and let A C S. Then A is an [P™
set if and only if for all idempotents p1,pa,...,pn in BS one has A € p1ps -+ pn.

Proof. The set A is an IP™ set if and only if S\ A is not an IP™ set. O

Corollary 4.5. Let S be a left cancellative left amenable semigroup and let A C S
with d(A) > 0. Then AA™L is IP™* for every n € N.

Proof. By Theorems 3.15 and 3.14, AA~1! contains a subsemigroup of 35 containing
the idempotents so Theorem 4.3 applies. ([

Corollary 4.6. Let S be a semigroup, let n € N, let A be an IP™ set in S, and let
F be a finite partition of A. Then there exists B € F such that B is an IP" set.

Proof. Pick idempotents p1,ps, ..., p, in 85 such that A € pi1ps - - - p, by Theorem
4.3. Since p1ps - - - py, is an ultrafilter, there exists B € F such that B € p1ps - - - py,.
Applying Theorem 4.3 again, we have that B is an IP" set. t

We now set out to verify that the relationship among these notions is what we
would expect.

Theorem 4.7. Let S be a semigroup, let n € N, and let A be an IP" set in S.
Then A is an IP"T1 set in S.

Proof. Pick sequences (z; )52, for i € {1,2,...,n} such that
{ITi=1 lieq, wive s Hi, Ha,. .., Hy € Pp(N) and Hy < Hy < ... < H,} CA.

For each t € N, let 41 = 25 and let Hy,Hy,...,Hyy1 € Pf(N) such that
Hy < Hy < ... < Hpqy. Fori € {1,2,...,n— 1}, if any, let G; = H; and let

1
Gn=HyUH,pr. Then [[M Tlep, @ie = 1102 [Lieq, @it € A 0

A somewhat shorter, though less elementary, proof of Theorem 4.7 is to pick
idempotents p1,pa,...,p, such that A € pips---p, and let p,+1 = p, so that
A€ pipa- Pubn =DP1P2" Pyl

Now we see that the strength of the assertion that A is an IP™ in (N, +) is strictly
decreasing as n increases. For x € N we define supp(x) as the subset of w = NU{0}
such that © = 3~ cqupp(a) 2t Given a sequence (z,)5; in N, (y,)%, is a sum
subsystem of (x,)7%, if and only if there exists a sequence (H,,)5%; in Py(N) such
that H, < Hpy1 for each n € N and y, = ZteHn x¢. Notice that if (y,)52, is a
sum subsystem of (z,,)22;, then FIS({(yn)o2 ;) C FS((n)52 ).

Theorem 4.8. For eachn € N there is an IP"*1 set in the semigroup (N, +) which
1s not an IP" set.

Proof. Let A = {34! ver, 20TV Hy Hy o Hpiq € P(N) and Hy <

H; < ...< Hp41}. Then immediately we have that A is an P! get.
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Suppose that A is an IP™ set and pick for each i € {1,2,...,n} a sequence
(@i,4)2, such that

{Z?zl ZtEH,- Tiyt: Hl,H27...,Hn € Pf(N) and Hi < Hy < ... < Hn} CA.

For z € N, let ¥(z) = {i € {1,2,...,n+ 1} : supp(z) N ((n + 1)N + i) # 0}.
Notice that if z € A, then ¥(z) = {1,2,...,n+ 1} and for each i € {1,2,...,n},
max (supp(x) N ((n+1)N+ z)) < min (supp(x) N((n+1)N+i+ 1))

By [15, Corollary 5.15] we may choose for each i € {1,2,...,n} a sum subsystem
(Yi1)22q of (@;4)52; such that ¥ is constant on FS((y;.)$21). Let (i) be that
constant value. By passing to sum subsystems again, we may presume that for
each i € {1,2,...,n} and each ¢t € N, maxsupp(y;) < minsupp(y; +1).- (See [15,
Exercise 5.2.2].) Finally, by successively thinning the sequences, we may presume
that if i € {1,2,...,n—1} and ¢ € N, then max supp(y; ) < minsupp(yi+1,¢+1) and
that {> 1, Ztem Yir  Hi,Ho,...,H, € Py(N)and H; < Hy < ... < H,} C A

Now y11+ Y22+ ...+ Unn € Aso Ui PWii) = Pyr1g+ Y22+ -+ Ynn) =
{1,2,...,n + 1} and therefore for some j € {1,2,...,n}, ¥(j) is not a singleton,
and so we have some k < [ such that {k,l} C ¥(j). Now consider

j—1
2= 20000 Vi T Y FYig1 2 isj Vit
where Zz;ll vii =0if j =1 and Z;”:jﬂ Yii+1 = 0 if j = n. The support of z has
an element congruent to ! (mod n + 1) (as part of the support of y; ;) followed by

an element congruent to k (mod n + 1) (as part of the support of y; ;4+1) and so
z ¢ A, a contradiction. O

We now obtain combinatorial descriptions of IP™* sets.

Theorem 4.9. Let S be a semigroup, let n € N, and let A C S. The following
statements are equivalent.

(a) A is an IP™ set.

(b) Whenever (x14)521, (T2,6)321, - - -, (Tn,t)o2q are sequences in S, there exists
a sequence (Fp)p2, in Py(N) such that F, < Fpy1 for all k € N and
{H?:l HkGH«; HtGFk Tt H.,H>,...,H, € Pf(N) and Hi < ... < Hn} -
A

(c) Whenever (x1,4)221,(T2,)521, -, (Tn1)i21 are sequences in S, there exist
foreachi € {1,2,...,n} a product subsystem (y; k)5 of (Ti )72, such that
{Hzl:l erHi Yik * Hl,HQ, .. .,Hn € Pf(N) and Hi < ... < Hn} C A.

Proof. (a) implies (b). Let (z14)521,{(®24)521,- -, {Tnt)i2; be sequences in S.
Let By = {(Fy,Fy,....F,) € (Ps(N)" : TIIL, ILsep, ®it € A} and let By =
(P#(N))"\ By. Pick by Theorem 3.19, j € {0,1} and a sequence (F;)5°, in Py(N)
such that max Fj, < min Fj; for all £ and (FU((F;Q;‘;Q)Z C Bj. For each
k € N and each i € {1,2,...,n}, let yix = [[,cp, @i Foreachi € {1,2,...,n}
pick by [15, Lemma 5.11] an idempotent p; € ()-_; FP({yi x)%>,,)- By Corollary
4.4, we have that A € pipa---p,. By Lemma 4.2 pick Hy, Hs,...,H, € Ps(N)
such that such that Hy < Hy < ... < H, and [], [icw, vix € A For

i€{1,2,...,n}, let G; = Upep, Fr- Then (G1,Ga,...,Gn) € (FU((FL)2,))"
and [T [Tieq, ©ie = ITiq [pen, ¥ik € Aso j = 0. Consequently,
{H?zl HkEHz‘ Yik : Hl,HQ, . .,Hn S Pf(N) and Hi < Hy < ... < Hn} CA.
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Trivially (b) implies (c).
(c) implies (a). Suppose that A is not an IP™* set, so that S\ A is an IP” set
and pick sequences (x1,4)521, (2,421, - - -, (Tnt)i2, such that

{H;L:l HtEHi Jii,tlHl,HQ,...,Hn Epf(N) and H; < Hy < ... <Hn} - S\A

If for each ¢ € {1,2,...,n}, (y; )52, is a product subsystem of (z;.);2;, then
also {IT;2; [en, vit : Hi,Ha,y...,Hy € Pp(N)and Hy < Hy < ... < H,} C
S\ A. O

We introduce a stronger notion, whose definition drops the requirement that
Hy < Hy < ...< Hp. (The “E” in the name stands for “enhanced”.)

Definition 4.10. Let S be a semigroup, let n € N, and let A C S. Then A is an
EIP™* set if and only if whenever (z1,,)521, (®2,4)i21, - .., (Tn1)i2, are sequences in
S, there exists a sequence (F)$2; in Py(N) such that Fj, < Fjyq for all £ € N and
{ITizi Iien, iep, wie: Hi, Ha, ..., Hy € Pp(N) U {0} and some H; # 0} C A.

In [8, Definition 6.1], the notion of E-IP* set is defined for subsets of Z* for some
k. A subset of Z* is an E-IP* set if and only if it is an EIP™* set for each n € N as
defined here.

Note that the notions IP** and EIP'* are synonymous. However, for n > 1, in
the semigroup (N,+), EIP™ is strictly stronger than IP™*. In fact we have the
following.

Theorem 4.11. There is a set A C N such that A is an IP™ set for everyn € N,
but A is not an EIP?* set.

Proof. Let B = {3 1cp 2+ Xiep, 2271+ o+ D, 2271+ Diem,, 22
keN, Fi,Fy, ..., Fopq € Pf(N), k=minFj,and F} < Fy) < ... < F2k+1} and
let A =N\ B. Thus, if € B, then minsupp(z) = 2k for some k € N and, if the
elements of supp(z) are listed in order, there are precisely 2k alterations between
even and odd.

Suppose first that A4 is an EIP?* set. For each t € N, let 1, = 2% and let
To¢ = 2271, Pick a sequence (F})?2, in Ps(N) such that Fy, < Fj4q for all k € N
and

D hemn 2ver, Tit + D pem, 2oter, Tor Hi, Ha € Pr(N) U {0}
and some H; # 0} C A.

Let Hy ={1,3,...,2k+ 1} and let Hy = {2,4,...,2k}. Then
Zk)EHl EtEFk T1,t + ZkEHz ZtEFk T2t € B’

a contradiction.
Now let n € N. We shall show that A is an IP™* set. To this end, let sequences
(1,00 221, (T2,0)521, - - -5 (Tn,e) 721 In N be given. Let
Co = {xz € N:supp(z) C 2w},
Cy = {z € N:supp(z) C 2w + 1}, and
Cy =N\ (CoUCY).

For each i € {1,2,...,n}, pick by [15, Corollary 5.15] j(i) € {0,1,2} and a sum
subsystem (y; )72, of (x4)§2; such that FS((yi¢)52;) € Cj)-
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Now let Dy = A and Dy = B. For v € {0,1} let

E,={(H1,Hs,....Hy) € (Pr(N)" : X0 S e, Vit € Do}
Pick by Theorem 3.19 an increasing sequence (F,,)5°_; in Pr(N) and v € {0,1}
such that (FU((Fmﬁf:l))Z C E,. For each i € {1,2,...,n} and each m € N,
let zim = D iep, Yit- Then (z;n)50_; is a sum subsystem of (y;+)72; and so
FS((zim)m=1) € Cjg). Also, (zim)m—1 is a sum subsystem of (z;)72,. Now we
claim that

{31 Yomen, Ziom s Hi, Ha,y oo Hy € Pe(N) and Hy < Hy < ... < H,} C D, .

To see this let H; < Hy < ... < H,, be given and for ¢ € {1,2,...,n} let L; =
Umen, Fm- Then (Ly, Ly, ..., Ln) € (FU((Fn)35-1))~ € Ey so

Z?:l ZmeHi Zi,m = Z?:l ZtELi Yit € Dy

as required.

To complete the proof, we show that v = 0. Suppose instead that v = 1. Pick
r € N such that minsupp(z1,,) > n Now Y. | z; r1i—1 € D1 = B so minsupp(z1,,)
is even. Let 2k = minsupp(z1 ). If for some v € {1,2,...,n}, j(u) = 2, then pick
Hy,Hy,...,H, € Py(N) withr =min Hy, Hy < Hy < ... < Hyp, and |H,| = 2k+1.
Then when the elements of the support of Z?:l Y ome [, %i,m are written in order,
there are at least 2k+1 alterations between even and odd so Y7 Y7, Zim & B.
Thus, for each ¢ € {1,2,...,n}, we have that j(i) € {0,1}. But now, if the
elements of the support of Z?:l Zir+i—1 are written in order, there are at most
n — 1 alterations between even and odd, and n — 1 < 2k = minsupp(z1,.) so
Yoi Zirt+io1 & B, a contradiction. O

We have by Corollary 4.5 that if (G, +) is an abelian group, A C G and d(A) > 0,
then A — A is IP™ foreveryn € N. And A—A={z€G: An(A—z)#0}. We
shall see, using some powerful results of Furstenberg and Katznelson, that much
stronger results are true. While Theorem 4.13 is not stated in [13], it is implicitly
contained there. Also, Theorem 4.13 is a corollary of Theorem 4.16, but its proof
is much simpler, so we present that proof separately.

Lemma 4.12. Let (G,+) be a countable abelian group, let A C G with d(A) > 0,
and let K be a finite set of commuting endomorphisms of G. Then

{z eqG: d(ﬂgeK (A—g(x))) >O}
is an IP1* set.

Proof. Using Theorem 2.2 pick a sequence (K,,)7% in Py(G) such that for each = €
K, K, . JANK, L
G, lim Ko\ (@ + Ko =0 and d(4) = lim g (A sequence satisfying
the first of these requirements is called a Falner sequence.) By [3, Theorem 4.17]
pick a probability space (X, B, i), a measure preserving action (T ),ecq of G on X,

and a set B € B such that p(B) = d(A) and for every F € Ps(G),
d(Neer (A=2)) 2 n(Noep T7'[A))-

Now let a sequence (x,)52; in G be given. For n € N and g € K, let RY =
Ty(z,)- Given F € Py(N) let iy,1z,...,4 list the elements of F' in increasing order

and let for each g € K, S}f) = Rl(-lg) OREZ) 0...0 Rl(f’). For example, if F' = {1, 3,4},
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then S = R o Ry 0 R = Ty © Tyay) © Ty(aa) = Ly(ar +agas)- I gemeral,
if 2= 3,cp @, then S = Ty.y. Pick by [13, Theorem A] some F € P#(N) such
that pu(Nyex (S)7VB]) > 0. Let 2 = Y,cp @i Then d((V,c (A — g(2))) >
#Nger TyezylB) > 0. O

Theorem 4.13. Let (G, +) be a countable abelian group, let A C G with d(A) > 0,
let K be a finite set of commuting endomorphisms of G, and let n € N. Then

{z eqG: d(ﬂgeK (A—g(x))) >O}
is an IP™ set.

Proof. We proceed by induction on n, the case n = 1 being Lemma 4.12.
Let n € N and assume the result is true for n. Let

B={zeG: d(ﬂgeK (Afg(x))) > 0}.
By Corollary 4.4 it suffices to let p1,pa,...,pry1 be idempotents in SG and show
that B € p1 +p2 + ... + pny1. To this end, since (again by Corollary 4.4) B €
p1+ P2+ ...+ py it suffices to show that B C {x € G : —x+ B € ppi1}, so let
z € B. Let C =, (A—g(z)) andlet D ={y € G : d(ﬂgeK (C'fg(y))) > 0}.
Then d(C) > 0 so by Lemma 4.12 D is an IP* set and thus D € p,.1. Given
y € D, one has [ ¢ (C—g(y) C Nyex (A—g(z+y)) and so z +y € B. Thus
—x + B € ppy1 as required. O

The next lemma is a version of Furstenberg’s Correspondence Principle.

Lemma 4.14. Let (G,+) be a countable abelian group, let X be a left invariant mean
on G, and let A C G such that A(X4) > 0. There exist a compact metric space X,
a countably generated o-algebra B of subsets of X, a clopen set U € B, a countably
additive measure p on B, and a measure preserving action (Sy)zcc of G on (X, B, 1)
such that for all F € Pr(G), if B=\,ep(A—2), then p((,ep Sy HU]) = A(XB).

Proof. This is what was shown in the proof of [7, Theorem 2.1]. O
Lemma 4.15. Let (G,+) be a countable abelian group, let K be a finite set of
commuting endomorphisms of G, let n € N, and for each i € {1,2,...,n}, let
(xi1)2, be a sequence in G, let A C G with d(A) > 0, and let | € N. Then there
exists M € Py(N) such that min M > and

d(ANN{A =9 icr Xien i) i 9 €K and D # F C{1,2,...,n}}) > 0.
Proof. Pick an invariant mean A on G such that A\(X4) > 0. Pick (X, B, u), U, and
(Sz)zec as guaranteed by Lemma 4.14 for A and A. For g € K, i € {1,2,...,n},
and H € Pf(N), let Tgfz = Og(Stenmin)-

Pick by the Main Theorem of [13], an increasing sequence (L) ; in P(N) and
M € FU({Ly)$2,;) such that

p(UNN {0 Ler T8 MU i g€ K and 0 £ F C {1,2,...,n}}) > 0.
(In the notation of the Main Theorem of [13], ¥ is the group generated by

(T yep, oy - g € K and i € {1,2,...,n}},
FY s FU(LR)2,), mis |K x {1,2,..., 0}, {TO, T .. 7"} is
(T4 pepyuy g € K and i € {1,2,...,n}},
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and A = {0, M}. Then [[, T3 =I;_, T;\f), where
A= M i T = (T yep, oy

and \; = () otherwise.)
Now, given g € K and () # F C {1,2,...,n}, we have that U = (S;)~*[U] and

HiEF TJE\]jl = HieF Sg(zteMwi,t)

iergd(Btemmie)
= Pg(ZicrStem®i) o

so by Lemma 4.14, if
B=ANN{A— g icr X tem®iz): g€ Kand 0 £ F C{1,2,...,n}},
then A(Xp) > 0 and consequently d(B) > 0. O

Theorem 4.16. Let (G, +) be a countable abelian group, let A C G with d(A) > 0,
let K be a finite set of commuting endomorphisms of G, and let n € N. Then

{x €eG: d(ﬂgeK (A —g(m))) > O}
is an EIP™* set.

Proof. Let Ay = A, and by Lemma 4.15 pick M; € Py(N) such that, letting
Ay = Ay ﬂﬂ{Al =90 ier 2 ter, it 9 €K and @ # F C {1,2,...,n}}, we
have that d(As) > 0.

Inductively, given k > 1, Ag, and My_1, let | = max My_; and pick by Lemma
4.15, My, € Py(N) such that min My > [ and, letting

Ak-‘rl :Akmm{Akig(ZiEFZteMk :ULt:gGKand(/);éFg {172a"'7n}}a

we have that d(Agy1) > 0.

The induction being complete, for each ¢ € {1,2,...,n} and each k € N, let
Yik = ZteMk z; . We show by induction on ||J;_, H;| that if Hy, Ho,...,H,, €
Ps(N) U {0}, some H; # 0, and m = max|J;_, H;, then

Amy1 € ﬂgeK (A - Q(Z?:l ZkeH,; yz,k))
so that Y700 > cp Wik € {x eqG: d(ﬂgeK (A- g(m))) > O} as required.

Assume first that |J_, H; = {m} and let F = {i € {1,2,...,n} : m € H,}.
Then

Ami1 © Ngex (Am = 9(Cicr dien,, i)
= mgeK (Am =9 icr y@m))
< mgeK (A - g(ZieF yiﬂn))
= Nyex (A-g(>i, D okeH, Yik)) -

Now assume that ||J;"_; H;| > 1, let m = maxJ"_, H;, and let
F={ie{1,2,...,n} :me€ H;}.

For i € {1,2,...,n}, let D, = H; \ {m} (so if i ¢ F, then D, = H;). Then
some D; # (. Let | = max U?Zl D;. Then by the induction hypothesis we have
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Am g Al+1 g ngeK (A - g(Z:L:l ZkEDi yzvk)) Thus

Apmy1 C ﬂgeK (Am - Q(EieF ZteMm x”))
= ﬂgeK (Am -9 ier yzm))
- ﬂgex ((A - 9(2?:1 ZkeDi yi,k‘)) - Q(ZieF yi,m)) .
If i € F, then H; = D; U{m} while if i ¢ F, then H; = D; so given g € K,
(A - 9(2?:1 ZkeD,- yi,k)) - g(ZiEF Yiom) =

A— 9(2?:1 ZkenDi Yike + ZiGF Yim) =
A—g(>imy ZkeHi Yik) -

5. A™ SETS

We now turn our attention to A™ sets. A set A C N, is a A set if and only if
there is an increasing sequence (x,)%2 ; in N such that

{Zm —zp:n,meNandn<m} C A

and we can extend that notion to a subset A of an arbitrary group S by requiring
that there exists an injective sequence (x,,)22 ¢ in S with

{z; 'z :n,meNandn<m} C A.

(In [5] we did not require the sequence to be injective. This has the drawback that
{e} is then a A set, where e is the identity of S.)

Definition 5.1. Let S be a group or (N, +), let A C S, and let n € N. Then A is a
A™ set in S if and only if there exist for each ¢ € {1,2,...,n} an injective sequence
(24521 in S such that

{H?Zl(x;;(i)xi’m(i)) s k(1),m(1),k(2),...,k(n),m(n) eN
and k(1) <m(1l) <k(2) <...<k(n) <m(n)} C A.
Also, A is a A™ set if and only if A has nonempty intersection with every A™ set
in S.

As with the IP™ sets, we set out to characterize the A™ sets in terms of products
of members of 35S.

Lemma 5.2. Let S be a group or (N,+), let n € N, and for i € {1,2,...,n}
let (i), be an injective sequence in S. Assume that for each i € {1,2,...,n},
pi € S*N {xi,t it e N} Then

{H?=1($Z]i(l)xz,7n(’t)) : k(l)a m(l), k(Q)v R} k(n)a m(n) € N

and k(1) < m(1) < k(2) < ... < k(n) <m(n)} € [T, (0; 'pi)-

Proof. We proceed by induction, the case n = 1 following from Lemma 3.10. So let
n € N and assume that the statement is true for n. Let

A= {H?ill(x;]i(l)xz,m(z)) : k(l)vm(l)v k(2)7 R k(n + 1)1 m(n + 1) eN
and k(1) <m(1) <k(2)<...<k(n+1) <m(n+1)}
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and let
B= {H?:l(x;;(i)mi’m(i)) s k(1),m(1),k(2),...,k(n),m(n) eN
and k(1) <m(l) <k(2) <...<k(n) <m(n)}.
Then B € [[;,(p; 'pi) We claim that B C {y € S : y™*A € p,{ pnt1}, so let
Y= H?:1(x;,ii(i)mi»m(i)> € B. Let
C = {x;}rl’k(nﬂ)mnﬂm(n_‘_l) ck(n+1),mn+1)eN
and m(n) < k(n+1) <m(n+1)}.

By Lemma 3.10, C' € p,_LJlrlpn+1. Since C' C y~ A, we have that A € H?:ll (p; 'pi)

as required. O

Lemma 5.3. Let S be a group or (N,+), let n € N, and let A C S. For each
i€ {L,2,...,n} let p; € S*, let (B;1)i2; be a sequence of members of p;, and
assume that A € [[;_,(p; 'pi). There exist for each i € {1,2,...,n} an injective
sequence (x; )72, such that for eacht €N, z;, € ﬂ§:1 B, and
{{H?Zl(x;,i(i)xi’m(i)) ck(1),m(1),k(2),...,k(n),m(n) €N
and k(1) <m(1) < k(2) <...<k(n)<m(n)} CA.
In particular, A is a A™ set.

Proof. We proceed by induction, the n = 1 case following from Lemma 3.11. So let
n € N and assume the implication holds for n. Pick p1,pa,...,ppt1 € S* such that

Ae H:.:rll(pi_lpi) andlet B={yeS:ytAec p;j_lpnﬂ}. Then B € [[, (p; 'p:)
so choose for each i € {1,2,...,n} an injective sequence (z; )2, in S such that
t
for each ¢, z;; € ﬂj:l B; ; and
(T (i) + 5 (D), m(1), K@), k() m(n) € N
and k(1) <m(l) < k(2) <...<k(n) <m(n)} C B.

For t < 2n, choose zpy1+ € ﬂ§:1 By, +1,; arbitrarily (preserving injectivity). For
[ > 2n, let

C = {H?:1(x;]1(i)xi,m(i)) ck(1),m(1),k(2),...,k(n),m(n) € {1,2,...,1 — 1}
and k(1) <m(l) < k(2) < ... < k(n) <m(n)},
let D; = nyEC’l y~tA and let B} = {w € S : wD; € pyy1}. Since C; C B,
Dy € p,{1Pn+1 and 50 B} € ppir.
Choose Zp41,2n+1 € Eany1 N ﬂ?ZTl By +1,; and for [ > 2n + 1, choose
Tny1a € B0 o g1 @nt1, D N (Vjmy Baga -

Now let k(1),m(1),k(2),...,k(n),m(n) € N such that k(1) <m(l) < k(2) <...<
k(n+1) < m(n+1). Then

Tt ks 1y Tt tm(nt1) € Dignyr) and [T (27 1o Tim() € Chni)
50 H?:ll(xfé(i)xi,m(i)) € A as required. 0

Theorem 5.4. Let S be a group or (N,+), letn € N, and let AC S. Then A is a
A" set if and only if there exist py,pa2,...,pn € S* such that A € H?:l(pflpi).
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Proof. Necessity. Choose for each ¢ € {1,2,...,n} an injective sequence (x; )72,
in S such that

{H?Zl(x;;(i)a:i’m(i)) s k(1),m(1),k(2),...,k(n),m(n) eN
and k(1) <m(1l) <k(2) <...<k(n) <m(n)} C A.
For each i € {1,2,...,n} pick p; € S* such that {z;, : t € N} € p;. By Lemma 5.2,
A€ H?:1(p;1pi)~
The sufficiency is an immediate consequence of Lemma 5.3. [

We immediately get corollaries corresponding to Corollaries 4.4, 4.5, and 4.6.

Corollary 5.5. Let S be a group or (N,+), let n € N, and let A C S. Then A is
a A™ set if and only if if for all p1,pa,...,pn in S* one has A € [[1—, (7 'ps).

Proof. The set A is a A™ set if and only if S\ A is not a A™ set. (]

Corollary 5.6. Let S be an amenable group or (N, +) and let A C S with d(A) > 0.
Then AA™' is A™ for every n € N.

Proof. By Theorems 3.15 and 3.14, AA—1! contains a subsemigroup of 4S containing
p~1p for all p € S* so Theorem 5.4 applies. O

Corollary 5.7. Let S be a group or (N,+), let n € N, let A be a A™ set in S, and
let F be a finite partition of A. Then there exists B € F such that B is a A™ set.

Proof. Pick by Theorem 5.4 py,pa,...,p, in S* such that A € [[}",(p; 'p:). Since
[T, (p; 'pi) is an ultrafilter, there exists B € F such that B € [[I_,(p; 'pi)-
Applying Theorem 5.4 again, we have that B is a A" set. (]

By contrast with the situation regarding the IP™ property, we shall show in The-
orem 6.25 that in (N, +) there is no relationship whatsoever between the properties
A" and A* when n # k.

6. DENSITY RECURRENT, POLYNOMIAL RECURRENT, AND A" SETS IN N

We begin this section by showing that DR(N, +) has substantial multiplicative
structure. (And consequently, by Theorem 3.15, so does A — A whenever A C N
with d(A) > 0.)

Theorem 6.1. DR(N, +) is a left ideal of (BN, -).

Proof. Let p € BN and ¢ € DR(N, +). To see that p- ¢ € DR(N,+), let B € p-q.
To see that B is a density recurrent set let A C N such that d(A) > 0. Since
B € p-q, pick m € N such that m~'B € ¢q. Pick t € {0,1,...,m — 1} such that
d(AN(mN+t)) > 0andlet C ={n € N:mn+t e A}. Then d(C) > 0 so pick
n € m~'B such that d(C' N (—n + C)) > 0. Then d(mC N (—mn +mC)) > 0 and
mCN(—mn+mC) C (—t+A)N(—mn—t+A) sod((—t+A)N(—mn—t+A)) >0
and by Theorem 2.3 d(A N (—mn + A)) = d((—t + A) N (—mn — t + A)). O

We now turn our attention to sets of multiple recurrence, establishing that much,

but not all, of the structure of DR(N) carries over to the set of ultrafilters all of
whose members satisfy a strong multiple recurrence property.

Definition 6.2. R = {g : ¢ is a polynomial with rational coefficients, g[Z] C Z,
and g(0) = 0}.
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Theorem 6.3. Let F' € Ps(R) and let A C N with d(A) > 0. Then
{neN: d(ﬂgeF ((A=g(n))) >0}

is an IP* set.
Proof. [8, Theorem 7.3]. O

Notice that, since the function 0 € R, the assertion that for each F' € Pf(R),
{n eN: d(ﬂgeF (A —g(n)) > 0} is an IP* set is the same as the assertion that
for each F € P¢(R), {n e N:d(An Nyer (A— g(n)) > 0} is an IP* set.

Given aset X andn e N, [X]|"={AC X : |A| =n}.

Definition 6.4. (a) Let n € N and let B C N. Then B is a polynomial n-

recurrent set if and only if whenever A C N with d(A4) > 0, and F € [R]",
there exists k € B such that

d(ANNyep (A= g(k))) > 0.
(b) Let n € N. Then PR,, = {p € 6N : (VB € p)(B is a polynomial n-recurrent
set) }.
() PR=,_, PRy.

Theorem 6.5. Let n € N. Then PR, is a subsemigroup of (AN, +) containing the
idempotents, and consequently so is PR.

Proof. By Theorem 6.3, PR, contains the idempotents and, in particular, PR, # .

Now let p,q € PR,, and let B € p+ q. To see that B is polynomial n-recurrent,
let ACNandlet FF € [R|". Let C ={m € N: —m + B € q}. Then C € p so pick
m € C such that d(A N Nyer (A—g(m))) > 0. Let

D=ANN,er (A—g(m)).
For g € F, define hy(z) = g(m + ) — g(m) and let H = {hy : g € F}. Then
H € [R]". Pick k € —m + B such that d(D N Nyer (D — hy(k))) > 0. Then
m+k € B and DN cp (D — hy(k)) C AﬁﬂgeF(A—g(m—i—k)), so d(AnN
Nyer (A—g(m+k))) >0. O

Theorem 6.6. Let n € N and let p,q € PR,,. Then —p + q € PR,,. Therefore, if
p,q € PR, sois —p+q.
Proof. Let B € —p + q. To see that B is polynomial n-recurrent, let A C N and
let FF e [R]". For g € F, let fo(z) = g(—z). Let C = {m € N: m+ B € ¢}.
Then C' € p so pick m € C such that d(A4 N Nyer (A= fy(m))) > 0. Let D =
ANNyer (A—fy(m)). For g € F, define hy(x) = g(x—m)— fy(m) and let H = {hy :
g € F}. Then H € [R]". Pick k € m + B such that d(DN(,cp (D = hy(k))) > 0.
Then k —m € B and DN (), cp (D — hg(k)) € AN Nyer (A = g(k —m)), so
d(ANNyep (A—g(k—m))) > 0. 0
Recall from Theorem 3.14 that whenever p € N*, —p + p € DR(N). We shall

see in Corollary 6.20 that there exists p € N* such that —p+p ¢ PR. We shall see
now that PR does share with DR the property of being a left ideal of (6N, -).

Theorem 6.7. Let n € N. Then PR, is a left ideal of (ON,-), and consequently
so is PR.
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Proof. Let p € ON and let ¢ € PR,,. Let B € p-q. To see that B is polynomial
n-recurrent, let A C N and let F € [R]". Pick m € N such that m™'B € ¢. For
g € F, define f;, € R by fy(z) = g(ma). Pick k € m~'B such that

d(ANNep (A= fy(k)) > 0.

Then mk € B and d(AﬂﬂgeF (A—g(mk))) > 0. O

As a consequence of Theorem 3.14, we have that DR(N, +) is a subsemigroup
of (BN, +) containing the idempotents, containing all elements of the form —p + p
for p € N*, and closed under subtraction with the negative term on the left. By
Theorem 6.1 we have that DR(N, +) is also a left ideal of (ON,:). And we have
just seen that PR shares all of these properties except that —p + p need not be in
PR for all p € N*. Therefore, PR contains all polynomials formed from additive
idempotents as long as the rightmost coeflicient is positive. For example, if p, g,
and r are aditive idempotents, then 3pq — 2qr + rgp € PR. It will also contain
things which one does not usually refer to as polynomials, such as p(q + 7). (This
is not the same as pg + pr. See [15, Corollary 13.27].) In particular, if A C N and
d(A) > 0, then A — A is a member of all such expressions.

Given a sequence corresponding to each variable in the polynomial, sums of a
certain form must lie in any member of the polynomial. We make this statement
precise in Theorem 6.10 below. This result is due to Kendall Williams and forms
part of his dissertation at Howard University. We are grateful for his permission to
present the theorem and its proof here.

In the following lemmas, the closure is taken in 5Qg, where Qg is the set of
rationals with the discrete topology. If the given sequences are sequences of integers,
of course one will have each p; € GZ.

Because of the generality of Theorem 6.10, it can be a bit difficult to understand
what it says. The reader may wish to bear in mind the following special case.
Let g(z1, 22, 23) = —%212’3 + 2329 + 3212123 + 2221. Assume that for j € {1,2,3},
(2;,)72, is a sequence in N and p; € 2, FS((x;)22,). Given F,G € P(N), write
F < G to mean max F' < min G. Then Theorem 6.10 asserts that

{_%(Zteﬂ ILt)(Zter T34) + (Ztng mS,t)(EteF4 Tt)
+3(ZteF5 xl,t)(ZteFG xl,t)(z:teﬂ T3:) + (Zter xQ,t)(Ztng T1e)

each F; € Pf(N) and F} < Fyr < ... < Fg} S g(pl,pg,pg).

In particular, if py, p2, and p3 are idempotents, then the listed set will be a poly-
nomial n-recurrent set for each n.

Lemma 6.8. Let m,k,s € N and for j € {1,2,...,k}, let (x;:)52, be a sequence
in Q and let p; € =y FS({zj)52,). Let a € Q\ {0}, let f: {1,2,....,m} —
{1,2,...,k}, and let s € N. Then

{a(ZteF1 Tyye) e (ZteFm Ty(m),e) : each F; € Py(N) and
{S} <F<...< Fm} € apfy - Pfim) -

Proof. We proceed by induction on m. If m = 1, we have that F.S({zf1),)is11) €
Pra) 80 {a(X_ep Tp)e) : F € Py(N) and s < min F'} € apy(q).
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Now assume that m > 1 and the result holds for m — 1. let
B = {a(ZtEFl xf(l)’t) T (ZteFm xf(m)»t) :
each F; € Py(N) and {s} < F} < ... < F,;,} and let
C={a(Xier r)e) (Cier, , Trim—1)t)
each F; € Py(N) and {s} < F1 <... < F,,_1}.
Then by assumption C' € apy1) - Pym—1)- We claim that
CC{yeQ:y 'BeEpsum}

so that B € apy(1) -+ Ps(m) as required. To this end let y € C and pick Fi, Fy, ...
Fr—1 € Py(N) such that {s} < F} <...< F,,_; and

)

y=aXier, Trae)  Qierp,_, Trm—1),t) -
Let 7 = max Fi,_1. Then FS((Zfm)¢)i241) € Prim) and FS(@fm) )2 41) €

y 'B. (I

Lemma 6.9. Let k,m € N, let f: {1,2,...,m} — {1,2,...,k}, and for j €
{1,2,...,k}, let (z;4)72, be a sequence in Q and let pj € (2, FS((z;4)52,). Let
a € Q\{0}, let g € BQq, let D € q, and let ¥ : D — N. Then

{y + a(ZteF1 Tpaye) e (ZteFm Tymye) 2y € D, each F; € Pp(N), and

{Ply)} < FL<...<Fp}€qtapsuy - Pfm) -
Proof. Let

B={y+aier Tr.e) Lier, Trom)e):
y € D, each F; € Py(N), and {P(y)} < F1 <...< F,}
We claim that D C {y € Q: —y + B € apy) - Pf(m)} SO that
B €q+apsay - Pym) -
So let y € D and let
c :{G(Zt€F1 Tyuye) (ZteFm_l T f(m).t) :
each F; € Pr(N) and {p(y)} < F1 <...< F,}.

By Lemma 6.8, C' € apf(1) -+ Pfim) and C C —y + B. a

In the statement of the following theorem, if

2
9(21,22,23) = —52123 + 2322 + 3212123 + 2221

as in the paragraph before Lemma 6.8, then

hg(y1,Y2; - -+ Ym) = —3y1Y2 + Ysya + 3YsYeyr + Ysyo
and the function f = {(1,1),(2,3),(3,3),4,2),(5,1),(6,1),(7,3),(8,2),(9,1)}.
We do not demand that each of the listed variables occur in g.
Theorem 6.10 (Kendall Williams). Let k € N. For j € {1,2,...,k}, let
(2510521 be a sequence in Q and let p; € (2, FS({x;4)22,). Let g(z1,22,...,2k)
be a polynomial with rational coefficients. Let m be the number of occurrences of
a variable in g, and let hy(y1,Y2, ..., Ym) be the polynomial obtained by replacing
the i™ occurrence of a wvariable by y;. Define f : {1,2,...,m} — {1,2,... k}
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by f(i) = j if the i*h occurrence of a variable is z;. (Then g(z1,2,...,2k) =
hg(Zf(l), Zf(2), e ,Zf(m)). Let
B ={hg(Xier, Trye s 2ier, Trm)t) :
each F; € Py(N),and Fy < ... < F,,}.

Then B € g(p1,p2, - .., Pk)-

Proof. We proceed by induction on the number of terms in g. If g has one term,
the result follows from Lemma 6.8. So assume that g has n > 1 terms and the
result is valid for polynomials with n — 1 terms.

Let 7 be the number of occurrences of variables in the n'® term of g, so that this
term i @n2f(m—r41)2f(m—r42) " Zf(m)- Let g consist of the first n — 1 terms of g,
so that g(z1,22,...,2k) = hg(y1,92,- .-, Ym—r). Let

D ={hg(XCier Trs - Xtemn_, Tim-r)t) :
each F; € Py(N), and Fy < ... < Fy,_,}.
Then by assumption D € g(p1,p2,.-.,pk). Also,
g(plap2v s 7pk) = ﬁ(plvp% s 7pk) + AnDf(m—r+1)Pf(m—r+2) " " Pf(m) -

Given y € D, pick Fi1,Fy, ..., Fp_p € Pr(N) with F; < F» < ... < F,,_, and
define ¥(y) = max F,,_,.

Let
C={y+ an(ZteFm,_r+1 Tpm—rt1),t) " ier, Trom)e)
y € D, each F; € P¢(N), and {P(y)} < Frn—py1 < ... < Fi,}.
By Lemma 6.9, C' € g(p1,pa,...,px) and C C B. O

The following example of the sort of combinatorial consequences of Theorems
6.5, 6.7, and 6.10 is a very special case of a general phenomenon.

Corollary 6.11. Let (z)$2, (y1)i2q, and (w)32, be sequences in N. Let
B = {2(Ter, 20)(Coer, 1) +3(Ciem w0 (Coer, w0)(Sier, 71) ¢
each F; € Pf(N) and F1 < Fy < F3 < Fy < F5}
Then B is a polynomial n-recurrent set for every n € N.

Proof. Let g(z1, 22,23) = 22129 + 3232321. Pick by [15, Lemma 5.11] idempotents

p € Mot FS(24)2,0), 0 € Noyey FS(ye)2), and 7 € () FS(we)2,,). By
Theorem 6.10, B € g(p,q,r) and by Theorems 6.5 and 6.7, g(p,q,7) € PR. O

The assertion that a set B “is a polynomial n-recurrent set for every n € N”
is the same as saying that for each H € P;(R) and each A C S with d(A4) > 0,

Bn{neN:d(N,ey (A—g(n)) >0} #0.

Corollary 6.12. Let {x4)?2,, (y+)521, and (wy)$2, be sequences in N, let A C N
with d(A) > 0, and let H € Py(R). There exist sum subsytems (u;)52; of (x1)524,
(v)§21 of (Yr)iZy » and (z1)72; of (wi)§Z, such that
B = {2(ZteF1 ut)(z:teF2 vg) + 3(ZteF3 Zt)(zteF4 Zt)(zteF5 Ug) :
each F; € P¢(N) and Fy < Fy < F3 < Fy < Fy}

C{neN:d(N,cy (A—g(n)) >0}
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Proof Sketch. Use Theorem 3.19 as in the proof of Theorem 3.20. O

A stronger result than that of Corollary 6.12 is available. According to [8,
Theorem 7.3] one can demand that Fy = F, = F3 = Fy = F5, or that just some of
these sets are equal. We note that such a conclusion cannot be derived from the fact
that BN {n € N:d((,cp (A —g(n)) > 0} # 0 for each choice of ()52, (y1)521,
and (w;)?°,. For example, let C = N\ {22 : z € N}. Then given any sequence
(zn)plq in N, one has {(3,cp 20) (D iep, @) : F1, F2 € Pr(N) and Fy < F}NC #
() and so given any sequence (z,,)2° ; in N, there will exist a sum subsystem (y,, )22 4
of (zn)p2y such that {(32,cpm ¥e)Qiep, ye) : F1, Fa € Py(N) and Iy < Fp} C C.
One clearly cannot require F; = F5.

Many other results can be proved in a similar manner. For example, if p, g € N*
and r is an idempotent in N*, then p(—q + ¢) + 3pr € DR(N). As a consequence,
we get the following theorem, whose proof we leave to the reader.

Theorem 6.13. Let (x,)2% 1, (yn)S2,, and (w,)S2, be injective sequences in
N. Then for each n € N, {x;(ym — yr) + 321> 1cp we) : j,k,m,l € N, F €
Pr(N), and j <k <m <l <minF} is a polynomial n-recurrent set.

There is an intricate relationship between members of polynomials on SN and
the ability to find expressions using sum subsystems and subsequences of specified
sequences in certain subsets of N. It is our intention to explore this relationship in
quite some detail in a forthcoming paper which we expect to write with Kendall
Williams. We shall illustrate aspects of this relationship with a few results involving
a specific polynomial, namely f(p,q) = 2p + qp.

Theorem 6.14. Let p and q be idempotents in BN and let A € 2p + qp. There
exist sequences (x,)52 1 and (yn)>, in N such that

{2 ZteFl xt"‘(ZteFQ yt)(zt€F3 xt) : Fi, Fy,F3 € P¢(N) and Fy < F, < F3} C A.
Proof. Let B=2"1{x e N:—x+ A € qp}. Then B € p. Let
B*(p)={x€B:—x+ Be€p}.
By [15, Lemma 4.14], B*(p) € p and if « € B*(p), then —z + B*(p) € p. Pick
r1 € B*(p) and let C; = —2x; + A. Then C; € gp. Let D; = {y e N: y~1C; € p}.
Then D, € q. Pick y; € Di(q) and let E; =y, *Cy. Then E; € p.
Pick 3 € B*(p) N ( — z1 + B*(p)) N E5(p). Let
CQ = (72171 + A) n (72132 + A) n (72(581 + Iz) + A) .
Then Cy € pq. Let Dy = {y € N:y~1Cy € p}. Then D; € q. Pick
y2 € D3(¢) N (= w1+ Di(a)).
Let By = yl_lCl N (y1 + yz)*lCl N yglcQ. Then F5 € p.
Inductively, let k > 2 and assume that we have chosen (z:)F_,, (y:)F_;, (Cy)F_;,
(Dy)F_,, and (Ey)F_,. For I,m € {1,2,...,k} with [ < m, let
My ={>cpve:0#F C{l,l+1,...,m}and l € F}
and let
Nin = {2 4er ¥ :0#F C{l,l+1,...,m} and | € F}.
Assume that for each m € {1,2,...,k} the following induction hypotheses hold.
(1) If i € {1,2,...,m} and z € M; ,, then z € B*(p).
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2) It m>1,1€{2,3,...,m}, and z € My, then z € Ef ,(p).
3) Cm == ﬂ’ln;l nZEMl,m (722 —+ A)

) DmZ{yGN:y”C’m € p} and D, € q.

5) If I € {1,2,...,m} and 2 € Ny, then z € Df(q).

6) E, = m;il ﬂzeNL . Z_lcl and FE,, € p.

All hypotheses are satisfied for m = 1 and m = 2. By hypothesis (1) we have

ﬂle ﬂzeM;,k (—2+B*(p)) € p. By hypothesis (2), ﬂfzg ﬂzeMl,k (—z+E;,(p) €
p. Pick zp41 € B*(p)ﬁﬂ;c:1 ﬂzeMl,k (—Z‘FB*(p))mﬂf:z ﬂzeMl,k (—2z+E ().
Then hypotheses (1) and (2) hold for m = k+1. In particular, ifl € {1,2,...,k+1}
and z € M jy1, then =22+ A € gp. Let Cpy1 = ﬂf;rll Meemy oy, (722 + A)
and let Dy = {y € N : y7*Cxy1 € p}. Then Cxyq € gp so D1 € q. By
hypothesis (5) we have that ﬂle Neen, (= 2+ Dj(q)) € q. Pick ypq1 € D4 N
ﬂle Neenis (=24 Dj(q)). Then hypotheses (3), (4), and (5) hold for m = k+ 1.
Let Fryi1 = fjll ﬂzeNl,Hl 2710, Given | € {1,2,...,k+ 1} and z € N; 11 we

have that z € Df(g) so z7*C; € p. Thus Ey11 € p.
The construction being complete, let Fy, Fy, F3 € P;(N) and assume that

NN N N
IS

max F; < min F5 and max Fy < min F3 .

Let | = min F3. By hypothesis (2), > ,cp, @t € Ej—1. Let u = minF3. Then
Y ter, Yt € Nujg—1 5o by hypothesis (6), E;—1 € (3 ,cpm, ¥:) ™ Cu 50

(Zter yt)(Zte& ry) € Cy .
Let v = min F;. Then ZteFl x; € M, ,, so by hypothesis (3), C,, C —Q(X:teF1 xe)+
As0 2 er, ) + Qier, Ut)Qier, Tt) € A as required. O

Note that a set A satisfying any (and hence all) of the statements in the following
theorem must be quite large. By way of contrast, any finite partition of N will yield
some set which is a member of 2p + ¢p for any p and ¢p.

Theorem 6.15. Let A C N. The following statements are equivalent.

(a) Whenever p and q are idempotents in (0N, +), A € 2p + gp.
(b) Whenever (x,)5%, and (yn)>, are sequences in N, there exist Fy, Fa, F3 €
Zf(N) such that Iy < Fo < Fy and 23, cp @0+ (X yep, Y6)(Diep, 1) €

(c) Whenever (x,)82 1 and (yn)S2, are sequences in N, there exist a sum sub-
system (un)22q of (xn)2, and a sum subsystem (V)21 of (Yn)o2, such
that

{2 ZtEFl ut+(ZtEF2 vt)(ZtEFs ut) L Fy Fs € Pf(N) and Fi1 < Iy < Fg} CA.

Proof. (a) = (b). Pick by [15, Lemma 5.11] idempotents p € (o-_; FS((z:)52,,)
and ¢ € (°_ FS((y)$2,,)- Let g(z1,22) = 221 + 2221. By Theorem 6.10 we have
that

{220 ierm v+ Qier, ) Xier, ©1)
Fi,Fy, Fy € Py(N) and Fy < Fy < F3} € 2p + qp.

Thus this set has a nonempty intersection with A.
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(b) = (a). Let p and ¢ be idempotents in (8N, +) and suppose that A ¢ 2p+ pq.
By Theorem 6.14 there exist sequences (x,)52; and (y,)22; in N such that

{22 sem e+ ier, ¥)(Xier, ©0)
Fi,Fy, F5 € Pf(N) and F1 < Fy < Fg} - N\A

But then AN (N\ A) # (), a contradiction.
(b) = (c). Use Theorem 3.19 as in the proof of Theorem 3.20.
(¢) = (b). This is trivial. O

We now turn our attention to A™ sets in N, developing some strong contrasts with
IP™ sets. Recall that by Corollary 5.6, if A C N and d(A) > 0, then A— A is a A™
set for each n € N. Further A— A ={z € N: An(A—=z) # 0}. We have by Lemma
4.12 that if B C N and d(B) > 0, then {z € N: d(BN (B — )N (B - 2z)) > 0}
is an IP* set. We shall see in Corollary 6.19 that for each n € N, there is a subset
B C N such that d(B) >0 and {r e N: BN (B —x)N (B —2z) # 0} is not a A™*
set.

The construction used in Theorem 6.18 is a minor modification of a construction
in [12, pp. 177-178]. Therein we let T = R/Z, representing the points of T by
elements of [0,1). Given 6 € [0,1), we let ||0]] = min{f,1 — 0}. Further, given
0,6 €10,1), 0+ ¢ denotes the addition in T, that is, the element of [0, 1) congruent
to the ordinary sum mod 1.

Lemma 6.16. Let « be an irrational element of [0,1), let 8 € (0,1), and let
0 < <e. For eachm €N, there exists n € N with n > m such that ||[n?a— || < €
and |Inal| < 6.

Proof. Define a transformation T of T x T by T(6,¢) = (0 + a,0 + ¢). Let u =
min{é, 5°}. By [12, Lemma 1.25] {T™(0,0) : n € N} is dense in T x T and

for n € N, T"(0,0) = (na,( g )a). Pick n > m such that ||na|| < p and

(5 )= 1l Then [ — 61l < 102 = )~ 81|+ fnal < =645, O

Lemma 6.17. Let (X, B, 1) be a probability measure space, let a > 0, and assume
that for each n € N, A,, € B and d(A,) = a. Then there exists C C N such that
d(C) > 0 and for any F € Py(C), p((,,cp An) > 0.

Proof. [2, Theorem 1.1]. O

Theorem 6.18. Let k € N. There exist a set B C N such that d(B) > 0 and an
increasing sequence (s4)72, in N such that

{>¥ier jese: F € Ps(N), |F| =k, and each j, € {1,-1}} N
{neN:d(Bn(B-n)N(B—2n)) #0}=10.

Proof. Let € = m Choose s; € N such that |[sfa — 5¢|| < e. Inductively,
having chosen increasing si, S, . .., S¢, choose by Lemma 6.16 s;41 > s; such that

1
st = gpll < cand flsprol < .
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(So for m € {1,2,...,t}, ||smsi+1a| < €.) Then, for any F € P;(N) with |F| = k,
and any choice of j; € {1, —1} for t € F we have
1 er dese)’a = 5l < Ciep llsia — g1l + X{l[2msial| : m,t € F and m # t}
< ke + (K* — k)e
= k%e.
Now let T x T have normalized Lebesgue measure y, so that u(T x T) = 1, and
let T be the transformation of T x T defined in the proof of Lemma 6.16. Let
A={(0,0) €T xT:||0]] <eand||¢|| <e}. Then u(A) = 4e% > 0.

Let D={neN: ANT "[A]NT~2"[A] # 0}. Then as shown in [12, page 178],
if n2 € D, then ||n?a|| < 6. We claim that

DN Y cr ist : F € Ps(N), |F| =k, and each j, € {1,-1}} = 0.

Indeed, suppose that n is in this intersection. Then as we saw above, ||n?a — %|| <
k?e while |[na|| < 6e. So 3 < (k? +6)e = 1, a contradiction.

Now pick by Lemma 6.17 a set B C N such that d(B) > 0 and for any F' € P;(B),
w(Nper T7"[A]) > 0. We claim that B is as required. So suppose instead that
we have n € N, F' € P¢(N) such that |F| = k and for each t € F, j, € {-1,1},
n=>3,cp jtst, and BN(B—n)N(B—-2n) # (. Pickz € BN(B—n)N(B—2n) and
pick y € T72[A]NT-""*[A]NT~2""%[A]. Then T*(y) € ANT"[A] NT~"[A],
so n € D, a contradiction. (I

Corollary 6.19. Let n € N. There is a set B C N such that d(B) > 0 and
{r eN:BN(B—-2z)N(B—2x)#0} is not a A™ set.

Proof. In Theorem 6.18, let k = 2n. Given F' € P¢(N) with |F| =k, let t1,ta, ...,k
be the elements of F in increasing order and for i € {1,2,...,k}, let j;, = (—1)®. O

Recall that by Lemma 3.13, if p € N*, then —p + p € DR(N). So the next
corollary provides a contrast between DR(N) and PR.

Corollary 6.20. There exists p € N* such that —p +p ¢ PRa.

Proof. In Theorem 6.18 let £ = 2 and pick B C N and an increasing sequence
(s¢)22, in N such that d(B) > 0 and whenever r < t,

si—s, ¢{neN:d(BN(B—-n)N(B-2n))+#0}.
Pick p € N* such that {s; : t € N} € p. Then by Lemma 3.10,
C={st—s:r<tl€—p+p.
Thus —p + p ¢ PRa. O

As our final contrast between I P™ sets and A" sets, we show, as promised, that
there is no relationship at all between A™ sets and A sets when n # k. We fix the
following notation for the rest of this section.

Definition 6.21. Let g < k < r in w. Let

Arpg = {0y (2 OF = 2@ (g 1), m(g + 1), n(k), m(k) € N

and n(g+1) <m(g+1) <n(g+2) <...<n(k) <m(k)}.

We have immediately that A, , is a AF=9 set in (N,+). Notice also that any
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member of A, j ; has a binary expansion with exactly k — g blocks of 1’s, and each
of these blocks has length divisible by r.

Lemma 6.22. Let g <k <7 inw andletv>k—g. Then A, 4 is not a AV set.

Proof. 1t suffices to show that there do not exist a € N and an increasing sequence
(xi)52, for each i € {1,2,...,k — g} such that

{a+ S0 @imei) — Timey) = n(1),m(1),n(2), ..., n(k — g),m(k — g) €N
and n(l) <m(l) <n@2)<...<nlk—g) <mk—g)} CAr kg

so suppose we have such a and such sequences. Pick {; € N such that 2/t > a. Pick
n(1) < m(1) such that x1 (1) = 1 m(1) (mod 2it +-1). Giveni € 1,2,...,k—g—1
and m(i), pick l;;1 such that 2l+1 > T m(iy and pick n(i 4 1) and m(i + 1) such
that m(z) <n(i+1) <m(i+1) and

Tit1n(it1) = Tip1m(ig1) (mod 2041 +1).

Then the binary expansion of a+ Zi:lg (T4, m(i) — Tin(i)) has at least k—g+1 blocks
of Us 50 a+ 323 (Tim(i) = Tin(i) & Arg- 0

Lemma 6.23. Let g <k <r inw withk —g>1. Then A, 4 is not a Al set.
Proof. Suppose that we have an increasing sequence (y;)?2; in N such that
{ys—yr:s,teNandt <s} C A pg.

For each t € N\ {1}, pick n(t,g+1),m(t,g+ 1),n(t,g +2),...,n(t, k), m(t,k) € N
such that n(t,g + 1) < m(t,g +1) < n(t,g+2) < ... < n(t,k) < m(t,k) and
Ye—Y1 = Zf:gﬂ (2rm(ti)ti__grn(t)+)  We may presume by thinning the sequences
that for each i € {g+ 1,9+ 2,...,k}, the sequence (n(t,4));2, is either constant
or strictly increasing and the sequence (m(t,4))2, is either constant or strictly
increasing. Further, if (n(¢,7))$2, is constant, so are the sequences (n(t, j))2, and
(m(t, )2, for all j < i. And if (m(t,i))2, is constant, so are the sequences
(n(t,7))2, for j < i and (m(t,5))52, for j < i. We also know that the sequence
(m(t, k))$2, is strictly increasing.
Therefore we must have either
(1) thereisl € {g+1,9+2,...,k} such that (m(t,1))52, is strictly increasing
and (n(t, 7)), is constant for j <1 and (m(t,7));2, is constant for j < I,
if any; or
(2) thereisl e {g+1,9+2,...,k} such that (n(¢,1));2, is strictly increasing
and (n(t,7))i2, and (m(t, j))s2, are constant for j < [, if any.
Assume first that (1) holds. Pick ¢ such that m(t,1) > m(2,k). Then

k m i +'L TN [ +2 rm + m +
yt — y2 = E i=1 1(2 (ta ) — 2 (t7 ) ) + (2 (tvl) l — 2 (27k) k)
§ =l 1(2 (t’ ) - 2 (t’ 1) 1) .

Since each block of 1’s in the binary expansion of y; — yo has length divisible by r,
by considering the term 27™(tE0+ _ 9rm(2k)+k e conclude that [ = k. But then,
yp — yp = 2"mEDFL _ 9grm(2m)+k g6 there is only one block of 1’s in the binary
expansion of y; — yo, while k — g > 1, a contradiction.
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Now assume that (2) holds. Pick ¢ such that n(¢,1) > m(2, k). Then
Ui — Yo = E§:l+1(2rm(t,i)+i _ 2rn(t,i)+i) 4 (2rm(t,l)+l _ 2rn(t,l)+l _ 2rm(2,k)+k)

k rn(t,2)+1 rm(t,i— 1— ™n
+Zi:l+1(2 (t,3)+ —9 (t,i—1)+ 1)+2 (2,l)+l.

Then the binary expansion of y; — y2 has 2(k —[) + 3 blocks of 1’s, one of which
has length 1, so ys —y2 & Ar kg O

Lemma 6.24. Let i < r in N and let (y:){2, be an increasing sequence in N. If
{yp—Ya:a,beNand a < b} C {2 — 2+ :mneNandn<m}=A4,,,1,
then there is some d € Z such that {t € N:y, € {2 T +d :m € N}} is infinite.

Proof. For each t € N\ {1} pick n(t) < m(t) in N such that y; —y; = 2"™m®+ —
2r()+i - By thinning the sequences we may assume that the sequence (m(t))2,
is strictly increasing and the sequence (n(t))s2, is either strictly increasing or con-
stant. But if (n(t))$2, were strictly increasing, we could pick ¢ such that n(t) > m(2)
so that y; — yo = 2rm(O+i _ grn()+i _ grm(2)+i 4 orn(2)+i 5 number whose binary
expansion has three blocks of 1’s and is thus not in A, ;;—;. Thus we have some
¢ € N such that for each t € N\ {1}, n(t) = ¢ and so y; = 2™+ 1 d where
d =y, —2reti, 0

Theorem 6.25. Let g < k < 7 inw and let v € N. Assume that for each j €
{1,2,...,v}, (Y1), is an increasing sequence in N and

{Z;:1<yj,b(j) —Yja0) * a(1)7 b(1)7 a(Z)v s ,a(v), b(’l)) EN
and a(1) < b(1) <a(2) <...<a(v) <b(w)} C A kg-

Then v =k — g and for each j € {1,2,...,v} there exists d; € Z such that {t € N :
Yj¢ € {29t 4+ d; : m € N}} is infinite. In particular, if v # k — g, then Ay g
is not a AV set.

Proof. We have by Lemma 6.22 that if v > k — g, then A, j 4 is not a A set. Thus
we shall assume that v < k — g and prove the statement by induction on k — g.
Assume first that k — g = 1, so that v = 1 and Lemma 6.24 applies.

Now assume that k — g > 1 and the statement holds for smaller values. We
claim that for each t < s in N, there exist u(t, s) € {1,2,...,v—1} and n(t, s,1) <
m(t,s,1) < n(t,s,2) <...< n(t,s,u(t,s)) < m(t, s,u(t,s)) in N such that y 5 —
Yie = Z?:(Zfl(QTm(t’s’i)+i — 2rn(ts:)+9) - To this end let ¢ < s be given and pick
| € N such that 2! > y; 5 —y14. For j € {2,3,...,0} pick a(j) and b(j) such
that y;a(j) = Yjp(j) (mod 2'71) and s < a(2) < b(2) < ... < a(v) < b(v). Then
3o (W30 Va1 —91.0) = Ty (27 OH_20) for some n(g+1) <
m(g+1) <n(g+2) <...<n(k) <m(k). The right hand side of this equation
has a binary expansion consisting of & — g blocks of 1’s and the binary expansion
of the left hand side has a 0 ocurring between the expansion of (y1,s —y1,.) and the
expansion of 224’:2(;%’1,(]-) — Yja())- So u(t,s), n(t,s,j), and m(t,s, j) must exist
as claimed.

By Ramsey’s Theorem, there must exist some infinite B C N and some u €
{1,2,...,v — 1} such that for all t < s in B, u(t,s) = u. Then {y1,s — 41+ : 5,1 €
Bandt < s} C A, 4 so by Lemma 6.23 we must have that v = g + 1. Further,
by Lemma 6.24, we may pick d; such that {t € N:y;, € {27 T9F! 4 dy : m € N}}
is infinite.
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Now fix t < s in B and pick ! such that 2! > y; —vi1 . By thinning the sequences
Y1,s = Y1, y g

(Yjw)55, for j € {2,3,...,v} we may presume that y;,, = y;. (mod 2!T) for all

w and z. We claim that

{Zﬁzz(yj,b(j) — Yj,a()) :a(2)7 b(2)’ a(3)7 e ,a(v), b(U) eEN
and s < a(2) <b(2) <a(3)...<a(v) <b(v)} C Arkgt1-

To this end, let a(2) < b(2) < ... < a(v) < b(v) be given with s < a(2). Pick
n(g+1) <m(g+1) <...<n(k) <m(k) such that

Y k rm(1)+1 rn(?)+e
(yl,s - yl,t) + Zj:Q(yj,b(j) — yj,a(j)) = Zi:g+1(2 (i)+i _ 2 (i)+ ) )
Then Y1.s — Y1t = 2rm(g+1)+g+1 _ 2r71(g+1)+g+1 5o

v k r . . . .
Y=o (Yib() = Yia()) = img (27T 2O € ALy oy

as claimed. By the induction hypothesis v—1=k—(g+1) and for j € {2,3,...,v}
we may pick d; such that {t € N:y;, € {2797 + d: m € N}} is infinite. O

<
<

We see in the following corollary that we have sets whose closure contains almost
all of the semigroup generated by {—p +p: p € N*}.

Corollary 6.26. Let k <r in N and let B =N\ A, ;0. Let T be the subsemigroup
of (BN, +) generated by {—p+p:p € N*}. Then all members of T are in B except
those of the form Zle(—pi +p;) where for eachi € {1,2,...,k} there exists d; € Z
such that {27+ +d; : m € N} NN € p;. That is

T\B= {Zle(—pi +pi): (Vie{l,2,...,k})(pi € N* and
(Hdz S Z)({2T7n+i +d;:me N} NN Gpi))} .

Proof. First assume that we have v € N and for each i € {1,2,...,v} some p; € N*
such that >°;_, € T\ B. By Theorem 6.25, v = k. Let j € {1,2,...,k} and
suppose that for all d € Z, {2 +d : m € N} NN ¢ p;. Fort € N, let
Bjy = N\U\__ {27 +d:m € N}. Fori € {1,2,...,k} \ {j} and t € N
let B;; = N. Pick by Lemma 5.3 for each i € {1,2,...,k} an injective sequence
(yit)52; in N such that for each t € N, y;, € ﬂ;zl B;; and

(8 Wiv) = Yiar) = a()bm(1),a(2),. .., a(k), m(k) € N
and a(1) < b(1) <a(2) <...<a(k) <bk)} CArko-

Pick by Theorem 6.25 some d; € Z such that {t EN:y;, €{2"™H +d; :me€ N}}
is infinite. This is a contradiction, since for all ¢ > d;, y; ¢ {2 +d; : m € N}.

Now assume that for all ¢ € {1,2,...,k} we have p; € N* and d; € Z such that
{2m*i 4 d; : m € N} NN € p; and suppose that Zle(—pi +p;) € B. For each
i €{1,2,...,k} and each t € N, let B;; = {27 4+ d;, : m € N} N N. Pick by
Lemma 5.3 for each ¢ € {1,2,...,k} an injective sequence (y; ;)52; in N such that
foreacht e N, y;, € ﬂz.zl B; ; and

(8 Wity — Vi) : a(D)bm(1),a(2), ..., a(k),m(k) € N
and a(l) < b(1) <a(2) <...<a(k) <bk)} CB.

In particular, Zle(ymi — Yi2i—1) € B. We may presume that each (y; )72, is
increasing. For i € {1,2,...,k} pick m(i) and n(i) such that y; o; = 2"+ 4 d;
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and y; 2;—1 = 2D+ 4+ d;. Then Z?:l(yi,%_yi,%—l) = Z?:l@rm(i)“—?n(i)“) €
Ay k0, a contradiction. O

7. SUMMARY OF RESULTS ABOUT THE CLASSES

In this section we list the various classes of subsets of S and classes of subsets of
BS which we have discussed, and summarize the main results about each and the
relations among them.

Subsets of S

Density intersective set

e Defined for left amenable semigroups. (Definition 3.1.)

e Implied by density recurrent. (Trivial.)

e Same as density recurrent set and set of measurable recurrence if S is
countable and left amenable. (Theorem 3.3.)

Density recurrent set

e Defined for left amenable semigroups. (Definition 3.1.)

e Implies density intersective. (Trivial.)

e Same as density intersective set and set of measurable recurrence if S is
countable and left amenable. (Theorem 3.3.)

Set of measurable recurrence

e Defined for arbitrary semigroups. (Definition 3.2.)
e Same as density intersective set and density recurrent set if S is countable
and left amenable. (Theorem 3.3.)

IP" set

e Defined for arbitrary semigroups. (Definition 4.1.)

o A is IP" set if and only if there exist idempotents pi1,ps,...,p, in 4S5 such
that A € py1ps---pn. (Theorem 4.3.)

e Implies IP"*!. (Theorem 4.7.)

e In (N, +), strictly stronger than IP"*1. (Theorem 4.8.)

IP™ set

e Defined for arbitrary semigroups. (Definition 4.1.)

e A is IP™ set if and only if for all idempotents pi1,po,...,p, in 8S, A €

p1p2 -+ Pn. (Corollary 4.4.)

e For left amenable and left cancellative S, if A C S and d(A) > 0, then
AA~Y is IP™*. (Corollary 4.5.)
Two combinatorial characterizations. (Theorem 4.9.)
In (N, +), strictly weaker than EIP?* for n > 2. (Theorem 4.11.)
For countable abelian groups, a recurrence condition sufficient to guarantee
IP™*. (Theorem 4.13.)

EIP™" set

e Defined for arbitary semigroups. (Definition 4.10.)

e Implies IP™*. (Trivial.)

e In (N, +), EIP?* strictly stronger than IP™* for some n > 2. (Theorem
4.11.)
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e For countable abelian groups, a recurrence condition sufficient to guarantee
IP™. (Theorem 4.16.)

A™ set
e Defined for groups and (N, +). (Definition 5.1.)
e A is IP™ set if and only if there exist p1,ps,...,p, in S* such that A €
[T, (p; 'pi). (Theorem 5.4.)
e Partition regular. (Corollary 5.7.)
e For each n, there is a subset of (N, +) which is a A™ set but not a A* set
for any k # n. (Theorem 6.25.)

AT set

o Defined for groups and (N, +). (Definition 5.1.)

o A is IP™ set if and only if for all py,ps,...,p, in S*, A € H?:l(pjlpi).
(Corollary 5.5.)

e If S is an amendable group or (N, +), and d(A) > 0, then AA~! is A™* for

each n. (Corollary 5.6.)

For n € N there is a set B C N such that d(B) > 0 and

{r eN:BN(B—-z)N(B—2z)#0}is not a A™ set. (Theorem 6.19.)

Polynomial n-recurrent set

e Defined for (N, +). (Definition 6.4.)
e Examples. (Corollary 6.11 and Theorem 6.13.)

Subsets of 35
DI(S)

Defined for left amenable semigroups. (Definition 3.1.)

Contains DR(S). (Trivial.)

Equal to DR(S) if S is countable and left amenable. (Corollary 3.4.)
If d(A) > 0, then contained in AA—!. (Theorem 3.15.)

DR(S)

Defined for left amenable semigroups. (Definition 3.1.)

Contained in DZ(S).

Equal to DI(S) if S is countable and left amenable. (Corollary 3.4.)

Contains ', (9) if S left cancellative and left amenable. (Lemma 3.8.)

Properly contains I', (N, +)). (Theorem 3.9.)

If S is amenable group or (N, +), then includes p~!p for all p € S*. (Lemma

3.13.)

e If S is left cancellative, then is semigroup and includes ¢~ !'p for all ¢,p €
DR(S). (Theorem 3.14.)

e DR(N,+) is a left ideal of DR(N,-). (Theorem 6.1.)

I(S)
e Defined for arbitrary semigroups. (Definition 4.1.)
o Is contained in I'c,,(S). (Trivial.)
e I'(N,+) not a semigroup. (Two paragraphs before Lemma 3.6.)

I'cs(S)
e Defined for arbitrary semigroups. (Definition 4.1.)



36

10.

11.

12.

13.

14.

15.

16.

17.

18.
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e Contains I'(S). (Trivial.)

e Is a semigroup if S is commutative. (Three paragraphs before Lemma 3.6.)

o Is contained in DR(S) if S left cancellative and left amenable. (Lemma
3.8.)

e Is properly contained in DR(N). (Theorem 3.9.)

Defined for (N, +). (Definition 6.4.)

Subsemigroup of (8N, +) containing the idempotents. (Theorem 6.5.)
Closed under subtraction from the left. (Theorem 6.6.)

Left ideal of (ON,-). (Theorem 6.7.)

There is p € N* such that —p + p ¢ PR4y. (Corollary 6.20.)

Defined for (N, +). (Definition 6.4.)

Subsemigroup of (AN, +) containing the idempotents. (Theorem 6.5.)
Closed under subtraction from the left. (Theorem 6.6.)

Left ideal of (N, ). (Theorem 6.7.)
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