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Let Q be an abelian group. A set R C € is a set of recurrence if for any
probability measure preserving system (X, B, u,{T,}seq) and any A € A
with p(A) > 0, p(ANTyA) > 0 for some g € R. If (z;){2, is a sequence in
2, the set of its finite sums {x;, + i, + -+ x4y, 141 < g < -+ < i} is
called an IP-set. In [BFM] it is shown that if p : Z¢ — ZF is a polynomial
vanishing at zero and F is an IP-set in Z% then {p(n) : n € F} is a set
of recurrence in Z*. Here we extend this result to an analagous family of
generalized polynomials, that is functions formed from regular polynomials
by iterated use of the greatest integer function, as a consequence of a theorem
establishing a much wider class of recurrence sets occuring in any (possibly
non-finitely generated) abelian group. While these sets do in a sense have
a distinctively “polynomial” nature, this far-ranging class includes, even in
Z, such examples as {>_; ic, ;i 2i37 1 a C N,0 < |a] < oo}, where the
connection to conventional polynomials is somewhat distant.

0. Introduction.

A set of measurable recurrence in a countable commutative group 2 is a subset R C €2
having the property that for any measure preserving action (7,) of £ on a probability
space (X, A, pn) and any A € A with p(A) > 0, there exists g € R with p(ANT,A) > 0.
By a correspondence principle of Furstenberg, R is a set of measurable recurrence if and
only if R is density intersective, that is, if for every E' C €2 having positive upper density

d(E) = limsup % with respect to some Fglner sequence (®,,), RN (E — E) # (.

A generalized polynomial Z — 7Z is a function, such as p(z) = [r2? + .17][[vV2zx*]ex],
built in an iterated manner from regular polynomials, the greatest integer function, addi-
tions and multiplications (we shall give a more formal definition later). This project grew
out of (and eventually outgrew) the following question: Let p be a generalized polynomial.
Is {p(n) : n € N} a set of measurable recurrence?

If p € Z[z] is a regular polynomial with p(0) = 0, the answer is yes. Sarkozy proved this
(formulated in terms of density intersectivity) in [S]. In [F], Furstenberg gave a substantially
different, ergodic theoretic proof via the spectral theorem. In [B] yet another proof is given,
using a method motivated by the difference trick of van der Corput. Complications arise
in attempting to adapt these proofs to generalized polynomials.

Much to everyone’s surprise, however, a much later (and substantially softer) proof
carries over nicely, at least for a large class of generalized polynomials, while at the same
time giving somewhat more. The proof referred to is that of [BFM], and the “somewhat
more” involves evaluating the given functions along members of IP-sets. An IP-set in a
commutative group €2 is a set consisting of all finite sums of elements of different indices
from a sequence in Q. Thus an IP-set has the form {n;, +n;, +---+mn;, : k € N,i; <
ip < -+ < iy}, where (n;)$2; C Q. By [BFM], if p(z) € Z[z] vanishes at zero and F is an
IP-set in Z, then {p(n) : n € F'} is a set of measurable recurrence.
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As we shall show, for many generalized polynomials the same result holds. It bears
mentioning that the IP-set feature of the formulation, while offering an obvious strength-
ening, imposes as well an inherent limitation on the class of generalized polynomials to
which it may apply. Consider for example p(z) = [rz]. One easily sees that for every
k € N, {p(n) : n € N} has a subset of the form {a,2a,...,ka}, and it is, in turn, sim-
ple enough to show that any set having this property is a set of measurable recurrence
(this line of discussion is pursued further in [BH]). On the other hand, using density of
the fractional part of w2 on [0,1), one may easily construct an IP-set F' such that for all
n € F, p(n) is odd. For such F, {p(n) : n € F'} cannot be a set of measurable recurrence.
(Simply consider a two point system with transformation T' swapping the points.) We
give a precise definition of the class we treat here, which we call the admissible generalized
polynomials, in section 2. For now, suffice it to say that the class of admissible generalized
polynomials contains p(z) = z, is closed under sums and products, and if p is in the class,
r is a real number and 0 < h < 1, then ¢(z) = [rp(z) + k] will again be admissible, while
t(z) = [rp(z)] need not be (as we have already seen).

Toward the goal of explicating the role of A, it may be instructive to compare the
generalized polynomial ¢(z) = [rx + h] to the example p(z) from the previous paragraph,
where 0 < h < 1. Choose a sequence (¢;) of positive reals with > e; < min{h,1 — h}.
Now suppose an IP-set F' = Fy = {m;, + my, +---+my, 1k € N,is <ig < -+ < i} is
given. It is an easy exercise that one may choose ny = m;, +m;, +---+ m;, € F7 such
that the distance from 7n; to the nearest integer is less than €;. Now let F5 be the IP-set
{mi, + mj, +---+m;, 1k € N,js < i1 <ip <--- < i} and choose ny € F, such that
the distance from 7no to the nearest integer is less than e;. (Notice that ny +ny € F.)
Continue in this way until a sequence (n;)$2; has been chosen such that the IP-set G =
{Dicami i a CN,0 < |a] < oo} is contained in F' and such that the distance from each 7n;
to the nearest integer is less than ¢;. It follows that, for « C N, 0 < |a| < oo, the distance
from ), ., ni to the nearest integer is at most ) ¢;, and from this we get that for any
pair of finite subsets o, 8 C N, with aN B =0, ¢(D;c, ni) + 2D icpni) = 4(Xicaup Mi)-
This implies that the set {g(n) : n € G}, which is contained in the set {g(n) : n € F}, is
itself an IP-set, being the set of finite sums of the sequence (q(nl))j; Since IP-sets are
separately known to be measurable sets of recurrence, {q(n) : n € F} is a set of measurable
recurrence.

This example, although linear in nature, is representative of the general strategy we
employ. Basically, we show that for any admissible generalized polynomial p(z) and any
IP-set F', there exists an IP-set G C F such that the set {p(n) : n € G} is of a special form
that we are able to demonstrate independently to be a set of measurable recurrence’.

In order to facilitate introduction of this special form, we develop some notation.
Denote by F the set of finite, non-empty subsets of N. An IP-set in a commutative group

LIf one is interested in mere recurrence, rather than recurrence along every IP-set,
it would be enough to find a single G having this property. For our earlier example
p(x) = [rz], this is easily accomplished, again using density of the fractional part of mx
on [0,1). Using apparatus developed in [Ha], such results can be shown to obtain for
many other non-admissible generalized polynomials having sufficient uniform distribution
properties. We may treat this issue in a later publication.
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with generating sequence (g;);2; is naturally indexed by F by letting n(a) = .., 9i,
a € F. We call such an indexed IP-set an IP system. Among all functions n : F — G,
IP systems are characterized by the linear identity n(a U 8) = n(a) + n(8), valid when
a N B = 0. Functions v : F — G satisfying the quadratic identity

v(@UBU7) —v(aUpB) —v(aUy) —v(BU7)+v(a) +v(B) +v(y) =0

for o, B,y pairwise disjoint are called VIP systems of degree 2. Higher order identities lead
to VIP systems of correspondingly higher degree. One may show that, for example, for
any polynomial p(z) : Z? — Z and any IP system n(«) in Z%, the function v(a) = p(n(a))
is a VIP system of degree at most degp. We call VIP systems arising in this manner
IP polynomials. A simple example, coming from the polynomial p(x,y) = zy and the IP
system n(a) = 3., (ni, m;), is the IP polynomial v(a) = 37, ., nim,.

The method of proof in [BFM] is to show, for example, that for any IP polynomial
v : F — Z and any unitary operator U on a Hilbert space H, a weak limit of U?(®) (see
below for the sense of convergence) is an orthogonal projection. Applying this to L2(X),
it follows by standard arguments that {v(a) : « € F} is a set of measurable recurrence.
Similar reasoning applies to IP polynomials (analogously defined) in Z¥. On the other
hand, a counterexample in [BFM] shows that, in general, for a unitary action (U,) of a
commutative group €2 and a VIP system v : F — ), a weak limit of U, (,) need not be an
orthogonal projection.

The argument we use here for admissible generalized polynomials is as follows: Extend
the class of IP polynomials to a larger class (the members of which we call FVIP systems) of
VIP systems along which appropriately defined sequences of unitary actions can be shown
to converge to orthogonal projections. This is quite a special property for a VIP system to
have, even in ZF; yet at the same time, the class must be chosen general enough that for
any admissible generalized polynomial p and any IP system n, the set {g(n(a)) : a € F}
can be shown to support such a system. This yields the following consequence of Theorems
2.2 and 2.3 below, a stronger version of which will be given as Corollary 2.9.

Theorem A. Let p be an admissible generalized polynomial Z! — Z! and suppose F is
an IP-set in Z!. Then {p(z) : z € F} is a density intersective subset of Z! (equivalently, is
a set of measurable recurrence). Indeed, for any set E C Z* with d(F) > 0 and any € > 0,

there exists some x € F such that E(E N (E - p(a:))) > (E(E))2 — €.

All of this makes for a quite satisfactory treatment of admissible generalized polyno-
mials, however it is at this point in the undertaking that FVIP systems come to be even
more interesting in their own right, partly in that one may proceed to define them for
arbitrary commutative groups. For example, under this definition, if 2 is a commutative
group, (n;) is a sequence of integers and (y;) is a sequence in €, then n(a) = > ;.. ¥
and u(a) = 7, ;e i MiY; are FVIP systems (the former is just a general IP system; the
reader is encouraged to compare the latter to the IP polynomial v(a) = 37, ;c, mim; in
Z introduced above). Rather than a mere tool used to prove a special result in Z* about
generalized polynomials, then, our operator convergence theorem, which states that weak
limits of unitary actions along FVIP systems are orthogonal projections, is better thought
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of as a joint extension of the Z* operator convergence result appearing in [BFM] and a
theorem from [FK] involving weak limits of IP systems of unitary operators in arbitrary
commutative groups.

We proceed to formulations: for «, 8 € F, we write a < 8 if maxa < min . Suppose
a; € F,i €N, with a; < as < ---. The set F(!) of non-empty finite unions of the a;’s, is
called an IP ring. We also set .7-'(2()1) = FM U {p}. FO is the isomorphic image of F under
the map 8 — Uz’eﬁ o;, which we call the natural isomorphism. If F(1) is an TP-ring and
z: FU) — X is a function into a topological space, we write IPE—}_I(III)I z(a) = z if for every

«

neighborhood U of z, there exists some oy € F such that z(a) € U whenever o € F)
and a > ag. As a consequence of a theorem of Hindman, which states, in one of its several
formulations, that for any finite partition of an IP-ring there is an IP-sub-ring in one cell
of the partition, one may always find, when X is compact metric, an IP-ring F(!) such

that IP- hm z(a) exists.
aeF(

Here now is the aforementioned result from [FK]:

Theorem B;. Let H be a separable Hilbert space, let {2 be a commutative group and
suppose that (Ug) is an action of Q by unitary operators on H. If n is an IP system in 2

and F(1) is an IP-ring such that IP- }_nn Un(a) = P exists in the weak operator topology,
ac
then P is an orthogonal projection.

And the analogous result from [BFM]:

Theorem B,. Let H be a separable Hilbert space and suppose (U,) is an action of Z*
by unitary operators on . If v is an IP polynomial in Z* and F() is an IP-ring such

that IP- }_un Uy(a) = P exists in the weak operator topology, then P is an orthogonal
ag
projection.

Finally, the operator convergence theorem we will be proving in section 1.1:

Theorem B. Let H be a separable Hilbert space, let {2 be a commutative group and
suppose that (Uy) is an action of Q by unitary operators on #H. If v is an FVIP system in

Q and FM is an TP-ring such that IP- ]!_1m Uy(a) = P exists in the weak operator topology,
agc
then P is an orthogonal projection.

Several of Theorem B’s implications for density combinatorics in arbitrary commu-
tative groups are outlined in section 3. Among the more interesting of these involves a
correlate of the notion IP,-set, which was introduced in [FK|. Given 7 € N, an IP, set in
a commutative group (2 is a set having the form {ZiEa zi: 0 #acC{l,.. .,r}}, where
T1,...,%y € . In other words, an IP, set is essentially a finite IP-set.

Obviously no IP,. set, nor any other finite subset of a countable group (to be more
precise, no finite subset not containing the identity), is going to be a set of measurable
recurrence. On the other hand, it is trivial to show that, given § > 0, there exists r
such that for any measure preserving action (Ty) of a probability space (X, A, p), any
measurable A with p(A) > §, and any IP, set R, u(ANT,A) > 0 for some g € R. By
analogy, one might expect that classes of sets indexed by parameters running through
IP-sets might have the property that, given §, similarly structured finite sets indexed
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by parameters running through IP, sets might achieve positive measure returns for sets
having measure at least 6. [FK]| contains formulations of many such results (formulated
in terms of multiple density intersectivity) having this flavor, while [BFM] has none. This
is not accidental. What makes the results possible in [FK] is the fact that r can be
fixed to work for a “universal” IP system (essentially the finite sums of the generators of
an infinite-dimensional free abelian group), whereupon one needs only to check that its
properties are passed to homomorphic images. The results of [BFM], limited as they are
to IP polynomials in Z*, exhibit no such universality.

Our results here do, however, have some universal character, and we are able to give,
for single recurrence at least, satisfactory polynomial extensions to many of the IP,. results
from [FK]. These involve what might be called “IP,. sets having polynomial weights.” We
shall formulate one simple case here for finite groups, leaving the bulk of the discussion
for section 3. By a polynomial Z — Z, we mean a polynomial having rational coefficients
and taking integers to integers.

Theorem C. Let ¢,0 > 0 and let p : Z — Z be a polynomial. There exists r € N
(depending on ¢, 6 and p) such that if H is any finite commutative group, w1, ..., u, € H,
and S C H with |S| > §|H|, then for some non-empty o C {1,...,7}, |[SN (S — u(w))| >

(02 — €)|H|, where u({s1,...,55}) = Yoo, p(t)us,.
1. A unitary convergence theorem for FVIP systems.

Let G be an additive abelian group and v : Fyp — G a function. If for some d (the least
such being called the degree of v), one has

vi)= Y (),

YCa,lvy|<d

where f : {a € F : Ja] < d} — G with f(0) = 0, then v is called a VIP system (of
degree d) and f is called the generating function of v. (For a proof that this definition is
equivalent to that alluded to informally in the introduction, see [M, Proposition 2.5].) The
corresponding identity for multiplicative groups is

v = [ s

YCa,ly|<d

For o, B € F, we write a < f if maxa < min 3. Given a VIP system v and some fixed
a € F, we define the derivative of v with step a to be the VIP system D,v, where

Dyv(B) =v(BUa)v(B) tv(a)™!, be F,a<p.

Notice that the VIP system D,v is not defined for all § € F, but only for 8 > «. This
leads us to the following digression.

If FU is an IP-ring then any function () — G that becomes a VIP system when
pulled back to F via the natural isomorphism will again be called a VIP system. (It is
worth noting, though not immediate, that, under this definition, the restriction of any VIP
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system to an IP ring is a VIP system.) The VIP system D,v introduced above is defined
on the IP ring {8 € F: 8 > a}.

The family of VIP systems into an abelian group (G, +) itself forms an abelian group
under addition. If V' is a group of VIP systems having the property that for all v € V and
a € F, D,yv is equal, on its domain, to some member of V', we say that V is closed under
derivatives. In this paper we examine groups of VIP systems that are both closed under
derivatives and finitely generated.

We now formally define our main object of study. Let {2 be a commutative multiplica-
tive group, let d € N, let (y;)2; be a sequence in Q and suppose (nEJ ))321 are sequences
inZ 1<j<d. ForyeF,v={i1,...,iq}, with iy <is <--- < ig, put

n(l)n(g)nvn,(.d*l)

f(’Y) — yidil ] tg—1 )

Finally for o € F set v(a) =]1,cq,yj=a f(7)- Then v : F — Qs said to be a simple FVIP

system (of degree, in general, d). If FO is an IP ring and v : F() — Q is a finite product
of simple FVIP systems then v is said to be an F'VIP system, the degree of which is equal
to the largest of the degrees of the corresponding simple FVIP systems. In general form:

Y, 2) d)=1)

" iy M,ig Lig(ry—1
v(a) = H H Yt iaq (1.1)

I=1 41,...,5q() EQ
iy << ig )

Note that if 2 is written additively instead of multiplicatively, equation (1.1) becomes:

T
= 1), (1,2) (1,d(1)—1)
'U(a) - Z Z nl’il nl,i2 P nl,id(l)fl ylaid(l) . (1.2)
=1 il,...,id(l)ea
i1<"'<7:d(l)
In either case, the sequences (y;)%>; in £ and (nl(l,;j ))Zozl in Z are called the generating

sequences of v.

If v is a VIP system the derived group of v is defined to be the group of VIP
systems generated by all iterated derivatives of v, specifically the group generated by
{Do,Day " Da,v: k€ Nyay < --- < ag}. It is not difficult to show that, if v is an
FVIP system, then the derived group is finitely generated. Indeed, if v is given by (1.1),
the group generated by the FVIP systems in 2 that can be formed from some combination
of the sequences y; . and nl(lj ) is finitely generated and closed under derivatives, and hence
contains the derived group of v. We illustrate this by means of an example, leaving the

general case to the reader. Suppose that €2 is an additive group and

v(a) = Z ngll)ng)yis .

11,i2,i3€Q
11<22<13

6



One then easily checks that

(T T @)+ Y OO ()

11€EQ 12,13 E€0,12<1i3 11,i2 €t <i2 13EH

The expressions in the large parentheses are FVIP-systems (in ) of degrees 2 and 1,
respectively, each of which is generated by some combination of the sequences n(V), n(? y,
and D,v is a linear combination of these.

Indeed, one can guess more from this example. First, D,v is of lesser degree than
v. (Actually deg Dyv = (degwv) — 1.) Second, the “coefficients” (the expressions appear-
ing inside the smaller parentheses) of the various FVIP systems appearing in D,v are
themselves Z-valued FVIP systems in the variable .. Third, the “expressions in the large
parentheses” are elements of the derived group. It is routine to establish these facts in
general. The significance of the latter is that it allows for the following proposition.

Proposition 1.1 Let v be an FVIP system and let W be the derived group of v. If
V < W is a subgroup with [W : V] < oo then there exists an IP ring F(!) such that for
alla € FO Dyv e V.

Proof. First we remark that for any finite family C' of VIP systems in Z and any n € N,
there exists an IP ring F(1) such that for all & € F(*) and all ¢ € C, ¢(e) is divisible by
n. This follows immediately from Lemma 2.6 below, applied to the family of real valued
VIP systems {c/n : ¢ € C'}. (Alternatively, one may derive it from Hindman’s theorem
and the characterization of VIP systems in terms of identities; for example, suppose c is
VIP of degree 2. Passing to an IP ring upon which ¢(«) is constant mod n, the identity
claUpUy)—claUP) —claUy)—c(BU5)+ c(a) + ¢(B) + c(y) = 0 immediately implies
that this constant value must be zero.)

Choose n € N such that nu € V for all u € W. Now, D,v(B) is, recall, a linear
combination of terms having the form c(a)u(), where the “coefficient” ¢ is an FVIP
system into Z and v € W. Choose an IP ring F(1) such that for all & € F1) and each of
these coefficients ¢ in the expansion of Dyv, ¢(«) is divisible by n. Now for fixed o € F(),
D,v is equal to n times a linear combination of terms having the form C(O‘)
w € W for this linear combination, one has D,v = nw € V.

U. ertmg

(

Some terminology: if G is a commutative group and E C G intersects non-trivially
the range of every FVIP system into G then F is said to be FVIP*. If n is an IP system
in Z% and p : Z% — Z'! is a polynomial mapping with p(0) = 0 then one may show that
v(a) = p(n(a)) defines an FVIP system. We call such systems, which were studied in
[BFM], IP polynomials.

The proof of Theorem 1.2 below shows that the FVIP system v(a) = >, e, icj 2137
in Z is not an IP polynomial. Notice, however, that if the restriction ¢ < j in the definition
of v were removed, the result would be the IP polynomial

v'(a) = p(n(a), m(a)), where p(z,y) = zy, n(a)= ZT, and m(a) = ZSj.

1€EQ JEQ



Thus we see that the difference between general FVIP systems and IP polynomials in Z is
somewhat subtle. Indeed, in Z, this subtlety is completely characterized by the occurrence
of the condition i; < --- < i4( in the index of summation in equation (1.2), without which
the definition reverts to a subclass of FVIP systems that is easily seen to consist precisely
of the IP polynomials. For example, the IP polynomial v'(«) defined by (1.3) is an FVIP
system, as may be observed by the equation v'(a) = Zi,an,Kj 2137 + Zm@zﬂ-q 3627 +

> ica 243
For infinitely generated groups €2, however, this point is not so subtle. In this case, the
definition resulting from the removal of the condition i; < --- < i4q) from equation (1.2)

yields a class of VIP systems that not only fails to be a subclass of the FVIP systems,
but is also, at present, beyond our ability to deal satisfactorily with. For example, if
m(a) = [[;cq pi is an IP system in (N, ) and o(a) = >, s; is an IP system in (N, +),
then v(a) = [[; ;cq.ic; P is an FVIP system in (N, -), while u(a) = m()?(®) = IL jea P
is in general not. Indeed, we do not at present know whether or not the range of such a
VIP system u need constitute a set of recurrence.

Theorem 1.2 There exists an FVIP system in (Z, +) that is not an IP polynomial.

Proof. It is an easy exercise that if v and u are VIP systems with v(a) = u(«a) for
all « € F, then their degrees and generating functions coincide. Indeed, this is because
one can always express the generating function f in terms of values of v. For example,
F({is . k) = v({i, 4, k) — v({i, 5) — (4, k}) — ({5, k) + v({i}) + v({5}) + v({k}). At
any rate, this fact is implicit throughout the proof to follow.

Let v(a) = 32, icq.ic; 2'37. Then v is a simple FVIP system of degree 2. Suppose that

v is an IP polynomial. That is, suppose that for some d € N, some polynomial p : Z¢ — Z
vanishing at zero, and some IP system n in Z¢, v(a) = p(n(a)). It does not follow that
degp = 2; however if degp > 2, we can nevertheless find some d’ € N, a polynomial
p' : Z¢ — Z having degree 2, and some IP system n’ in Z% such that v(a) = p' (n'()).
We consider this an exercise, so rather than prove it formally, we shall merely illustrate it
with an example.

Consider p(x,y, z) = xyz and suppose by chance that for some IP systems n, m,r in
Z, o — p(n(a),m(a),r(a)) is VIP of degree 2. Then

p(n(a),m(a),r(@) =Y nmyry

1,7, kEa

= Z n;ym;rx + Z nym;rx + Z n;M;Tk
[{4.5,k}1=3 [{4,5,k}=2 [{i.5,k}=1

= Z (SiT‘j +tim; + njui) + Z N;Mm;T4,
{é.5}=2 i

where s; = n;m;, t; = n;r; and u; = m;r;. (It is the observation of the first paragraph of
this proof that allows one to cancel the first summand in moving to the last line.) One can
easily check that this can be obtained as an IP polynomial using an appropriate polynomial
of degree 2 composed with an appropriate IP system.
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Hence without loss of generality, we may assume that p is of degree 2. Supposing this
to be the case, we have

t
@) = Zcm(i)( (Z) Zb k(’)(a
=1

for some TP systems n(9, m® and k), 1 < i < t, having generating sequences (n @ ))J L
(m (Z)) 2, and (k( )) 521, respectively. In particular, equating generating functions on sets

of cardinality two yields Zr 1 Cr (n(r)mm + m(T) (T)) =237 for i < j.
Write

Z; (cln( ),C2n( ),.. , CsTl n'® ),clm( ),CQm( ),...,csmgs)> and
1 2 s) (1) (2 s
gy = (m®,m®, _ m®), g)’ n® ),

Then (y;, x;) = (z;,y;) = 2°37 for all i < j. (Here (a,b) is the dot product of a and b.)
For N € N, let Sy = span {z; : 1 < i < N}. Then (Sy) is an increasing sequence

of subgroups of Z2*. Consequently, there exists N € N such that {z; : i € N} C Sy. In
. N : ’

particular, zy43 = > ;_; a;x; for some appropriately chosen a;’s. We now have

N N
N2V — (n s, yunia) = () aiwi ynya) = Y a;2'3V 2,
which implies that Ziil a;2" = 2V%2. 3, On the other hand,
N N
oNFIINTS — (rn g, yni1) = <Zaixi’ YNt1) = Zai2131\r+17

which implies that Y% | ;2% = 2¥+1 .9 a contradiction. O

Hindman’s Theorem ([Hi]) states that if Z(!) is an IP ring and F®) = (JI_; C; then for
some ¢, 1 <14 < r, C; contains an IP ring F (), A natural consequence is the following.

Proposition 1.3 ([FK], Theorem 1.5.) Suppose that, for every n € N, X,, is a compact

metric space and z, is an F-sequence in X,,. Then there exists an IP ring F() such that

IP-lim z,(a) = 2,
acFQ)

exists for each n € N.
Lemma 1.4. ([FK]) Suppose z is a bounded F-sequence of vectors in a Hilbert space
H and F() is an IP ring. If

IP-lim IP-li =
e epth (o) 2 uh)



then for some IP subring F2) ¢ F1), IP—]!_i(gr)l z(a) = 0 in the weak topology.
ac

Finally we have the following.

Proposition 1.5. ([FK, Theorem 1.7].) Suppose that H is a Hilbert space and {Uy}acr
is an TP system of unitary operators on #. If for some IP ring F(!)

IP-lim U, = P
acF )

weakly, then P is an orthogonal projection onto a subspace of H.
We now give two lemmas which will help facilitate the proof of Theorem 1.9.

Lemma 1.6. Suppose that s € N and that v is an F-sequence in Z*. Then for any IP ring
F@) there exists | < s, an [—dimensional subgroup V' C Z*, and an IP subring F? ¢ F1),
such that {v(a): @ € F@} C V and such that (if I > 0) whenever ay,---,a; € F? with
ay < --- < ay, the set {v(ay),---,v(q;)} is linearly independent.

Proof. [BFM, Lemma 1.6]. O

Lemma 1.7. Suppose that [ € N, (1) is an IP ring, # is a Hilbert space and {P(a)}ner

is an F-sequence of commuting orthogonal projections on H such that if aq, - -+, a; € F)

with a3 < --- < oy, and f € H we have (Hézl P(a;))f = 0. Then IP—}i(II)l |P(a)f]| = 0.
acFQ

Proof. [BFM, Lemma 1.7]. O
The following fact is routine.

Proposition 1.8. If v is an FVIP system and o € F then the derived group of v contains
the derived group of D,v.

This is our main theorem.

Theorem 1.9. Suppose that H is a Hilbert space and that I' is a commutative group of
unitary operators on . Let v be an FVIP system in I' and suppose F(!) is an IP ring
such that for each f € H,

IP-1i =P

[P-Tim v(a)f =Pf
exists in the weak topology. Then P is an orthogonal projection.

Proof. We use induction on d = degwv. The case d = 1 is easily seen to follow from
Proposition 1.5. Suppose now that the conclusion holds for FVIP systems of degree less
than d. Clearly ||P|| < 1. It is not difficult to show that any idempotent Hilbert space
operator () with ‘ |Q| ‘ < 1 satisfies Q = Q* and is an orthogonal projection onto a subspace
of H. Hence we need only show that Pf = P2f for an arbitrary f € H, which we now fix.
We also remark that since we need only consider the space spanned by f and its translates
under the v(a)’s, we can assume without loss of generality that # is separable.

Let W be the derived group of ('v(a))a cF Being a finitely generated abelian group, W
has a subgroup of finite index isomorphic to Z® for some s. Since we may by Proposition
1.1 upon restriction to a suitable IP ring assume that D,v belongs to this torsion-free
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subgroup, we will simply assume that W itself is torsion-free. Accordingly, by Lemma 1.6
there exists I < s, an [—dimensional subgroup V' C W and an IP ring 3 < FM) such
that {D,v : « € .7-'(2)} C V and such that whenever a; € F®, oy < -+ < q, the set
{Dg,v : 1 < i <} is linearly independent (as a subset of W). By Proposition 1.3, we may
further require of F(?) that all limits we encounter along F( exist.

For u € W, let us define P, = af;—}lér)l u(a), where the limit is in the weak oper-

ator topology. These limits are orthogonal projections and commuting by the induction
hypothesis. For Y a subgroup of W, we denote by Py the orthogonal projection onto
{ f: Puf = f for every u € Y}. Observe that if Y is the [—dimensional subgroup of V
generated by the linearly independent set {Dy,v: 1 <14 <[}, where a1 < as < --- < o,
we have Hézl Pp, v = Py.

For every n € N let V,, = {g™ : g € W} N V. Then V, is an I-dimensional subgroup
of V for each n and Py, is an increasing sequence of orthogonal projections, so that Q =
lim,,_, Py, is an orthogonal projection. Furthermore, we have for every /-dimensional
subgroup Y C V, V,, C Y for all n large enough. Hence

QH={f€eH: Py, f=f for somen e N},

(Q’H)L ={f €H: Pyf =0 for every [-dimensional subgroup Y C V'}.

According to our earlier remarks, all we must show is that for an arbitrarily chosen

f € H, which we now fix, Pf = P2f. We may assume that HfH < 1. We have f =g+ h,

where g € QH and h € (QH)*. We claim that Ph = IP-}_i(gr)l v(a)h = 0. As (per our
ac

choice of F (2)) we already know this limit to exist, by Lemma 1.4 it suffices to show that

IP-lim IP-li U B)h, v(B)R) = 0.
[P-lim IP-lim (v(aU B)h,v(B)h)

Notice that by the properties ascribed to F(?) earlier and the fact that h € (QH)L, we

have that whenever o; € F®), oy < --- < ay, (Héz1 PDaiU)h = 0. Therefore by Lemma,
1.7 we have

IP-lim ||Pp, k|| =0
a€cF(2)

and

1 RE — RE 1 —1
P-lim IP-lim (v(U )h,v(8)h) = TP-lim TP-lim ( Dav(B)h, v(e) ")

— IP-lim <PDavh,v(a)_1h>
acF(2)
<|IAl| (I-lim [|Po,hl[) = 0.

This establishes our claim.
Next we show that Pg = P?g. Let p be a metric on the unit ball of H for the weak
topology satisfying p(z,y) < Hx - y|| and let € > 0 be arbitrary. Choose k, Hk” < 1,

11



and n € N, with Py k = k and Hg — kH < e. There exists ag € F? such that for every
aeFP, o> a, p(v(a)k, Pk) < € and

p(v(a)Pk, P2k) < e (1.4)

Let a € F® be chosen with a > ag and such that Dyv € V,,. (Existence of such an «
follows from Proposition 1.1.) For every 8 € F(*), 8 > «, we have (aU ) > g as well, so
that

p(v(a)v(B)Dav(B)k, Pk) = p(v(aU Bk, Pk) <e. (1.5)

Since Dov € V,, there exists By € F®), By > «, such that for every 8 € F® with
B> Bo, || Dav(B)k — k|| < €, which implies that

p(v(a)v(B)Dav(B)k, v(a)v(B)k) < e (1.6)

We may now fix such a 3 with the further property that
p(v(a)v(B)k,v(a)Pk) < e. (1.7)
(We have used weak continuity of v(«).) Equations (1.4-7) and the triangle inequality give
p(Pk, P%k) < 4e.

Recall that ||Pz|| < ||z|| and p(z,y) < ||z — y||. Hence

p(Pg, Pk) < € and p(P%g, P’k) < e,
which gives us finally p(Pg, P2g) < 6e. Since € was arbitrary, we have

Pf = Pg = P%g = P%f.

2. Applications.

Our first application of Theorem 1.9 is the following generalization of Khinchine’s recur-
rence theorem.

Theorem 2.1. Suppose that (X, p) is a measure space with p(X) = 1 and that G is an
abelian group of measure preserving transformations on X. Let (v(a)), - be an FVIP

system in G. Then for any measurable set A, there exists an IP ring F(V) C F such that

i > 2,
IP-lim u(ANv(a)4) > p(4)

Proof. By letting H be a countable subgroup of G and restricting attention (if necessary)
to the o-algebra generated by {T14 : T € H}, we may assume that L2(X) is separable.

12



Accordingly, one may choose, by using a standard diagonal argument, an IP ring F)
with IP—}l_i(Ilr)l v(a)f = Pf existing for all f € L?2(X). By Theorem 1.9, P is an orthogonal
ac
projection, so that
IP-lim p(ANv(a)4) =TP-lim (1a,0(a)la) = (1a, Pla) = [|P1a|* = u(4)”.

O
Next, we have a combinatorial version of Theorem 2.1.

Theorem 2.2. Let G' be a countable abelian group and suppose E C G such that (with
respect to a given Fglner sequence for G), d(E) > 0. If (v(a)) is an FVIP system into

G then there exists an IP ring () C F such that

a€F

IP-lim E(E N (E- U(a))) > d(E)2.

Proof. By the so-called Furstenberg correspondence principle, there exists a probability
space (X, A, ), a measurable set A € A with u(A) > d(F), and a measure preserving

G-action Ty of X such that for every g € G, d(EN(E — g)) > p(ANTy(A)). The resuls
now follows immediately from Theorem 2.1. ]

In order to lend significance to the above two theorems, we now give some natural
examples of classes of FVIP systems in commutative groups.

For r € R, let [r] denote the integer part of 7, i.e. the greatest integer less than or
equal to r. Put also {r} = r — [r], the fractional part of r, and (r) = |r — [r + 1]|, the
distance from r to the nearest integer. For fixed | € N, the set of generalized polynomials
Z' — Z is the smallest set G that is a function algebra (i.e. is closed under sums and
products) containing Z[x1, ..., z;] and having the additional property that for all m € N,
C1,---,Cm € Rand p1,...,py € G, the mapping n — [, ¢;p;(n)] is in G.

The admissible generalized polynomials Z' — Z consist of the smallest subset G, of
the generalized polynomials that includes, for 1 < i <1, (n1,...,n;) — n;, is closed under
differences, is an ideal in the space of all generalized polynomials, i.e. is such that if p € G,
and ¢ € G then pg € G,, and has the property that for all m € N, ¢1,...,¢;n € R,
D1y Pm € Go and 0 < k < 1, the mapping n — [>_1, ¢;pi(n) + k] is in G,,.

It is clear from the definition that if g(z) is admissible then g(0) = 0, and that, in
fact, usual polynomial mappings p : Z! — Z are admissible if and only if p(0) = 0. The
class of admissible generalized polynomials contains such things as:

plna,ma) = [VBIVInInalng + VTTnd + ][vEns].

Finally, if t € N we say a map p : Z! — Z! is an admissible generalized polynomial if
its coordinate functions are admissible generalized polynomials.

Theorem 2.3 Let p(x) be an admissible generalized polynomial Z' — Z* and suppose
(m(a))a cr is an IP system in Z!. Then for every IP ring F(1) there exists an IP ring

F@ c FO such that (p(x(a)))aej_.m is an FVIP system in (Z,+).
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Note that Theorem 2.3 is sufficient, when combined with Theorem 2.2, to obtain
Theorem A of the introduction. The remainder of this section will be primarily devoted to
a proof of Theorem 2.8, which is a more general version of Theorem 2.3. First, however,
we note that it implies, by the original argument, the following generalized polynomial
version of [BFM, Proposition 2.3].

Theorem 2.4 Suppose (Y, v) is a measure space with »(Y) < oo and that S is a conser-
vative (in case v(Y) = oo) measure preserving transformation of Y. Suppose that (X, )
is a probability space and that T' is an invertible measure preserving tranformation of X.
Then if A C Y x X with (v x p)(A4) > 0 and p(x) is an admissible generalized polynomial,
there exists n € N such that

(v x ) (AN (S™ x TPM)~14) > 0.

We now proceed toward our goal of proving a more general version of Theorem 2.3.
First, we need two simple lemmas.

Lemma 2.5. Let (2;)52; C Z, (y;)52; C R, 0 < k < 1 and suppose that Y .o |2;[(y;) <
min{k,1 — k}. Then for every n € N, >0 | zy; + k] = >y zilyi + 1.
Proof.

n n n n
1 1 )
| i = Y wilys+ 51 <D il s = [y + 5] = Y boallys) < minfk,1 - K} < 1.
i=1 i=1 i=1 i=1

O

The second is [BKM, Lemma 2.2]. We include a proof for convenience.

Lemma 2.6. Let (vfj))ag be VIP systems in R, i € N. For any IP ring F(!) there exists
an IP ring F(® such that
e (vl =0

for all 7 € N.

Proof. We prove the result for a single VIP system (v(a))a e whereupon the general
result follows by a standard diagonal argument. It is clear from the definitions that
({v(a)})a cFm 1s a VIP system on the group [0,1) with operation addition modulo 1.

Choose F?) ¢ F1) such that ({v(a)})ae}_@) is convergent in the torus topology (in
which 0 and 1 are identified) and call the limit x. If d is the degree of the system, then by
[M, Proposition 2.5] one has, for ap < oy < --- < ag, a; € F?,

> (-1)'w(B1U---UB) = 0.

{ﬂla"'aﬂt}c{aﬂf"aad}
Bi#B;, 1<i<j<t

Taking the limit along F®) in the preceding equation yields 2¢ terms of —z and 2¢ — 1
terms of z, and these sum to zero. That is, —x = 0. ]
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The following lemma constitutes the bulk of the proof of Theorem 2.8 below. For
a € F, we write a’i for the set of k-tuples (iq,...,ix) € of satisfying i1 < is < ... < if.

Lemma 2.7. Suppose (vi(a)) are FVIP systems into Z, 1 < ¢ < m. One has the

following:

(1) (vi(@) + v2 (a))ae}_ is an FVIP system.

(2) For any n € Z, (v1()(va(e) + n))ae}' is an FVIP system.

(3) If ¢1,...,Cm, k € R with 0 < k < 1 then there exists an IP ring F() such that
(Do, civi(a) + k])aefF(l) is an FVIP system.

Proof. (1) is obvious; we have of course been assuming all along that FVIP systems form
a group under addition. For (2), we may by iterated use of (1) assume without loss of
generality that n = 0 and that (vl(a))a o7 and (v (a))a ¢ 7 are simple FVIP systems:

acF

v (@) = Z H n(J) va (@) = Z H m(J). (2.1)

(11, ﬂd)ea (lla al )Ea

Then

d c
v1(@)ve(a) = Z (Hng)) (Hml(:))

(i1,.-ia)€al J=1 =

(I1,e5le) €l
The right hand side is a sum of simple FVIP systems, one corresponding to each possible
ordering of {i1,...,44,0l1,...,l.} respecting iy < --- < ig and [y < --- < l.. (For example,
taking d = ¢ = 2, 41 <l < ls < 19 and l; < 71 < 29 = ly are two such orderings. In
the latter case the corresponding simple FVIP system is of degree at most three, being
generated by the sequences (n§~1)), (m§~1)) and (n§2)m§2)).)

For (3), it will be convenient notationally to assume that m = 1. Accordingly we will
suppress subscripts, writing v(«) for v1(«) and ¢ for ¢;. The case of general m does not
follow from the case m = 1 directly; the proof however is no different conceptually (merely
more complicated).

For an arbitrary sequence oy < ag < - -+, for 8 = {i1,...,im} € F we put

s(B) = v( U ;) = vy, U---Uay,)

i€ep
t
SSRGS | ()
(al, 7at) (.717 7.7t)613<7‘ 1 (T17 77'a )E(aJ ) L Y= 1
1<a;<d
ai1+--+ar=d
We write

w(al,...,at,i)(,y) _ Z Hn(a1+ tai1+y)

(7‘1, Ta; )G’Y<z y_
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Then

v(Jew)= ) oo J[w e (ay,), (2.2)

1€EQ (CL1,...7at) (]1,,jt)€ﬂt< =1
1<a;<d
a1+-+ar=d
while if we fix a1,...,as, and put mgz) = w(81:-+969) (), the inner sum in this expression

becomes

t (%)
K]
>, Im3?.
(j17"'7jt)€/8t< i=1
which is a simple FVIP system. This establishes, in particular, that s(3) is an FVIP
system.
Let us go back, however, to (2.2). We claim that the sequence (¢;)$2; may be chosen
so that

t—1
Z Z (H w(al’“"““i)(aji)) (cw(“l"“’“t’t)(ajt» < min{k, 1 — k}.

(ala"'aat) (jla"'vjt.) i=1
1<a;<d 51<-<Jt

a1+--+at=d
Indeed, this is immediate. Simply choose oy with (cw(®V (a1)) = (cv(a1)) < W
and, having chosen «aq,...,ap—1, choose apr > ajpr—1 such that

t—1 .
Z Z (Hw(m,...,at,i)(aﬁ)) <C,w(a1,...,at,t)(aM)> < W

(al,...,a,t) (j17---7jt) i:l
1<a;<d  j1<---<ji=M
a1+---+ar=d

This is possible because of Lemma 2.6; the sum is finite and cw(@126t) is 3 VIP system.
It follows by Lemma 2.5 that

[es(B) + k] = [ev( | ) + ]

i€ep

t—1
— Z Z (H w(al’m’at’i)(aﬁ)) [Cw(m,...,at,t) (ajt) + %]

(@1,-5ae)  (f1,--5¢)EBL =1
1<a;<d
a1+-+as=d

Fixing ai,...,as, if we put mg.i) = w@90i) (), 1 < 4 < t — 1, and let, mgt) =
[cw(@10e:8) () + 1], the inner sum in this expression becomes

t
> IIm,

(j17“'7jt)€/8t< i=1
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which is a simple FVIP system. This establishes that ([cs(83) + k])ger is an FVIP system,
ie. ([ev(a)+ k])aef(l) is an FVIP system. O

Here now is the more general version of Theorem 2.3 mentioned earlier.

Theorem 2.8. Let p(x) be a generalized polynomial Z! — Z! and suppose (x(oz))a cF I8

an FVIP system in Z!. Then for every IP ring F() there exists an IP ring F® c FO)
and some n € Z* such that (p(z(a)) + n)ae}.m is FVIP. If p is admissible then n = 0.

Proof. Clearly it suffices to consider the case t = 1. Let H be the set of generalized poly-
nomials for which the weak conclusion (n not necessarily zero) holds. # clearly contains
Z[z; ...,z;] and is closed under sums and products by Lemma 2.7 (1) and (2), respectively.
Let m € N, c1,...,cm € Rand py,...,py € H. We claim that g(z) = [Y_v, cipi(z)] € H.

By hypothesis there are an IP ring £ ¢ F(1) and some FVIP systems (vi(a))ae}.(?)
such that for all @ € FP®, q(z(e)) = X, api(z(@)] = X, c(vila) — n)] =
>, civi(a) + k] —n, where n € Z and 0 < k < 1. If 0 # k then, by Lemma 2.7
(3), ¢(z(a)) +n = >~ civi(e) + k] is FVIP upon passing to a sub-ring, so that ¢ € H as
desired. Otherwise, Hindman’s theorem may be used to extract a sub-ring of F?) along
which [, ¢;v;(@)] is either always equal to (i) [Y;~; c;v;(a) + 1], which implies that

(q(x(a)) + n) is FVIP along a further subring as before, or (ii) [Yi~, c;vi(@) + 3] — 1,

which implies that (q(:v(a)) fnt 1) is FVIP along a further subring. In either case, we

have ¢q(z) € H.

The argument so far establishes that H contains all of the generalized polynomials,
as required. Next let H' be the subset of H satisfying the stronger conclusion (n = 0). H’
clearly contains the maps (n1,...,n;) = n;, 1 < i <[. By Lemma 2.7 (1), #' is closed
under sums. By Lemma 2.7 (2), together with the part of this theorem that has already
been proved, H' is an ideal. Finally, Lemma 2.7 (3) shows that if m € N, ¢1,...,¢m € R,
P1y---,Pm € H and 0 < k < 1 then n — [y v, ¢;pi(n) + k| is in H'. These facts together
establish that H’ contains the admissible generalized polynomials. L

Combining Theorem 2.8 with Theorem 2.2, we get the following strengthening of
Theorem A from the introduction.

Corollary 2.9. Let p be an admissible generalized polynomial Z' — Z!. Then for any set
E C Z! with d(E) > 0 and any € > 0, the set

{zeZ':d(En(E-p(z)) > (d(E))? —€}

is FVIP*.
3. Actions of Z*° and IP, systems.

We denote by Z*° the free abelian semigroup on generators {e; : j € N}. We identify Z*°
with the set of all functions N — NU{0} such that 5 — 0 for all but finitely many j. Thus
a typical element of Z* may be represented as (ni,ns,...,nk,0,0,...). For l,r € N, we
write Z(l,r) for the set of all members of Z*° having representation (nq,...,n,,0,0,...)
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with 0 < n; <[, 1 < i < r. Notice that for sequences (l,,) and (r,) increasing to oo,
(Z(l,,,72)) is a Folner sequence for Z*.

For the remainder of this section, our convention will be that when we write, for
example, & = {s1, S2,..., 5.}, we stipulate that s; < s9 < --- < s,.. Also, recall that by a
polynomial p : Z — Z we mean some p(z) € Q[z] such that p(Z) C Z.

Theorem 3.1 Let p : Z — Z be a polynomial, and for « = {s1,82,...,8.} € F let
v(a) =Y, p(t)es, € Z°°. Then v is an FVIP system.

Proof. Let d be the degree of p, put n; = 1 for every i € N and for a = {s1,..., s} set:

vo(a) = Zest = Zei

1€EQ
,
v1(a) = Z(t —1es, = Z n;e;
t=2 i€, i<]
T
t—1
va(a) = Z ( 9 )est = Z TN ;€.
t=3 i,j,kEa
i<j<k

T

t—1
va(a) = Z ( d )est: Z My My~ "M Cigyy -

t=d+1 11,..,8d4+1E€EQ

11 < <lq41
The proof is now completed by the well-known fact that the polynomials (t_il), 0<1<d,
form a basis for the polynomials Z — Z of degree at most d. Or, to be a bit more J)recise,

we have p(t) = Zj:o a; (t_il), where a; = ;:;11 p(k)(=1)i—k+1 (kil) Hence v =), a;v;,

so that v is an FVIP system. L
We now have the following corollary.

Corollary 3.2. Let p : Z — Z be a polynomial and for {sq,s2,...,8.} = a € F let
v(e) =32 p(t)es, € Z%°.

a. Suppose E C Z* such that (with respect to a given Fglner sequence) d(E) > 0. There
exists an IP ring F() C F such that

IP-lim E(E N (E- u(a))) > d(E)?.

b. For all €, > 0 there exist L and R (depending on €, § and p) such that if [ > L,
r > Rand E C Z(l,r) with |E| > 0|Z(l,r)| then for some non-empty set « € {1,2,..., R},
BN (B—v(0) > (6 - |Z(r)].

Proof. a. follows immediately from Theorem 3.1 and Theorem 2.2. Suppose for contra-
diction that b. fails. Then there exist sequences [,,, R,, and r, going to co, with r,, > R,
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and sets E, C Z(l,,r,) with |E,| > 6|Z(l,,r,)| but such that for every non-empty
a€{L,2,...,R.}, |[E,N(En,—v())| < (0% — €)|Z(ln, ) |. Now, for any (rapidly enough)
increasing function m : N — N, the set E = Er ;) U U2, (E,r(nH) \Z(lx(n) r,r(n))) satis-
fies d(E) > 6 with respect to the Fglner sequence (Z(lx(n), Tr(n))). Moreover it is not too
difficult to see, again if 7 increases rapidly, that for every a € F, E(E N(E —v(a)) < 6% —¢,
which contradicts a. 0

The following theorem contains Corollary 3.2 as a special case.

Theorem 3.3. Let ¢,0 > 0 and let p : Z — Z be a polynomial. There exist v > 0 and
R € N (depending on ¢, § and p) such that if H is any commutative group, u1,...,ur € H,
J C H a finite subset satisfying |[JA(J 4+ w;)| < v|J|, 1 < i < R, and S C J with
|S| > 6|J| then for some non-empty o C {1,..., R}, |SN (S — u(a))| > (62 — €)|J|, where

w({s1,. .-, 50}) = So_, p(t)us,.

Remark. Notice that if J = H is itself a finite group, the almost invariance condition
|JA (J +uz)| < v|J| is automatically satisfied and we get Theorem C from the introduction.

Proof. Let ¢, and p be given. Let §; < § and €¢; > 0 with 62 — ¢; > 62 — ¢ and choose
R = R(e1,61,p) as in Corollary 3.2 b. Put M = max;<;<g |p(¢)| and choose [ > L(ey, d1,p)

I—2M—1\R 02 —e1—0%+e §—& 52 —€1—6%4e
) > 1 - : lR+11R’2lR-1HR(2M-|-1)R} and

suppose H, uy,...,ugr, J and S are given. Let r > R be large enough that ZT% > B[]
Write X = {(n1,...,n.,0,0,...) € Z(l,7) : ny = ng = --- = ng = 0}. Choose a
dummy element x ¢ H and let 7 : X — J U {z} satisfy |[v~(z)| < |J| and |7~ 1(j)| = &,
where % -1<k< %, for all j € J. Extend 7 to a function m; : Z(l,r) — JU{z} by
letting 71(nq,n2,...,n,,0,0,...) = Zf?’zl nyu; + 7(0,0,...,0,np41,...,Mp,0,0,...) if this
sum is defined and in J, and 71(nq,na,...,n,,0,0,...) = z otherwise.
Let

so large that ( Let v = min{;

R
B={j€J:3(n,...,ng) €{0,1,...,0 = 1}F with j = Y "nu; ¢ J},
=1

and notice that for 5 € J\ B, |77(j)| = 1Bk, while for j € B, |77'(j)| < I%k. (A
consequence of the former is that for any set A C w7 !(J), |7 (A4)] > %. We shall make
use of this momentarily.) Moreover, |B| < 2% [J| and |7y '(z)| < °52|Z(l,7)|. These

facts, taken together, imply that

[T—R 0 — 01
—1)(6
|J| )(1+ 2

d—061
2

771 (S\ B)| = 1%k|S \ B| > I(

)| |

>1"(61 + ) — 1B > 176; = 6,|Z(1,7)].

Accordingly, for some non-empty set o C {1,2,..., R},
7 S\ B) N (771 (S\ B) = v(@))| > (6 — e1)|Z(l, 7)), (3.1)
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where for {s1,s2,..., 8} = a, we have written v(a) = Zle p(t)es,-
Let C = {y € Z(l,r) : y +v(a) € Z(L,7), m(y) # =, m(y + v(a)) # m(y) + u(a)}.
Then |C| < (62 — €1 — 62 + €)|Z(l,7)|, so by (3.1) we get

(7T S\ BN (7S \ B) = v(@) ) \ €] = (57 = 9|Z(L, 7).

Applying m; to this, and using the fact alluded to parenthetically above,

m <(7r1_1(S\B) N (771 (S\ B) - v(e)) ) \c) ‘ > (5;_];) Z(L,r)| > (5% =€) ].

We claim that
m (<7r1_1(5 \B)n (x7X(S\ B) — v(a))) \ 0) c (s n(s - u(a))) . (39

This will suffice for the proof, as it shows together with the previous display that ‘S N (S —
u(a))‘ > (6% —€)|J|.
We establish (3.2). Let y € <7r1_1(5 \B)N (z7(S\ B) — v(a))) \ C. We must show

that m(y) € (Sﬂ (S - u(a))) Since y € Z(l,r), y + v(a) € Z(l,r), m1(y) # x but
y ¢ C, it must be the case that m(y) + u(a) = m1(y + v(a)) € S. Also mi(y) € S, so
m1(y) € <S Nn(s- u(a))), as required. O

We now give a reformulation of the previous Theorem in Z.

Corollary 3.4. Let ¢,0 > 0 and let p : Z — Z be a polynomial. There exist N, R € N such
that if ui,...,ur € Z and n > N maxi<;<g |u;| then for any E C {1,...,n} with [E| > in
there exists a non-empty o C {1,..., R} having the property that ‘E N (E — v(a))| >

(0% — €)n, where v({s1,82,...,8p}) = Zgzl p(t)us,.
Proof. Let v and R be as guaranteed by Theorem 3.3 and let N > % ]
Next, we give a formulation in R.

Corollary 3.5. Let ¢,6 > 0 and let p : Z — Z be a polynomial. There exist R € N
and A > 0 such that if A C [0, 1] is measurable with m(A4) > 0 and z1,...,zr are any
real numbers with |z;| < A, 1 < i < R, then for some non-empty o C {1,..., R} one has

m(AN (A —u(a))) > 6% — ¢, where u({s1,52,...,8}) = Z;’:l p(i)xs, .

Proof. Choose §; < 6 and €¢; > 0 with 2 — ¢; > 62 — €. Let N and R be as guaranteed
by Corollary 3.4 for €1,6; and p. Let A\ = ﬁ Suppose A and z1,...,xgr are given. Let
M = maxi<;<g |p(i)| and choose B > 0 so small that (67 — e1)(1 — B(RM +2)) > 0% — ¢
and 0 — 23 > ;.

It is routine to show via Lebesgue points of density that for any large enough ¢t € N, if
one partitions [0, 1] into ¢ sub-intervals I, ..., I; of equal length % then for all but perhaps

Bt exceptional indices j, one will have tm(ANI;) € ([0, B]U[1 — B,1]). Using the fact that
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m(A) > 0, it is then easy to see that if E = {j € {1,...,t} : tm(ANI;) > 1 — 3} then
|E| > t(6 — 28) > td;.

Another standard fact is that every point on the R-torus is recurrent under a shift
map. In particular, letting T'(y1,...,yr) = (y1 + Z1,...,Yyr + zr) (mod 1), there exist
arbitrarily large ¢ such that the distance from T%0 to 0 is less than 3 in each coordinate.
What this implies is that for j = 1,..., R, the distance from tz; to the nearest integer u;,
is less than . Choose such a ¢t which is also large in the sense of the last paragraph.

Notice that |uj| < At + 8, which implies N|u;| < ¢, 1 < j < R. Hence by the choice
of N, R, the conclusion of Corollary 3.4, gives a non-empty o C {1,..., R} having the
property that |E N (E - v(a))‘ > (02 — €1)t, where v({s1,82,...,8p}) = 2?21 p(7)us, .
Now, for j € EN (E — v(a)), one has m(ANI;) > # and m(AN I ) > %, which
is to say that m(A N [Z3, 1)) > 222 and m(A N [jJ”’(ta)_l, j+1;(a)]) > 128 One easily

¢
checks that |v(a) — tu(e)| < BRmaxi<i<r [p(i)| = BRM, from which it follows that

j+tu(e) =1 j+tu(e)

(A t FEL 1—B(RM +1)

t bl

I)>

which is equivalent to

]) S 1—-pB(RM +1)

m((A—u(a))ﬂ [J;l J ;

t 't

Now we finally obtain

) —1 1-B(RM +2
m(E1 9]0 A0 (4 - u(e)) > T AEMED),
But this holds for all j € EN (E — v(a)), so
m(Aﬂ (A—u(oz))) > (63 —el)tl_ﬁ(ﬂ;M—i_Q) > 6% —e

O

The previous corollary, situated as it is in the uncountable group R, suffers somewhat
from an approach we have adopted since Theorem 2.2, namely restriction to countable
groups G. An artifact of this approach is that the “polynomial weights” p(n) appearing
there are unnecessarily required to be integer-valued. In fact, the corollary remains valid
for polynomials p : Z — R, though to prove this one may need to go all the way back to
Theorem 2.2 and redo everything for sets of measurable density in uncountable groups.
For ease of presentation (and in keeping with a historical precedent set forth in [FK]) we
have chosen against this approach.
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