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Abstract. A set R C N is called rational if it is well approximable by finite unions of
arithmetic progressions, meaning that for every € > 0 there exists a set B = _J;_; a;N +

b;, where ay, ..., a,, by, ..., b, €N, such that
_ RAB)N{l,..., N
d(RAB) :=lim sup I ) ) <e€.
N—o0 N

Examples of rational sets include many classical sets of number-theoretical origin such as
the set of squarefree numbers, the set of abundant numbers, or sets of the form @, := {n €
N:¢@(n)/n < x}, where x € [0, 1] and ¢ is Euler’s totient function. We investigate the
combinatorial and dynamical properties of rational sets and obtain new results in ergodic
Ramsey theory. Among other things, we show that if R C N is a rational set with d(R) > 0,
then the following are equivalent:

(a) Risdivisible, i.e. d(RNuN) > 0 forall u € N;

(b) R is an averaging set of polynomial single recurrence;

(c) R is an averaging set of polynomial multiple recurrence.

As an application, we show that if R C N is rational and divisible, then for any set E C N
with d(E) > 0 and any polynomials p; € Q[t],i =1, ..., £, which satisfy p;(Z) C Z and
pi(0)=0foralli e {1, ..., £}, there exists § > 0 such that the set

(neR:d(EN(E—pi(n)N---N(E— p(n) > B}

has positive lower density.
Ramsey-theoretical applications naturally lead to problems in symbolic dynamics,
which involve rationally almost periodic sequences (sequences whose level-sets are
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rational). We prove that if A is a finite alphabet, n € AN is rationally almost periodic,
S denotes the left-shift on A% and

X:={ye AZ - each word appearing in y appears in n},

then 7 is a generic point for an S-invariant probability measure v on X such that the
measure-preserving system (X, v, S) is ergodic and has rational discrete spectrum.
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1. Introduction

The celebrated Szemerédi theorem on arithmetic progressions [58] states that any set S C
N having positive upper density d(S) =limsupy_ ., |SN {1, ..., N}|/N > 0 contains
arbitrarily long arithmetic progressions. A (one-dimensional special case of a) polynomial
generalization of Szemerédi’s theorem proved in [12] states that for any S C N with d(S) >

0 and any polynomials p; € Q[f], i =1, ..., £, which satisfy p;(Z) C Z and p;(0) =0
for all i e {1, ..., ¢}, the set S contains (many) polynomial progressions of the form
{a,a+ p1(n), ..., a—+ pe(n)}. The proof of the polynomial extension of Szemerédi’s

theorem given in [12] is obtained with the help of an ergodic approach introduced by
Furstenberg (see [32, 33]). In particular, the one-dimensional polynomial Szemerédi
theorem formulated above follows from the fact that for any probability space (X, B, w),
any invertible measure-preserving transformation 7: X — X, any A € B with u(A) >0
and any £ polynomials p; € Q[¢] satisfying p;(Z) CZ and p;(0) =0, i € {1, ..., ¢},
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there exist arbitrarily large n € N such that u(AN T P1MWAN ... AT PMWA) > 0. Asa
matter of fact, one can show that

N
1

lim — ANT PWAN...AT™PMA) > 0. 1.1
Jim > )>0 (1.1)

n=1
One of the goals of this paper is to refine (1.1) by considering multiple ergodic averages

of the from
N

lim —————— )1 ANT PWAN... QTP Q) 1.2
R R ; R(M)A( (2

for certain sets R of arithmetic origin called rational sets, which were introduced in [13]
(see Definition 1.1 below). We show that for any rational set R the limit in (1.2) exists.
Furthermore, we give necessary and sufficient conditions on R for this limit to be positive.
This, in turn, allows us to obtain new refinements of the polynomial Szemerédi theorem,
some of which we state at the end of this introduction.

To present the main results of our paper we need to introduce some definitions first.

Definition 1.1. (Rationally almost periodic sequences and rational sets) Let A be a finite
set. We endow the space AN with the Besicovitch pseudo-metric dp (cf. [15, 16]),

dp(x. y) = lim sup | LSS N2 x(@) £y}l
N—o0 N

(1.3)

A sequence x € A is called (Besicovitch) rationally almost periodic (RAP) if for every
e > 0 there exists a periodic sequence y € AY such that dg(x, y) <e&. (A more general
definition of the Besicovitch pseudo-metric dp and of rationally almost periodic sequences
will be introduced in §2.1 (see p. 7) and in §3.2 (see Definition 3.7).)

A set R C N is called rational if the sequence 1g (viewed as a sequence in {0, 1YY is
RAP; see [13, Definition 2.1].

Here are some examples of rational sets:
e the set Q of squarefree numbers (see [13, Lemma 2.7]);
e the set & of abundant numberst and the set & of deficient numbers (see
Corollary 2.17);
e for any x € [0, 1], the set &, :={n e N:¢@((n)/n < x}, where ¢ is Euler’s totient
function (see also Corollary 2.17).

+ We remark that the original proof in [12] established only that

P 1 ul —pi(n —pe(n
lim inf Suw@AanTPimAn .. ATTPem 4) > 0,
n=1
whereas the existence of the limit in (1.1) was obtained later; see [38, 45].
fLeto(n) = Zd\n d denote the classical sum of divisors function. The set of abundant numbers and the set
of deficient numbers are defined, respectively, as &7 :={n e N:o(n) > 2n}and 7 :={n € N: o (n) < 2n}. (The
classical set of perfect numbers is defined as & := {n € N: o (n) = 2n}.)
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The above examples are special cases of sets of multiples and sets of %B-free numbers.
For % C N\ {1} the corresponding sets of multiples and #-free numbers are defined as
Mz :=Upep PN and Fgy =N\ Mg, respectively. The abundant numbers (as well
as the union of the abundant and perfect numbers) form a set of multiples, the deficient
numbers yield an example of a #-free set and P is a set of multiples. In §2.4 we show
that for Z C N\ {1} the set F4 is a rational set if and only if the density d(Fg) :=
limy_ o0 (1/N)|Fg N[1, NJ| exists (see Corollary 2.16).

A natural way of obtaining rational sets is via level-sets of RAP sequences: if
A=l{ai,ar,...,a,}is a finite set and x € AN is an RAP sequence then the sets {n €
N:x(m)=ai},...,{ne€N:x(n) =a,} are rational. As a matter of fact, x € AZ is
RAP if and only if all its level-sets are rational. Examples of RAP sequences include
regular Toeplitz sequences, or, more generally, Weyl rationally almost periodic sequences
(for definitions see §3.1). In particular, paperfolding sequencest as well as automatic
sequences coming from synchronized automata are RAP sequences (see §§3.1 and 5 for
definitions and more details).

Definition 1.2. (Cf. [10, Definition 1.5]) We say that R C N is an averaging set of
polynomial multiple recurrence if for any invertible measure-preserving system (X, B,
w, T), AeB with u(A) >0, £ € N and any polynomials p; € Q[¢], i =1, ..., £, with
pi(Z) C Z and p;j(0) =0foralli € {1, ..., ¢}, the limit in (1.2) exists and is positive. If
£ =1 then we speak of an averaging set of polynomial single recurrence.

An averaging set of (single or multiple) polynomial recurrence R C N must also be a set
of recurrence, i.e. for each measure-preserving system (X, B, u, T) and each A € B with
w(A) > 0 there exists n € R such that u(ANT~"A) > 0. If we assume that the density
d(R) =limy_ (1/N)|R N [1, N]| exists and is positive then it follows—by considering
cyclic rotations on finitely many points—that the density of R NuN also exists and is
positive for any positive integer u. This divisibility property is a rather trivial but necessary
condition for a positive density set to be ‘good’ for averaging recurrence. This leads to the
following definition.

Definition 1.3. Let R C N. We say that R is divisible if d(R N uN) exists and is positive
for all u € N.

Note that for rational sets the existence of d(R) and d(R NuN) is automatic (cf.
Lemma 3.14 below). Therefore, to verify divisibility, it suffices to check the positivity
of d(R NuN) for all u € N.

One of our main theorems asserts that for rational sets divisibility is not only a necessary
but also a sufficient condition for averaging recurrence.

THEOREM 1.4. Let R C N be a rational set and assume d(R) > 0. The following are
equivalent:
(@) R is divisible;

T Given an infinite binary sequence i € {0, I}N, we inductively define the paperfolding sequence t € {0, 1}N
with folding instructions i (1), i(2),i(3), ... as follows: set (1) :=i(1) and, whenever 7 (n) has already been
defined forn € {1, 2, ..., 25 — 1}, define t(n) forn € (2, 25 +1,.. ., 2kl _ 1) as1(2K) == i (k) and £ (n) :=
121 — ) for 2% < n < 2%*1. For more information on paperfolding sequences, see [1, 22].
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(b) R is an averaging set of polynomial single recurrence;
(¢) R is an averaging set of polynomial multiple recurrence.

It was proved in [13] that every self-shift of the set Q of squarefree numbers, i.e. any set
of the form Q — r for r € Q, is divisible and hence satisfies the hypothesis of Theorem 1.4.
Moreover, it follows from [13] that a shift Q — r for r € N is divisible if and only if r € Q.
The following theorem establishes a result of similar nature for sets of Z-free numbers.

THEOREM 1.5. Let 8 C N\ {1} and assume that d(F ) exists and is positive. Then there
exists a set D C Fg with d(Fg \ D) = 0 such that the set F — r is an averaging set of
polynomial multiple recurrence if and only if r € D.

Remark 1.6. A detailed discussion of criteria for the existence of d(F 4) will be provided
in §2.4; see Definition 2.14 and Theorem 2.15. In §3.4 we obtain a version of Theorem 1.5
for the case where d(F4) does not necessarily exist; see Theorem 3.27.

In §2.4 we also show that in Theorem 1.5 one has D = F if and only if the set & is
taut; see Definition 2.19 and Theorem 2.26.

Theorem 1.4 motivates closer interest in RAP sequences as independent objects. In §3
we take a dynamical approach to study RAP sequences more closely. To formulate our
results in this direction, let us first recall some basic notions of symbolic dynamics.

As before, let A be a finite set (alphabet) and let S: A% — AZ denote the left-shift on
AZ ie. Sx =y where x € AZ and y(n) = x(n + 1) forall n € Z. For x € A% (or x € AY)
and n <m we call x[n, m] = (x(n), x(n + 1), ..., x(m)) a word appearing in x. Given
ne AV, let

X, :={x € AZ: (Vn <m)3k € N) x[n, m] = nlk, k +m —n — 11}
= {x € A% : each word appearing in x appears in n}.

Clearly, X, is a closed and S-invariant subset of AL (usually referred to as the subshift
determined by n)T. A sequence 7 € AN s called generic for an S-invariant Borel
probability measure u on AZ if

N-1
1
lim — ") =
Jim oy X = [

for all continuous functions f € C(A%), where 7j € A% denotes any two-sided sequence
extending n € AY. Note that the above definition does not depend on the choice of the
two-sided extension 7 of 7.

For an RAP sequence 7 € A" we call the corresponding symbolic dynamical system
(Xy, S) a rational subshift. We show in §3 that any rational sequence 7 is generic for
an ergodic measure v such that (X, v, S) has rational discrete spectrum (i.e. the span of
all eigenfunctions of T is dense in L>(X, B, 1) and all the corresponding eigenvalues are
roots of unity), a result which we believe is of independent interest.

that the of has
+ When 7 is (topologically) recurrent, that is, any finite word appearing in n reappears infinitely often, then there

is 5 € AZ such that 7[1, c0) = 5 and Xy = (SK% : k € Z} (cf. [25, pp. 189-190]). Note, however, that not all
RAP sequences are recurrent.
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THEOREM 1.7. Let n € AN be RAP. Then there exists an S-invariant Borel probability
measure v on X, such that n is generic for v and the measure-preserving system (X,, v, S)
is ergodic and has rational discrete spectrum.

In light of Theorem 1.7, the following result (obtained in §3.4) can be viewed as a
‘dynamical’ generalization of Theorem 1.4.

THEOREM 1.8. Let R C N with d(R) > 0 and suppose 1 := 1g is generic for a Borel
probability measure v on X, C {0, 1}Z such that (X, v, S) has rational discrete spectrum.
Then there exists an increasing sequence of natural numbers (Ny)k>1 such that the
following are equivalent.

(A) R isdivisible along (Ni)k>1, that is, for all u € N,

RNuNN{L, ..., N,
AR A uN) = lim (ROUNOL Wl
k— 00 Nk

0.

(B) R is an averaging set of polynomial multiple recurrence along (Ni)i>1, that is, for
all invertible measure-preserving systems (X, B, u, T), £ € N, A € Bwith u(A) > 0

and for all polynomials p; € Q[t], i =1, ..., ¢, with p;(Z) C Z and p;(0) =0 for
ie{l, ... 0
1
li . 1 AﬂT_pl(n)Aﬂ,..mT—pg(n)A ]
om A 21 rRM)u( )>0
n=

In §§2.4 and 3.4 we give various examples of (classes of) rational sets for which
Theorems 1.4 and 1.8 hold.

With the help of Furstenberg’s correspondence principle (see Proposition 4.1) we have
the following combinatorial corollary of Theorem 1.4.

THEOREM 1.9. Let R C N be rational and divisible. Then for any set E C N with d(E) >
0 and any polynomials p; € Q[t], i =1, ..., £, which satisfy p;(Z) C Z and p;(0) =0
foralli € {1, ..., L}, there exists B > 0 such that the set

{neR:d(EN(E - pim) N---N(E = pe(n))) > B}
has positive lower density.

We note that Theorem 1.5 also yields combinatorial corollaries in the spirit of
Theorem 1.9, which are formulated and proved in §4.

We conclude this introduction by stating an amplified version of Theorem 1.9, a proof
of which is also contained in §4.

THEOREM 1.10. Let R C N be rational and divisible. Then for any E C N with E(E) >0
and any polynomials p; € Q[t], i =1, ..., £, which satisfy p;(Z) C Z and p;(0) =0, for
alli € (1, ..., L}, there exists a subset R' C R satisfying d(R) > 0 and such that for any
finite subset F C R/,

3<ﬂ(E N(E = pi@)N---N(E - Pe(n)))) > 0.

nekF
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Structure of the paper.  Section 2 is divided into four subsections. In §2.1 we show that
RAP sequences are good weights for polynomial multiple convergence. In §2.2, we prove
the equivalence (a) < (b) of Theorem 1.4. In §2.3 we give a proof of the equivalence (a)
< (c). Finally, in §2.4, we provide more examples of rational sets, and discuss some of
their properties. This includes a discourse on #-free numbers and a proof of Theorem 1.5.

In §3 we define rational subshifts and study their dynamical properties. In particular,
§3 contains a proof of Theorem 1.7.

In §3.4 we give a proof of a strengthening of Theorem 1.4, and in §4 we provide various
combinatorial applications of it via Furstenberg’s correspondence principle.

In §5 we prove that systems generated by Weyl rationally almost periodic sequences
(see p. 23 for the definition) satisfy Sarnak’s conjecture.

Finally, in the appendix we establish a uniform version of the polynomial multiple
recurrence theorem obtained in [12], which is needed for the proof of Theorem 1.4.

2. Rationality and recurrence
2.1. Rational sequences are good weights for polynomial multiple convergence. The
purpose of this subsection is to show that for rational sets R with d(R) > 0, the limit in
(1.2) always exists.
First, we make the following observation. If d(R) exists and is positive then the limit in
(1.2) exists and is positive if and only if the limit
N
lim — Y 1gmu(ANTPWAN... AT P 4) 2.1)
N—oco N "
exists and is positive. Since throughout this paper we mostly consider sets R for which
d(R) exists (except in §3.4) and is positive, it suffices to study the ergodic averages given
by (2.1) instead of (1.2).
For the special case where £ = 1 and p;(#) = ¢, the existence of the limit in (2.1) follows
from the work of Bellow and Losert in [6]. To better describe what is known in this case,
we need to introduce first the following extended form of Definition 1.1.

Definition 2.1. Given x, y: N — C, we define
N

. 1
dp(x, y):=limsup — 3 " [x(n) = y(n)]. (22)

N—o0 N n=1
A sequence x: N — C is called Besicovitch almost periodic (BAP) [15, 16] if for every
& > 0 there exists a trigonometric polynomial P () = Z?’IZI cjezﬂ’*f’ wither, ..., cpm €
Cand Ay, ..., Ay € Rsuchthatdg(x, P) =dp((x(n))yen, (P(n))nen) < . If, for each
& >0, one can choose Ay, ..., Ay € Q — which is equivalent to the assertion that the
sequence (P (n)) is periodic — then we call x (Besicovitch) rationally almost periodic, or

RAP. In particular, RAP sequences are a special type of BAP sequences.

It is shown in [6, §3] that for any bounded BAP sequence x: N — C, the ergodic

averages
N

1 \
Jim, 57 2 x0T f

n=1
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converge almost everywhere for any function f € L (X, B, ). From this, the existence
of the limit in (2.1) for £ = 1 and p1(¢) = ¢ follows immediately.

Definition 2.2. A sequence x € {0, 1}Y is called a good weight for polynomial multiple
convergence if for every invertible measure-preserving system (X, B, u, T), for all

f1, ..., fe € L°°(X, ) and for all polynomials p; € Q[t], p;(Z) C Z,i € {1, ..., £}, the
limit
| XN ¢
; _ pi(n) ¢
Jim v § :x(n)l_[T fi (2.3)

n=1 i=1
exists in L2(X, B, ).
The following proposition shows that the limit in (2.1) exists in general.

PROPOSITION 2.3. Let x € {0, 1} be RAP. Then x is a good weight for polynomial
multiple convergence.

Proof. 1t follows from the results of Host and Kra [38] and Leibman [45] that the sequence

N
1
ﬁZqu(n)fl""'TW(n)fe’ N>1,
n=1
converges in L2, for any q; € Q[t],qi(Z) C Z,i =1, ..., L. In particular, given arbitrary

a €N, b € Z, the averages
| N
5 Z Tﬁl(an+b)f1 o Tﬂz(an+h)f[
n=1
converge in L as N — oo. Equivalently, the limit

N
1
im — pi() £ . TPen)
Jim Z] Langp (TP fro TP f, 2.4)
n=

exists. Observe that any periodic sequence can be written as a finite linear combination
of infinite arithmetic progressions 1,n45. Therefore, it follows from (2.4) that for any
periodic sequence y € {0, 1} the limit

1

N

lim — TP g )

Jim Z]ym) fi fe
n=

also exists in L.
Since any RAP sequence x can be approximated by periodic sequences, we can find
periodic sequences y,,, m € N, satisfying dp (y,, x) — 0 as m — co. Define

N
1
1 - § pi(n) £ . .7 pe(n)
Ly = ngnoo N lym(n)T fi-...-T fe.
n=

Then
1Ly — Ly g2 <Ay Ym) | fillLee - - oo |l fellLees
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which shows that (L) is a Cauchy sequence, whence the limit L := lim,;,—, o L, exists.

Moreover,
N

1
limsup|L,, — — Zx(n)Tp‘(")fl ce TP g,
N—oo N P L?
can be bounded from above by dg (x, ym) Il f1llLee - - - || fell oo, which converges to zero as
m — oo. Therefore, the limit in (2.3) exists and equals L. O

2.2. Averaging single recurrence. In this subsection we provide a proof of the
equivalence (a) < (b) in Theorem 1.4. Of course, this equivalence is a special case of
the more general equivalence (a) < (c). We include a separate proof of this simpler case
because, on the one hand, this proof is more elementary and self-contained and, on the
other hand, it contains in embryonic form the ideas needed for the proof of the general
case. Let us state the non-trivial implication, namely (a) = (b), as an independent theorem.

THEOREM 2.4. Assume that R C N is rational and divisible. Then R is an averaging set
of polynomial single recurrence.

The proof of Theorem 2.4 is comprised of two parts. First, we prove the assertion
for totally ergodic systems. Recall that (X, B, u, T) is called rotally ergodic if T™ is
ergodic for all m € N. Equivalently, T is ergodic and the spectrum of the unitary operator
associated with 7' contains no non-trivial roots of unity.

Lemma 2.5 below, which is the second ingredient in the proof of Theorem 2.4, allows
us to reduce the case of general ergodic systems to those which are totally ergodic. This
is done by replacing 77" with T7@" for a highly divisible natural number u. Since
p(0) = 0, this allows us to identify 77" with T4 for some other polynomial g. This
procedure annihilates the rational part of the spectrum in the sense that will be made precise
below.

In the following, we use /Cpy to denote the rational Kronecker factor of (X, B, u, T),
which is defined as the smallest sub-o -algebra of 3 for which all eigenfunctions with roots
of unity as eigenvalues are measurable. Equivalently, the rational Kronecker factor is the
largest factor of 7 which has rational discrete spectrum. It is also a characteristic factor
for ergodic averages along polynomials. This means that for any function f € L? and any
polynomial p € Q[t], p(Z) C Z,

-0, 2.5)

N
1
li _E 7P ¢ _ TPMR "
NLI;%()HN n=1( f (f|]C t)) L2

where E(f|/Cryt) denotes the conditional expectation of f with respect to Kry,
i.e. the unique function in L2?(X, B, u) such that E(f|Ka) is Kra-measurable and
fA E(f|K ) du = fA fdu forall A € Ky A proof of (2.5) can be found in [9, §2].

LEMMA 2.5. Let (X, B, u, T) be an invertible measure-preserving system and let R C N
with d(R) > 0. Also, let p € Q[t] satisfy p(Z) C Z and p(0) = 0. Assume that for each
real-valued g € L*>(X, B, 1) with E(g|Kra) = [ gdp > 0 there exists some § > 0 such
that

d(Ds(g) NuN) >0 forallueN, (2.6)
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where Ds(g) :={n e R:(TP™Mg, g)>8). Then for all non-negative f € L*(X, B, j)
with [y fdu >0,

lim sup — Z 1r((TPDf, f) > (2.7)

N—o0 n=1

Proof. Fix f € L*(X, B, ), f >0 with fX f du > 0. Then the function
¢V f =B + [ S du
X

is real-valued and satisfies E(gV|KCra) = f x g du > 0. Therefore, we can find some
8 > 0 such that (2.6) holds for g = g, Pick 0 < € < /8. Let K, stand for the factor of
Krat that is generated by eigenfunctions corresponding to eigenvalues which are roots of
unity of degree at most u. Note that Xy C Ky C K3 C ... and

]Crat = \/ ICm!-

meN

Hence, using Doob’s martingale convergence theorem (see [54, §3.4]), we can find m € N
such that |E(f|ra) — E(fIKCn) |12 < €. Take u = m! Define

¢ =E(IC) = [ fdu
gV =E(f 1K) — E(fIKy),
sothat f =g 4+ ¢g® 4 ¢® A simple calculation shows that
(T"g®, ¢y =0 foralli, j €{l,2,3} withi # j and for all n € Z.
It follows that
(TP® £ ) = (TP (D) 4 g@ 4 g®) o) | @) 4 o)
= (TP g gy L (TP g@) @y 4 (70 o3 4By

Then, using 77 g® = ¢@ for all n € uN and ||g¥||;> < &, we get that for every n €
Ds(g™M) NuN,

(Tp(n)f’ f)= Tp(n) (Y]

(1)> + (Tp(ﬂ)g(Z), g(2)> + (Tp(")g(3), g(3)>

( . 8
(Tp(m M gy 4 (4@ 4@y _ g2
B

—e2>0.

VoV

To complete the proof, it suffices to notice that

lim sup ﬁ Z 1r()(TP™ £, £) > lim sup N > 1) (TP™ £, £)

N—oo ¥ N=oo 0 eDs(eMNuNN(lL,..., N}

> (8 — &%) d(Ds(g") NuN)

and apply (2.6) for g1, O
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Proof of Theorem 2.4. Suppose R C N with d(R) > 0 is both rational and divisible. We
want to show that R is a set of averaging polynomial single recurrence, i.e. we want to show
that for any invertible measure-preserving system (X, B, u, T), p € Q[t], p(Z) C Z, with
p(0)=0and A € B with u(A) > 0, the limit

N
1
lim — Y 1 ANTPMA 2.8
NgréoNE R(m)p( ) (28)

n=1

is positive. Note that the limit in (2.8) exists by Proposition 2.3.

In view of Lemma 2.5, to show that (2.8) is positive it suffices to show that (2.6) holds
for all real-valued g € L2(X, B, ) with E(g|Kr) = fX g du > 0. However, for any such
g, it follows from (2.5) that

1 2
li — Tq(n) y = f d
Ngl})oN}:( 8 8) (Xgu

for all polynomials g € Q[¢], ¢(Z) C Z. In particular, we can pick g(n) = p(u(an + b))
and obtain

N

1 2
lim — (TPuanth) o oy = </ g du) foralla,u e N, b e NU{0}.
N—o0 N nX:% X

This can be rewritten as

N 2
lim 1 Z Lungp ()(TPEM g o) = l(/ g du) foralla, u € N, b e NU {0}.
N—oco N o a X
(2.9)
Now, if E C N is a finite union of infinite arithmetic progressions then 1 can be written
as a finite linear combination of functions of the form 1,y and it follows from (2.9) that

for any such set E,

N 2
. 1
Jim =D 1 m)(TPg, g) = d(E) ( /X g du) :
n=1

Finally, since R N uN is rational for all # € N and every rational set can be approximated
by finite unions of infinite arithmetic progressions, we deduce that

1

N 2
lim — ) 1 TP g oy — d(R N uN / d forallu e N. (2.10
NgnooN; RAuN () ( g, g) =d(RNuN) | sdn orallu e N. (2.10)

Choose 6 > 0 so that §(1 + ||g||i2) < (fx g dp)?. Tt is now an immediate consequence of
(2.10) that
d({ne RNuN: (TPWg g) > 8}) >d(RNuN)s.

From this it follows that (2.6) holds. O



12 V. Bergelson et al

2.3. Averaging multiple recurrence. In this subsection we prove (a) = (c) in
Theorem 1.4. Since (¢) = (a) is trivial, this will complete the proof of Theorem 1.4.
Let us state the implication that we want to prove as a separate theorem.

THEOREM 2.6. Assume R C N is rational and divisible. Then R is an averaging set of
polynomial multiple recurrence.

For the proof of Theorem 2.6, we rely on a series of known results. We recall first some
fundamental properties of nilsystems.

Let G be a nilpotent Lie group and let I" be a uniform and discrete subgroup of G.
The compact manifold X := G/ T is called a nilmanifold. G acts naturally on X. More
precisely, if g, y € G and x = yI" € X then T, x is defined as (gy)I'". For a fixed g € G the
topological dynamical system (X, T) is called a nilsystem. Every nilmanifold X = G/T’
possesses a unique G-invariant probability measure px, called the Haar measure of X.

A bounded function ¢ : N — C is called a basic nilsequence if there exist a nilmanifold
X =G/ T, apoint x € X, an element g € G and a continuous function f € C(X) such
that ¢ (n) = f(Téf‘x) for all n € N. Here, T;x coincides with Tynx. A function y: N — C
is called a nilsequence if for each ¢ > 0 there exists a basic nilsequence (¢ (n)) such that
[Yy(n) — ¢ (n)| < e foralln e N.

An important tool in the proof of Theorem 2.6 is a theorem of Leibman that allows us to
replace multiple ergodic averages along polynomials with Birkhoff sums of nilsequences.

THEOREM 2.7. (Cf. [47, Theorem 4.1] and [46, Proposition 3.14]) Assume that

(X, B, u, T) is an invertible measure-preserving system, let f1, ..., fy € L*(X, B, u),
pio....pe€Qlt]l (pi(Z)CZ for i=1,...,8) and set ¢(n):= [, TP1® fi.....
TPM £, du, n € Z. Then there exists a nilsequence (Y (n)) such that
N-1
lim sup m > o) =y = 0.
N—-M—o00 - n=M

In particular, dg (¢, ¥) = 0.

If (xn)n>1 1s a sequence of points from a nilmanifold X = G/ T such that

.
ngnooﬁgf<xn>= /X £ dux

for all continuous functions f € C(X), then we call such a sequence uniformly distributed.
If (x,)n>1 has the property that (x4,45)nen is uniformly distributed for all a, b € N, then
we call this sequence fotally equidistributed. It is well known that for any nilsystem
(X, T,) the following are equivalent (see, for instance, [3, 52] in the case of connected
G and [46] in the general case):
e the sequence (7}'x),en is totally equidistributed for all x € X;
o the system (X, ux, Ty) is totally ergodic.

Any nilmanifold has finitely many connected components (and each such component is
a sub-nilmanifold). Moreover, since any ergodic nilrotation 7, permutes these components
in a cyclical fashion, we deduce that for some u € N the nilrotation Tg« fixes each
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connected component. The next proposition asserts that in this case the action of Tgu
on each of these connected components is totally ergodic.

PROPOSITION 2.8. (See [29, Proposition 2.1]) Let X = G/T" be a nilmanifold, g € G
and assume that the nilrotation T, is ergodic. Fix x € X and let Y denote the connected
component of X containing x. Then there exists u € N such that Y is Tgu-invariant and
(Y, wy, Tgu) is totally ergodic.

The next lemma is important for the proof of Theorem 1.4 and asserts that linear
sequences coming from totally ergodic nilrotations (or equivalently, totally equidistributed
sequences) do not correlate with RAP sequences.

LEMMA 2.9. Suppose R C N is rational and T, is a totally ergodic nilrotation on a
nilmanifold X = G/ T. Then, forall x € X and f € C(X),

1 N
ngnooﬁglmn)fw;x):d(m fx fdux.

Proof. Since T, is totally ergodic, we deduce that the sequence (74'x)yen is totally
equidistributed for each x € X. Therefore, for all @ € N and b € N U {0}, we obtain

N
1

lim — Tén+byy = duy.

Jim, 7 2@ |
n=

This can be rewritten as
1 Y 1
Jim > Lanp () £ (T ) = — /X f dpx. @.11)

n=1
If E C N is a finite union of infinite arithmetic progressions then 1z can be written as a
finite linear combination of functions of the form 1,n4p. It now follows directly from
(2.11) that for any such set E,

li Ly 1 T'x)=d(E d 2.12
Ninooﬁ; Em) f(Tgx) = d( )/Xf e (2.12)

Finally, since R is rational, it can be approximated in the dp pseudo-metric by finite unions
of infinite arithmetic progressions and so, using (2.12), we obtain

li Ly 1 T!'x)=d(R d
NE“OON; R(n) f(Tyx) =d( )/Xf e O

Proof of Theorem 2.6. Let (X, B, i, T) be an invertible measure-preserving system and
assume that R C N is rational and divisible. Take any A € B with u(A) > 0 and let

Pls .-, pe €Q[t] with p;(Z) CZ, pi(0)=0,i=1, ..., ¢, be arbitrary. We will show
that
| N
Jim Zl Lr(m@(n) >0, (2.13)
n=

where o(n) = u(ANTPIWAN...NT~PtMA). This, in view of (2.1), suffices to
conclude that R is an averaging set of polynomial multiple recurrence. The existence
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of the limit in (2.13) follows immediately from Proposition 2.3, hence it only remains to
show its positivity.
By Theorem A.2, there exists § > 0 such that
N
Jim 5 Z; @(un)>38 forallu e N. (2.14)
n=

Using Theorem 2.7, we can find a nilsequence (¥ (n)) such that (2.13) holds if and only if

lim —ZlR(n)tjf(n)>O (2.15)

N—o00

Moreover, since dp (¢, ¥) =0, it follows from (2.14) that
lim — Z Y(un) >8 forallu e N. (2.16)

By definition, every nilsequence can be uniformly approximated by basic nilsequences.
For us this means that there exist a nilpotent Lie group G, a uniform and discrete
subgroupI', x € X = G/T" and f € C(X) such that |y (n) — f(T”x)| &/4 foralln € N.
We can assume without loss of generality that T is ergodic and since ¢(n) € [0, 1]
and dp (¢, ¥) =0, that 0 < f < 1. It follows from (2.16) and the inequalities | (n) —
f(T;X)I <é8/4,n €N, that

N
1 38
Jim 21: (T30 >~ forallu e N, (2.17)
n=

Using Proposition 2.8, we can find # € N and a sub-nilmanifold ¥ C X containing x
such that (Y, uy, Tgu) is totally ergodic. In the following, we identify f with f|y. Since
R is rational, it is straightforward that the set R/u := {n € N: nu € R} is also rational.
Thus, we can invoke Lemma 2.9 and obtain

Jim —ZlR/u(n)f(T"ux)_d(R/u)f fduy. (2.18)

Finally, combining (2.18) with (2.17) (together with the ergodic theorem) and the fact
that |y (un) — f(T ,x)| < 8/4 for all n € N, we obtain

1 & 1 &
Jim 2 LRy () > Jim X_: L Rrun (m) ¥ ()

1

= » ( 11m — Z lR/u(n)l”(M”)>

1 8
> ;< lim — Z Lrju(m) f(Tghx) = Zd(R/u))

N—oo

1/36
;( —d(R/u )——d(R/M)>

This completes the proof. O
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We would like to pose the following question describing one possible way of extending
Theorem 1.4 to a more general version involving several commuting measure-preserving
transformations.

Question 2.10. Assume R C N is rational and d(R) > 0. Are the following equivalent?
(@) R isdivisible.
(B) For all probability spaces (X, B, ), all £ € N, all £-tuples of commuting invertible

measure-preserving transformations 71, ..., T, on (X, B, n), all A e€B with
u(A) >0 and for all polynomials p; € Q[t], i =1, ..., ¢, with p;(Z) CZ and
pi(0) =0,
o ) ()
: —pi(n —pe(n
Nh_I)nooﬁiglR(n)p,(AﬁTl MAan...nT, "4y > 0.
n=

2.4. Inner regular sets, W-rational sets and JB-free numbers. The set Q of squarefree
numbers is rational (see Corollary 2.16 below) but it is not divisible, as Q N p*N = f for
all primes p. In particular, Q is not a set of recurrence. However, as was mentioned in §1,
it follows from results obtained in [13] that Q — r is divisible (and hence—by virtue of
Theorem 1.4—an averaging set of polynomial multiple recurrence) if and only if r € Q.

This raises the question whether every rational set can be shifted to become divisible.
In general, the answer to this question is negative. For example, one can show that for a
carefully chosen increasing sequence ag, ai, az, ... € N, theset S =N\ Un>0(anN +n)
is rational. On the other hand, for any integer n > 0, one has (S — n) N a,N =@ (cf. [36,
Theorem 11.6] and [5, Theorem 2.20]).

We will now introduce a rather natural family of rational sets with the property that for
any set in this family there is a shift that is divisible.

Definition 2.11. We define the Weyl pseudo-metric dy on {0, 1} as

1
dw(x,y)=limsupsup —|[{€<n<L+ N:x(n) #ymn)}. (2.19)
N—oo 21 N

A set R CN is called W-rational if 1g € {0, 1}V can be approximated by periodic
sequences in the dy pseudo-metric.

Note that every W-rational set is a rational set.

In §3.1 below we will extend the definition of the dy pseudo-metric from {0, 1} to AN
for arbitrary finite subsets .4 and we also introduce the related notion of Weyl rationally
almost periodic sequences (see page 23).

PROPOSITION 2.12. Suppose D C N is W-rational and d(D) > 0. There exists a shift of
D which is divisible.

Proof. Assume that no translation of D is divisible. Hence, for each n > 0, there exists
wy > 1 suchthatif C,, :={s e N:n + sw, € D} then

d(Cp) =1. (2.20)
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Fix K > 1. Then by (2.20), also

d{s>0:n+swy----- wg € D€ foreachn=0,1,..., K —1})=1.
It follows that for every K > 1 there exists s > 1 suchthat 1p(n 4+ swy - - - - - wg) = 0 for
eachn=0,1,..., K — 1. In other words, in the sequence 1p there appear arbitrarily

long blocks of consecutive zeros. This implies that the only periodic sequence that
approximates 1p in the dy pseudo-metric is the sequence (0, 0, 0, . . .), which contradicts
d(D) > 0. O

In order to give more examples of rational sets that possess shifts that are divisible, we
will now recall the notion of inner regular sets (see [13, Definition 2.3]). A subset R C N is
called inner regular if for each & > 0 there exists m > 1 such that for each a € N U {0} the
intersection R N (mZ + a) is either empty or has lower density greater than (1 — &)/m.
It follows immediately that every inner regular set is rational. Also, it is shown in [13,
Lemma 2.7] that the set of squarefree numbers Q is inner regular.

PROPOSITION 2.13. Assume that ) # R C N is inner regular. Then, for each r € R, the
set R — r is divisible.

Proof. Suppose u > 1 is arbitrary. Fix ¢ > 0 with ¢ < 1/u. We can find m > 1 so that
for every a € N U {0} the intersection R N (mZ + a) is either empty or has lower density
greater than (1 — ¢)/m. Since r € R, the intersection R N (mZ 4+ r) is not empty. This
means that the set {k € N: mk 4+ r € R} = {k € N: mk € R — r} has lower density greater
than 1 — ¢. Since € < 1/u, the set {k € N:mk € R — r} N uN has positive lower density.
This means the set (R — r) N umN has positive lower density and the assertion follows. O

We move the discussion now on to sets of Z-free numbers. The purpose of the
remainder of this section is to prove a general form of Theorem 1.5 formulated in §1.

Given # C N\ {1}, we consider its set of multiples Mg :=|J,c5 bN and the
corresponding set of %B-free numbers Fg := N\ Mg, i.e. the set of integers without a
divisor in . Without loss of generality, we can assume that & is primitive, i.e. no b
divides b’ for distinct b, b’ € #. Indeed, for a general set % one can find a primitive
subset %y C £ such that M » = Mg, and Fp = Fy, (cf. [35, Ch. 0]). Note that if we
take # = {p? : p is prime}, then the set of %-free numbers equals the set Q of squarefree
numbers.

Sets of Z-free numbers make good candidates for rational sets. Unfortunately, not
every set of A-free numbers is a rational set, since the density d(F) of F4 need not
exist. An example of a set & for which the density of M 4 and F4 does not exist was
given by Besicovitch in [15]. This leads to the following definition.

Definition 2.14. (Cf. [35]) We say that & is Besicovitch if d(Mg) exists. (This is
equivalent to the existence of d(F).)

Davenport and Erd6s proved that the logarithmic density

N
1 1
8 = i !
(Mg) = lim log N 2= 1 Mg (1)
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exists for all = {by, by, ...} C N\ {1}. This, of course, implies that the logarithmic
density §(F ) exists. For m > 1, consider the sets #B(m) = {by, by, ..., by} and let
M g(m) and Fg(,y denote the corresponding set of multiples of % (m) and set of % (m)-
free numbers, respectively.

THEOREM 2.15. (See [20, 21]) For each 98 C N\ {1}, the logarithmic density §(M ) of
M g exists. Moreover,

§Mz) =dMz) = lim d(Mgm),

In particular, if 9 is Besicovitch then d(Mg) = limy, 0o d(M g(y)). Analogous results
hold for F 4 instead of M 4.

From Theorem 2.15, we obtain two useful corollaries.

COROLLARY 2.16. Let Z C N\ {1}. Then Mz and F g are rational if and only if P is
Besicovitch.

Proof. Note that for any m > 1, the sequence 14, is periodic. Hence if 22 C N\ {1}
is Besicovitch, then by Theorem 2.15 the sequence 14, can be approximated in the dp-
pseudo-metric by 11, as m — oo, which proves that M g is rational. An analogous
argument applies to F 5.

On the other hand, if M g is rational then the density of M 4 exists and hence, by
definition, the set & is Besicovitch. O

In the following, let <7 denote the set of abundant numbers, & the set of perfect
numbers and 9 the set of deficient numbers (for definitions, see footnote I on page 3).

COROLLARY 2.17. Let A C N\ {1}. Suppose A satisfies the following two conditions:
(1) d(A) exists, and

(2) nACAforallneN

Then A is a rational set. In particular, the set of abundant numbers <7, the set of deficient
numbers 9 and, for any x € [0, 1], the set ®, :={n € N: @(n)/n < x} are rational sets.

Proof. Set #:=A. 1t follows from property (2) that Mgz =A. Also, £ is
Besicovitch because d (M gz) = d(A) exists according to property (1). Hence, in view
of Corollary 2.16, the set A = M 4 is rational.

We now turn our attention to the set of abundant numbers. First, note that n.@/ C & for
all n € N. Also, the fact that d () exists was proven by Davenport in [19]. Therefore </
is rational. Moreover, since N = .o U & U 2 and d(Z) = 0 (cf. [37]), we conclude that
9 is also rational.

Finally, for any x € [0, 1], the set &, :={n e N: ¢(n)/n < x} satisfies n®, C ®, and
it was first shown in [57] that d(®,) exists. Hence @, is rational. O

As mentioned above, a shift of the set of squarefree numbers, Q — r, is an averaging
set of polynomial multiple recurrence if and only if » € Q. Our next goal is to show that a
similar result holds for other sets of %-free numbers. Note that if r ¢ F, i.e. r € M,
then Fg — r is not a set of recurrence. Indeed, if it were a set of recurrence then, by
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considering the cyclic rotation on r points, for some # > 1 we would have ur € Fg —r
and therefore (u + 1)r € F, which is a contradiction. Hence, r € F4 is a necessary
condition for F ¢ — r to be good for recurrence. As for the other direction, we have the
following result.

THEOREM 2.18. Suppose 98 C N\ {1} is Besicovitch. Then ‘almost every’ self-shift of
F g is an averaging set of polynomial multiple recurrence. More precisely, there exists a
set D C Fg withd(F4 \ D) = 0 such that for all r € N the following are equivalent:

e rebD;

o Fgp —risdivisible;

o Fp —risan averaging set of polynomial multiple recurrence.

Note that Theorem 1.5 is now an immediate consequence of Theorem 2.18. We give
a proof of Theorem 2.18 at the end of this subsection. Let us remark that in most cases
one can actually take D = F4. To distinguish between sets of Z-free numbers for which
D = F 4 and for which D C F 4, we introduce the following notions.

Definition 2.19. (Cf. [35]) Let Z C N\ {1}. We call & Behrend if §(M z) =1 (this is
equivalent to the existence of the density of M g with d(M z) = 1). We call £ taut if for
every b € %, one has §(M ) > §(Mz 1)).

If £ is Behrend then D = @, because in this case F4 (and each of its translations) has
zero density. Behrend sets are not taut (see Lemma 2.20 below) and it will be clear from
the proof of Theorem 2.18 that in the statement of Theorem 2.18 one can take D = F g if
and only if 4 is taut (see Theorem 2.26 below).

The remainder of this subsection is dedicated to proving Theorem 2.18. We start with a
series of lemmas.

LEMMA 2.20. [35, Corollary 0.14] & U Z is Behrend if and only if at least one of </ and
P is Behrend. In particular, Behrend sets are not taut.

LEMMA 2.21. [35, Corollary 0.19] A is taut if and only if it is primitive and does not
contain a set of the form c<f, where ¢ € N and o/ C N\ {1} is Behrend.

LEMMA 2.22. (Cf. the proof of [4, Lemma 6.5]) Let € CN. For any u € N and a €
N U {0} the logarithmic densities of M N (uN + a) and F N (uN + a) exist and satisfy

§(My N @N+a)) =d(Mg NN +a)) = lim d(Mé ) N uN +a)).
8(Fy N (uN+a)) =d(Fy N (uN+a)) = 1me d(Fgm N N+ a)).

Proof. The assertion concerning M¢ N (uN 4 a) was covered in the proof of [4, Lemma
6.5]. The remaining part follows immediately, as F = N\ M. O

LEMMA 2.23. Let € C N\ {1} and let a e NU {0}. If u € N is coprime to each element
of € then

1
§(F¢ N (uN+a)) = - -8(Fp).
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Proof. Suppose ¢ = {by, by, ...} and let € (m) :={by, ..., by,}. The assertion of the
lemma is clearly equivalent to §(M¢ N (uN + a)) = (1/u) - §(Me). Since u is coprime
to each element of &, it follows by the Chinese remainder theorem that for any m > 1 and
r € N U {0} there exists 7’ € N U {0} such that

(Iem(by, ..., b)) N+r)NuN+a)=u-lem(by, ..., b,)N+r.

In particular,

d((Iem(by, ..., by)N+r)N (uN+a)) = . lcm(bll, o)
It follows that |
d(Meggny N (N +a)) = " ~d(Megny) (2.21)
since M) is periodic with period lem(by, . . ., by). Using Lemma 2.22, (2.21) and

Theorem 2.15, we obtain

§(My NN+ @) = lim d(Migm N @N+a))

" 1
= lim —-dMegp)) =—-8(Meg),
m—o0 Y u
which completes the proof. O

LEMMA 2.24. Suppose € C N\ {1} is taut. If a € F then, for every u €N, one has
8§((F¢ —a)/u) > 0.

Proof. Define

b
¢'(a) = ———:bc¥}.
@ {gcd(b, o C }
Notice that
ged(a, ¢) =1 foreachc € €' (a). (2.22)
Moreover, M,y D Mg, whence
Forw C Fe. (2.23)

Since gcd(b, a) takes only finitely many values as b € € varies,

€' (a) = U{g :be €, ged(b, a) =d}.
dla

Suppose that 1 € €’(a). Then for some b €%, gcd(b, a) =b, whence a € My, a
contradiction. It follows that
1 ¢ % (a). (2.24)

Suppose that 4”(a) is Behrend. Then, by Lemma 2.20, for some dg|a, the set
o :={b/dy:b €€, gcd(b, a) =dp} is Behrend and we have dyo/ C €. However, this
and (2.24), in view of Lemma 2.21, contradict the tautness of &. Therefore, ¢’ (a)
cannot be Behrend, ie. ¢:=8(Fgr(q)) >0. We will use this constant to prove that
8((F¢ —a)/u) > cforall u € N.
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By Lemma 2.22 and (2.23),

0(Fg —a)/u)=u-8((Fg —a)NuN) 2> u - §((Fg () —a) NuN)
=Uu- 6(Fg/(a) N (MN + a))

Hence, it suffices to show that
1

In order to verify this last claim, let us divide " (a) into two pieces:

€\ (a, u):={c €€ (a):gedu, c) > 1},
€y(a, u):={ce € (a):ged(u, c) =1}.

We claim that
ﬁg]/(a’u) N uN+a)=uN+a. (2.25)

Indeed, take any c € ‘51’(61, u). Then ged(u, ¢) > 1 and since (2.22) holds, gcd(u, c)
does not divide a. Hence ¢cNN (uN + a) = @. It follows that Mcgl/(a!u) NuN+a)=0
and (2.25) follows.

Therefore, using (2.25) and additionally Lemma 2.23, we obtain

1 1
S(FCg/(a) N (MN + a)) = 8(?(6/2’(11) N (MN + a)) = ; . 6(}?52/(“)) 2 ; . 6(./—'.{/(“))
and the result follows. O

Before we present the proof of Theorem 2.18, one more theorem needs to be quoted.

THEOREM 2.25. [4, Theorem 4.5 and the proof of Lemma 4.11] Let 8 C N\ {1}. Then
there exists a taut set € C N\ {1} such that F¢ C Fo and §(Fy) = §(F ). Moreover, if
A is Besicovitch, then € is Besicovitch.

Proof of Theorem 2.18. Let 8 C N\ {1} be Besicovitch. If % is Behrend then Fy
has zero density and so no shift of Fg is divisible or good for averaging polynomial
recurrence. In this case we can put D = () and we are done. Thus, let us assume that % is
not Behrend. In view of Theorem 1.4, it suffices to find aset D C Fg withd(Fz \ D) =0
and such that Fg — r is divisible if and only if r € D. Pick € C N\ {1} taut with
Fy C Fp and d(Fy) = d(F p); the existence of € is guaranteed by Theorem 2.25.

We make the claim that one can choose D := F. In particular, if 4 is taut then one
can choose D = F.

To verify this claim, we invoke Lemma 2.24, which tells us that §((F¢ —r)/u) >0
if and only if r € F¢. Since ¥ is Besicovitch, we can replace logarithmic density with
density and conclude that F¢ — r is divisible if and only if r € F¢. Finally, to finish the
proof, we observe that d(F¢ \ F¢) =0 and therefore F — r is divisible if and only if
r e Feg. O

THEOREM 2.26. (Corollary of the proof of Theorem 2.18) In the statement of
Theorem 2.18 one has D = Fg if and only if A is taut.



Rationally almost periodic sequences 21

FIGURE 1. Logical connections between statements (a)—(f) in Remark 2.27. Dashed arrows: trivial implications

which hold for any ## C N\ {1}. Dotted arrow: this implication was explained in the paragraph before

Theorem 2.18. Short plain arrow: implication follows from [4]. Thick arrow: this implication follows from
Theorem 1.4. Double arrow: implication proved in Lemma 2.24.

Remark 2.27. Let 28 C N\ {1} be Besicovitch and taut (hence d(Fg) > 0). Here is a
summary of equivalent conditions that we obtained in this section.
(@ aeFgp.
(b) dMgzgUaN) > d(Mg).
(¢) Fg — aisdivisible.
(d) (Fg—a)NuN#@forallu e N.
(e) JFg — ais an averaging set of polynomial multiple recurrence.
(f) F4 — ais an averaging set of polynomial single recurrence.
Figure 1 describes the logical connections between the above statements.

3. Rational dynamical systems

The purpose of this section is to give a proof of (slightly more general versions of)
Theorems 1.7 and 1.8. In §3.1 we define rational and W-rational subshifts and we give
a variety of examples. In §3.2 we extend the notion of rational subshifts to the notion of
rational subshifts along increasing subsequences. Finally, in §§3.3 and 3.4, we formulate
and prove extensions of Theorems 1.7 and 1.8.

3.1. Definition and examples of rational subshifts. In this section we define and give
examples of symbolic dynamical systems determined by RAP sequences. We will refer to
such systems as rational subshifts.

Consider the product space A%, where A is a finite set (alphaber). We endow A with the
discrete metric p and A% with the product topology induced by (A, p); in particular, A% is
compact and metrizable. Let S: AZ — A” be the left shift, i.e. S((x(n))nez) = (Y(1))nez
where y(n) = x(n + 1) foreach n € Z.

Recall that for any closed and S-invariant subset X C AZ_ the system (X, S) is
called a subshift of (A%, S). Recall that for x € AZ (or x € AN) and n < m, x[n, m] =
(x(n), x(n+1), ..., x(m)) is said to be a word appearing in x.

Given n € AN, the set

X, ::{xe.AZ:(Vn<m)(EIkEN)x[n,m]:n[k,k+m—n—l]}

is closed and S-invariant. It is the subshift determined by 1.
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Recall that in Definition 1.1 we introduced the Besicovitch pseudo-metric,

1 N
dp(x, y):=limsup 3 p(x(n), y(n)) 3.1

N—o0 =1

and defined rationally almost periodic sequences, which are sequences that can be
approximated in the dp-pseudo-metric by periodic sequences.

Definition 3.1. A subshift (X, S) of (AZ, S) is called rational if there exists an RAP
sequence 7 € A" such that X = X,,.

We now present some examples of rational subshifts.

The squarefree subshift. ~ Consider the set Q of squarefree numbers and let X g := X1, C
{0, 1}2. The resulting topological dynamical system (X 0, S) is called the squarefree
subshift and has been studied in [17, 53, 56]. Naturally, many combinatorial properties
of Q are encoded in the dynamics of (X, S), which further motivates the study of this
system. This line of investigation is related to Sarnak’s conjecture; see [27, 56] and §5.2.

HB-free subshifts. For 8 C N\ {1} let Fg denote the set of HB-free numbers and let
Xry = le% C {0, 1}%. The system (XFy, S) is called the B-free subshift. Such
subshifts have recently been studied in [4, 28, 43]. If the set Z is Besicovitch (see
Definition 2.14) then it follows from Corollary 2.16 that (X 7, S) is a rational subshift.
Note that the squarefree subshift (X g, S) is an example of a %-free subshift.

Toeplitz systems.  Following [40], a sequence 1 € A" is called Toeplitz, if for eachn > 0
there is p > 1 such that

n(n) =n(n +sp) foralls e N. (3.2)

In this case the subshift (X,, S) is called a Toeplitz system. In [24], Downarowicz
characterized Toeplitz dynamical systems as being exactly all symbolic, minimal and
almost one-to-one extensions of odometers.

If additionally

limsup d({n € N: n(n) =n(n +sp) forall s e N}) = 1 (3.3)
p—>00
then the Toeplitz sequence 1 is called regular. It follows from (3.3) that any regular
Toeplitz sequence is RAP (in fact, it is straightforward to check that a Toeplitz sequence is
regular if and only if it is RAP). Therefore Toeplitz systems coming from regular Toeplitz
sequences are rational subshifts.

Weyl almost periodic sequences and Weyl rational subshifts. ~ We recall the definition of
the Weyl pseudo-metric dy (see Definition 2.11),

1
dw(x,y)=limsupsup —|[{£{ <n <L+ N:x(n)#ymnl.
Nooo 21 N
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Any dw-limit of periodic sequences is called a Weyl rationally almost periodic sequence
(WRAP). The subshift (X, S) determined by a WRAP sequence n € AN s called W-
rationalf. Each WRAP sequence is RAP and hence any W-rational subshift is a rational
subshift. Note that the reverse implication does not hold. For example, the indicator
function 1 of the squarefree numbers Q is a sequence that is RAP but not WRAP. It
should also be mentioned that any regular Toeplitz sequence is WRAP, which can be shown
easily using the definition of regular Toeplitz sequences.

Sequences generated by synchronized automata. Paperfolding sequences, which were
introduced in §1 (see footnote ¥ on page 4), provide examples of rational sequences
generated by so-called synchronized automata.

LetkeN,let B:={0, 1, ..., k— 1}, let A be a finite alphabet, let Q :={qo, . . ., q;}
be a finite set, let 7 : Q — A andlet§: Q x B— Q. The quintuple M = (Q, B, §, qo, T)
is called a complete deterministic finite automaton with set of states Q, input alphabet
B, output alphabet A, transition function §, initial state qo and output mapping t. Let
B* denote the collection of all finite words in letters from B. There is a natural way
of extending §: O x B— Q to §: Q x B* — Q: for the empty word € € B* we define
3(q, €) :==¢q, q € Q, and for a non-empty word w = wj . .. w, € B* we define recursively
8(g, wy ... wp):=3806(q, wy...wu_1), wy), q € Q. This way, we can associate to each
word w € B* an element a € A via a = t(8(go, w)). For more details on deterministic
finite automata, see [2, §4.1].

Given n € N, we consider its expansion in base k, i.e.

n= Zsjk-/ where e; € B, j > 0.
j=0

In this representation ; = 0 for all but finitely many j > 0. Let j, be the largest index
such that e;, #0. We then set [n] :=(¢},, &j,—1, . . ., €0); note that [n]; € B* for all
neN.

Definition 3.2. Following [55], we say that a sequence a € A" is automatic if there exists
a complete deterministic finite automaton M as above such that a(n) = t(§(qo, [n]x)) for
alln e N,

Definition 3.3. Following [14, Part 4], an automaton M = (Q, B, 8, qo, 7) is called
synchronized if there exists a word w € B* such that §(g, w) = §(go, w) for all g € Q.
In this case, the word w is called a synchronizing word.

While not every automatic sequence is RAP¥, any automatic sequence coming from a
synchronized automaton is not only RAP but also WRAP. This result, which we state as
a proposition below, has been shown implicitly in [23]. For the sake of completeness, we
give a proof of it in §5.

F W-rational subshifts are a special kind of Weyl almost periodic systems; see [26, 39].

+ The Thue-Morse sequence (which was independently discovered by Thue [59, 60] and Morse [50, 51]) is
known to be automatic (see [2]), but it is not RAP as it is a generic point for a measure such that the corresponding
dynamical system has no purely discrete spectrum [41]; see Theorem 1.7 above.
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PROPOSITION 3.4. (See [23]) Each automatic sequence generated by a synchronized
automaton is WRAP.

As RAP sequences can be approximated by periodic sequences, one may be tempted to
believe that the dynamics of rational subshifts is similar to the dynamics of certain low-
complexity systems such as translations on compact groups. However, rational subshifts
exhibit a wide variety of dynamical properties, such as the following.

e Rational subshifts can have positive topological entropy (for the definition of
topological entropy, see, for instance, [54, §6.3]); for example, rational Z-free
subshifts can have positive topological entropy (see [4, 28, 53]). Moreover, they can
have many invariant measures [43].

e Rational subshifts can be proximalf; in fact, the squarefree subshift is an example of a
proximal rational subshift [56].

e Rational subshifts can be topologically mixing (see Remark 3.20 for a proof).

If (X, S) is a rational subshift of positive entropy, then there is y € X which is not
RAP. As a matter of fact, no generic point for a measure of positive entropy is RAP
(this follows from Theorem 3.12 below).

On the other hand, W-rational subshifts have much more regular properties than general

rational subshifts. This is illustrated by the following two propositions.

PROPOSITION 3.5. [26, 40] If x is WRAP then (X4, S) is uniquely ergodic and has zero
topological entropy%. In particular, any non-trivial W -rational subshift is not proximal.

PROPOSITION 3.6. (Cf. [39, Lemma 4]) Let x € AN be WRAP and suppose z € Xx. Let
zIn € AN denote the restriction of z € A to N. Then z|y is also WRAP.

Proof. Letz € X, and let & > 0. Pick any periodic sequence y € AN with dy (x, y) < &/2.
Let M denote the period of y. Let £k be such that x(n + £x) = z(n) for n < K. We can
assume without loss of generality that there exists 0 < ig < M with £x = ip mod M for all
K eN.

Let Ny be such that for all N > Ny,

1% (1 +0), y(n +0) < (3.4)
sup — x(n ,y(n <e. .
f>%Nn—1p y

Fix N > Ngpand £ € N, and let K > N + £. Then, by the choice of £,
zm+€) =x(n+4L€+Lg) foralln <N. (3.5
Moreover, since y is M-periodic and since £ g = ip mod M,

Soy(n+40) =y(n+€+Lg) foreachn eN. (3.6)

1 A dynamical system (Y, T') is proximal if any pair y, z € Y is proximal, i.e. there exists a sequence (ny) such
that d(T"ky, T"k z7) — 0. In particular, in any such system y and T’y are proximal and it follows that proximal
systems have exactly one fixed point to which all other points are proximal.

# It is shown in [26] that for subshifts on a finite alphabet the entropy function is dy -continuous.
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Using (3.5), (3.6) and (3.4), we conclude that

N N
1 . 1 i
N Z p(z(n+4£), Sy +£)) = N Z px(n+L+Lg), SOy(n + £))
n=1 n=1
N
1
= Zp(x(n+€+€1<), yin+L+4Lk)<e

n=1

and the result follows. O

3.2. Rationality along subsequences. In this short subsection we introduce and discuss
a useful generalization of RAP sequences.

Definition 3.7. Let (Ni)r>1 be an increasing sequence of natural numbers and assume that
A is a finite set endowed with the discrete metric p.
e Forx, ye AV, we define (cf. (1.3), (2.2) and (3.1))

Nk
1
(o) T
dy*(x,y):= h;?lsolip N nE_l p(x(n), y(n)).

We say that x € AN g rationally almost periodic along (Ni)k>1 (RAP along (Ni)i>1)

if x is a dl(gN")-limit of periodic sequences. A subset R C N is called rational along
(N1, if 1 is RAP along (Ny)>1.

e Let (X, S) be a subshift of (AZ, S). We call the topological dynamical system (X, S)
rational along (Ny)r>1 if X = X, for some 7 € AN that is RAP along (Ni)k>1. If

Ny =k for all k then, clearly, (X, §) is a rational subshift (see Definition 3.1).

Remark 3.8. Let R C N and suppose that R is rational along (Ng)x>1. For u > 1, let
R/u:={n € N:nu € R}. Then R/u is rational along (Ni/u)i>1 for any u > 1.

Clearly, any sequence that is RAP is also RAP along (N )i >1. The following example
shows that, in general, the converse does not hold.

Example 3.9. Given an increasing sequence (by) C N, we define

x=x%):=010101...01101010... 10010101 ...01 ...
by by b3

Note that if (by)ren is increasing sufficiently fast then x is RAP along (Nag)k>1, where
Ni:=b1+ -+ b, k > 1. We will now show that for no choice of increasing (by) is the
sequence x RAP. Suppose that there is (bg)ren that yields an RAP sequence x. Then the
sequence
x':=0...01...10...0...
—_—— —— —
b1/2 b2 b3)2

must also be RAP and therefore the density d(A) of A:={n e N:x'(n) =1} exists.
Notice that

{1 <n < No/2:x'(n) = 1} > 1/2- No /2,



26 V. Bergelson et al

s0, in particular, d(A) > 1/2 > 0. Since (b) is increasing, d(A) =1/2. Let0 <e < 1/4
and let y be a periodic sequence with dg(x’, y) <&. Then [{l<n < R:y(n)=1}=
(3—1 + ¢)R, where R is a period of y. We will now estimate dg(x’, y) from below. Fix
1<i <R Ify@i)=0then

1 1 1 1
ﬁl{l<n<N:x/(Rn+i)#y(i)}|=N|{1<n<N:X’(Rn+i)=1}I—>E-E,
and similarly, if y(i) = 1 then

1 1 1 1
SIS SN R+ D) #yDll = 1 <n<N 2/ (Rn+0) =0} > - - .

It follows that

1
e >dp(x’, y) =limsup ﬁl{l <n<N:x'(n) #yn))

N—o00

1
=limsup —
N—o0

U 1<n<N:X'(Rn+i) ;«éy(i)}‘
0<i<R

U (1<n<N:xX'(Rn+i)#y@i))}
0<i<R

1
> liminf —
“ Nooo N

1 - . )
> Z liminf {1 <n <N :x'(Rn+i) # y(0))

1 12 (1 12 1
>(z—e)R- L+ (2 —¢)R- L =- -
2 R 2 R 2

This yields a contradiction with our choice of ¢.

Remark 3.10. Notice that for x as in Example 3.9 the density of the set {n € N: x(n) =1}
equals % This shows that there are sets that have density, are not rational but are rational
along some subsequence. In fact, one can show that x is a generic point for the measure
3 (8101010... + So10101...)-

Example 3.11. Tt was shown in §2.4 (see Corollary 2.16) that for any set Z C N\ {1} the
set of Z-free numbers F is rational if and only if & is Besicovitch. In particular, if %
is not Besicovitch then F is not rational. However, if (Ny)x>1 is an increasing sequence
such that d(Fg) =limg_ o0 |F N {1, ..., Ni}|/ Nk, then it follows from Theorem 2.15
that Fg is rational along (Ng)i>1.

3.3. Generalizing Theorem 1.7. Let A be a finite alphabet and let (X, S) be a subshift
of the full shift (A%, S). Denote by P(X, S) the set of all S-invariant Borel probability
measures on X and by P¢(X, S) the subset of P(X, S) of ergodic measures. By the
Krylov—Bogolyubov theorem [42], P (X, §) is non-empty.

Given an increasing sequence (Ny)x>1 of natural numbers, we say that x € AN is quasi-
generic for p € P(X, S) along (Ni)k>1 if
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for all continuous functions f € C(A%), where ¥ € A% is any two-sided sequence that
extends x, 1.e. Xx(n) = x(n) for all n € N. If Ny = k for all k then x is generic for u (as was
defined in §1). Note that if x is quasi-generic for u then u € P(Xy, S).

The goal of this subsection is to show that for any RAP sequence x € A" there exists
a measure u for which x is generic and the corresponding measure-preserving system
(Xx, i, S) has rational discrete spectrum. As a matter of fact, we will prove a slightly
more general theorem; see Theorem 3.12 below.

A partly related result was proved by Iwanik in [39, Theorem 2]. He showed that any
sequence x € AN in the class of so-called Weyl almost periodic sequences (which is a class
that contains all WRAP sequences) is generic for a measure p and the measure-preserving
system (X, i, S) has discrete spectrum (but not necessarily rational discrete spectrum).
We refer the reader to [39] for the definitions of Weyl almost periodic sequences. Our
variant of Iwanik’s result regarding RAP sequences seems to be new. The authors would
like to thank B. Weiss for fruitful discussions on the subject.

THEOREM 3.12. Let x € AN be RAP along (Nk>1. There exists a measure | for
which x is quasi-generic along (Ni)k>1 and the corresponding measure-preserving system
(Xx, 1, S) is ergodic and has rational discrete spectrum.

Note that Theorem 1.7 follows immediately from Theorem 3.12, if we put Ny = k for
allk > 1.

Remark 3.13. Some special cases of Theorem 3.12 are known. It is shown in [17, 56]—in
the context of the squarefree subshift (X o, S)—that the characteristic function of the set
of squarefree numbers is generic for a measure which yields a measure-preserving system
with rational discrete spectrum. This result has been generalized to arbitrary sets of %-
free numbers F 4 (see [4, 28]). Also, for regular Toeplitz sequences it is shown in [40, §4]
that the corresponding Toeplitz system has rational discrete spectrum (with respect to the
unique invariant measure).

The proof of Theorem 3.12 hinges on four lemmas. The first two lemmas, namely
Lemmas 3.14 and 3.15, are needed to prove that any RAP sequence is generic for an
invariant probability measure. Lemma 3.16 shows that the measure obtained this way is
ergodic. Finally, Lemma 3.17 proves that the corresponding system has rational discrete
spectrum. We conclude this subsection by combining these four lemmas to give a proof of
Theorem 3.12.

Given (aq, ..., 0p) € At and ny < - - - < ny, we define the corresponding cylinder set

C=Co={xe A x(nj)=a;forj=1,..., ¢
Each cylinder set is a clopen subset of A% and the family of cylinder sets forms a basis of

topology on .A%. More generally, for every subshift (X, S) a basis of topology is given by

the clopen sets of the from Cffl‘ ,,,,,,,,,, ,(ff NX,(xr,...,ap)e Alandn| <---<ngeZ.
LEMMA 3.14. Let x,ye AN and let C = Cffll,‘ff where ny,...,ng €7 and
a1, ..., o € A Then, for any two-sided sequences %, y € A% extending x and y,
L
lim sup - 3 7 [1c(8"%) = 1c (8" < bdy ™ (x. y). 37
k— 00 k

n=1
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Proof. Let A% :={(a,a):a e A}. Forany k > 1,

1
NS <Nezx() #ym)l = 5 Zp(x(n) ().
n=1
It follows that
L
hlinsup—21Az aa(x(n), y() <d$™ (x, y). (3.8)

n=1
In view of (3.8), the left-hand side of (3.7) can be estimated by
L
n n
limsup 2 3 124(S"%) = 1a(5" )|

k— 00 n=1

Ny ¢
1
< lim sup I Z Z 10\ g2 (x(n +n;), y(n +n;))

koo k21 iz
L N
th sup — Z 1A2\AA(X(” + n;), y(n +n;))

k— 00
‘
<Y dg @, ).
i=1
This completes the proof of (3.7). O

LEMMA 3.15. Let x, x, € AN, n € N, and suppose lim,,_, » dgN")(xn, x)=0. If x, is
quasi-generic along (Ny)i>1 for all n € N, then x is quasi-generic along (Ny)i>1.

Proof. To show that x is quasi-generic, it suffices to show that for all continuous functions
f: AZ — R the limit

Jim Z F(8"5%) (3.9)

exists, where ¥ € A% is any two-sided sequence extending x € AN. Note that any
continuous function f: A% — R can be approximated uniformly by linear combinations
of characteristic functions of cylinder sets A = Cffll ,,,,,,,,,, " f Hence, we can assume without
loss of generality that the function f in (3.9) is given by the indicator function of such a
cylinder set.

Let & > 0 be arbitrary and pick m > 1 such that dp ( ")(xm, x) <e. Letx, € AZ be any
two-sided sequence extending x,, € .AN . Then, from Lemma 3.14, we deduce that the

difference

lim Sup —- Z F(S§'x) — 11m mf — Z F(8"%)

k—o00 =1

is bounded from above by

im sup — Xm) — 1m1n — Xm) + X, Xm
li pN f(S )~ liminf — f(S”~ ) +2d S (x, x).

k— 00
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But x,, is quasi-generic along (Ni)r>1 and therefore
lim sup — Z f(S"%,) = hm mf — Z f(S"%).
k—o00
This implies that
lim sup — Z f(S"%) — hm 1nf — Z F(S"%) < 2¢e.
k—o00

Since & > 0 was arbitrary, this shows that the limit in (3.9) exists. O

Next, we need a slight generalization of [63, Proposition 4.6]. We include the proof for
the convenience of the reader.

LEMMA 3.16. (See [63, Proposition 4.6] for the case Ny = k) Suppose x, xj € AN, jeN,
and lim;_, dgv")(xj, x) =0. If each x; is quasi-generic along (Ny)r>1 for an ergodic
measure, then x is quasi-generic along (Ni)x>1 for an ergodic measure.

Proof. By Lemma 3.15, we know that x is quasi-generic along (Ng)i>1 for an invariant
measure i € P(AZ, §). It only remains to show that u is ergodic. It suffices to show that
forall f, g € L®°(AZ, ),

NIPOONZ/ s gdu= [ gan [ edn (3.10

Similarly to the argument in the proof of Lemma 3.15, it suffices to prove (3.10) for the
special case where f and g are the indicator functions of cylinder sets. In other words, we

can assume without loss of generality that f =14 and g = 1p, where A = Ccy llf,lf and
_ Biy-es Br
B=Cp) i,
Fix ¢ > 0. Let
C,=S"ANB
=(zeAl i zn+n) =, z(mj) =B fori=1,..., €, j=1,...,r}
Then (3.10) can be rewritten as
N
lim L Z p(Cn) = n(A)u(B) (3.11)
N—oo N " ' ’

n=1

The sequence x is quasi-generic for u along (Ng), so
1
_ . i~
u(Cn) = lim ;‘ 1c,(8'%),
=

for all ¥ € AZ that extend x € AY. Fix ¢ > 0. In view of Lemma 3.14, for j sufficiently

large, we obtain
Ni

lim sup — Z 1c, (S'%) — 1c, (S x,)| (3.12)

k— o0 i=1
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for all X; € AZ that extend x; € AN. Here, it is important that € appearing in (3.12)
does not depend on n. Denote by w; the measure for which the sequence x; is quasi-
generic along (Ng)r>1. It then follows from (3.12) that |u(Cy) — u;(Cy)| < € for all
n. A similar argument shows that if j is sufficiently large then | (A) — u;(A)| < € and
|w(B) — uj(B)| <e.

Now, since (; is ergodic, we have that (3.11) holds with u replaced by w ;. Then, using
the triangle inequality and the fact that 1 ;(Cy), 1 ;(A) and u;(B) are e-close to u(Cp),
w(A) and u(B), respectively, we obtain that

lim sup
N—o00

1 N
5 2 H(Cn) = (A (B)| < 3e.
n=1

Since ¢ was chosen arbitrarily, this proves (3.11). O

For the statement of the next lemma, we need to recall the definition of a joining.
Let (X, B, u, T) and (Y, C, v, R) be ergodic measure-preserving systems and let A be
a (T x R)-invariant measure on (X X Y, B® C). Wesay that (X x Y, BQC, A, T X R)
is a joining of (X, B, u, T) and (Y, C, v, R) if A\|x = u and A|y = v [31]. We will write
J((X, B, u, T), (Y,C, v, R)) for the set of all joinings of (X, B, u, T) and (Y, C, v, R).
The subset of ergodic joinings will be denoted by J¢((X, B, u, T), (Y, C, v, R)). The
definition of a joining extends naturally to any finite or countably infinite family of
systems.

LEMMA 3.17. Assume that x, x" € AN are quasi-generic along (Ni)kx1 for ergodic
measures |, W, (n>1), respectively. Assume, moreover, that x™ — x in déN").
Then (Xy,w,S) is a factor of ((AZ)*® v, §*°) for some ve JC((AZ, ui, S),
(A%, 12, S), .. ).

Proof. Consider
2= (a2 @ ) e AN A,

Then z is quasi-generic along a subsequence of (Ng)x>1 for an invariant measure v, i.e.
for an increasing sequence (k¢)¢>1, we have

N,
— . 1 o e
/./47‘><(_AZ)><90 f v = Elingo N_kg nX:; f((S X (S )) (Z)) (313)

for all f e C(A% x (A%)**®) and all 7 € A% x (A%)**® that extend z. Using the
assumption of quasi-genericity along (Ng), we have

Ve J((A%, w1, S), (A%, ui, S), (A%, 1o, S), .. ).

We use B(AZ) and B((A%)**®) to denote the Borel o-algebra on A% and (A%)*°,
respectively. We claim now that (A%, u, S) is a factor of ((A%)*>, V| azyxoo, ),
i.e. that up to V-measure zero sets the o-algebra B(A%) ® {4, (A%)*>°} is contained in
the o-algebra {#J, A%} @ B((A%)*>®). Notice first that it is enough to show that for each
a €A,

CY ={ue A% u(0) = a} € {9, A%} @ B((A%)**) mod 7, (3.14)
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as {CS‘ :a € A} is a generating partition. To obtain (3.14), we note that for eachn > 1,

TUCY x (ALY O)YAAL x (AL x - x AL x €8 xAEx---))

—_—
nth position
<d (x, x™). (3.15)
Indeed, if 7o 5, : AZ x (A)**® - AZ x AZ denotes the projection
w0 (y, y Uy 0 D =,y ™)

and Vg, denotes the push-forward of v under g ,, then we obtain

TCE x (AEY ) AAL x (AL x - x AL x € x AL x - -)))
—_

=00 ((CY x ALY A(AT x CF)) = T4 (C§ x (CE)) + Vo ((CE)E x CI)

1
= lim — {0 <1< N, — 1:(S x 8 (x, x™) € (C§ x (CH) U (CH x CH

t—o00 N,

< dl(gN")(x, x™) >0 whenn— oo.

(We used the fact that the sets under consideration are clopen and hence (3.13) applies.)
Since (3.15) holds, also (3.14) holds as any (complete) o -algebra is closed in the metric
Vv(-AY).

We have shown that (AZ, W, S) is a measure-theoretical factor of the system

Z = ((AD)*, V] gzyxoc, S,

ie. (A%, 11, S) is represented by an $**-invariant sub-o-algebra C of (A%)*>. Consider
the ergodic decomposition of Z:

v|(AZ)><oo = / K dQ(K)

After the restriction to C, we obtain
= (] gzl = / Kle dQ(K).

Since, by Lemma 3.16, the system (AZ , 1, S) is ergodic, it follows by the uniqueness of
ergodic decomposition that x |¢ = pu for Q-almost every «. In other words, (AZ, u, S)isa
measure-theoretical factor of almost every ergodic component of Z. Moreover, because of
the ergodicity of wu,, n > 1, such an ergodic component is an ergodic joining of the family
{(AZ, w,, $)}nen. It follows that a typical ergodic component v satisfies the assertion of
the lemma. O

Proof of Theorem 3.12. Suppose x € AN is RAP along (Ni)i>1. By definition, we can
find periodic points x, € AN, n € N, such that x, converges to x in the déN") pseudo-
metric.

Each x, is generic for a cyclic rotation and hence, by Lemma 3.15, x is quasi-generic
along (Ng)r>1 for some invariant measure p € P(X,, S). Following Lemma 3.16, we
deduce that (X, u, S) is ergodic.
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Finally, any ergodic joining of cyclic rotations exhibits rational discrete spectrum and
therefore any factor of an ergodic joining of cyclic rotations also has rational discrete
spectrum. However, it follows from Lemma 3.17 that (.AZ, u, S), which is isomorphic to
(Xx, 1, S), is a factor of a system given by such a joining, hence it has rational discrete
spectrum. O

It is natural to inquire whether Theorem 3.12 characterizes RAP sequences. The answer
is negative. In the following example we construct a subshift of {0, 1} containing a point
that is not RAP but is transitive and generic for an ergodic measure yielding a dynamical
system with rational discrete spectrum.

Example 3.18. We will define a uniquely ergodic model for the cyclic rotation on two

points (in such a model each point is generic for the unique invariant measure). The

subshift X c {0, 1}% will consists of three orbits:

e the periodic pointa =...01.010101 .. ;

e the orbit of the point b which arises from the point a by erasing one ‘1’;

e the orbit of the point ¢ which arises from the point a by erasing infinitely many ‘1’s so
that the distance between the consecutive erased ‘1’s goes to infinity.

It follows that in the orbit of ¢ longer and longer (‘periodic’) words 0101 ...01 are

approaching the periodic orbit of a from odd and even positions—this makes the point

¢ non-rational (cf. Example 3.9). Since c is generic for the measure given by a, our claim

follows.

Even though the system constructed in Example 3.18 contains a transitive point that is
not RAP, it also contains an abundance of transitive points that are in fact RAP. As the
following proposition shows, this is no coincidence.

PROPOSITION 3.19. Let v € P¢({0, 1}%, S) be such that ({0, 1Y%, v, S) has rational
discrete spectrum. Then v-almost every x € {0, 1Y% is RAP. Moreover, if X is the
topological support of v, then there exists a transitive point n € X for which 1|1 o) is
RAP.

Proof. (Cf. [6, Theorem 3.19]) By assumption, the spectrum of ({0, I}Z, v, §) consists
of roots of unity of degree n;, with n; | ny,41, t > 0. Note thatif f; o S = e2mi/ne . f, then
f" o S = f" and hence, by ergodicity, we can assume that f; takes its values in the group
{e¥mii/ni: j=0,...,n,— 1}. By setting D} :={x € {0, 1}”: f;(x) = 1}, we obtain the
partition

D, :={D}, SD}, ..., "' D}

of the space {0, I}Z. Since {f; : ¢t > 0} forms an orthonormal basis of L%(v), it follows
that for each ¢ > 0 there is a partition Q" = {E};, E'} of {0, 1}Z such that E! is a union of
elements of the partition D; (i =0, 1) satisfying

V(CYAEL) + v(CJAE}) — 0 when 1 — o0.

Since S D} = D}, the sequence (1 E! (S¥x)) is periodic of period n,, for v-almost every

x € {0, 1}%. Moreover, v-almost every point x € {0, 1}7 satisfies the ergodic theorem for
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all sets CE)AEI? ,t>0,i=0,1. Hence, the first part of the assertion follows from the
pointwise ergodic theorem.

If, additionally, v has full topological support then the orbit of v-almost every point
has to intersect any open set belonging to a countable basis of open sets. In other words,
v-almost every point is transitive, so the the second assertion follows from the first one. O

Remark 3.20. If a subshift (X, S) is a strictly ergodic and topologically mixing model of
an odometer (note that such models exist due to [44]), then by Proposition 3.19 almost
every x € X is an RAP point generating a topologically mixing subshift. Hence, RAP
points can generate topologically mixing systems.

3.4. Revisiting Theorem 1.4. The purpose of this subsection is to give a proof of the
following generalized form of Theorem 1.8 and discuss some applications thereof (see
Theorem 3.27).

Definition 3.21. A set R C N is called an averaging set of polynomial multiple recurrence
along (My)i>1 if for all invertible measure-preserving systems (X, B, u, T), £ €N, A e
B with w(A) > 0 and for all polynomials p; € Q[¢], i =1, ..., ¢, with p;(Z) CZ and
pi(0)=0fori e{l,..., ¢},
L
lim — ) 1 ANT PWAN...AT™PM A) 5 0.
Jim > Lr(myu( ) >

n=1

THEOREM 3.22. Let R C N with d™)(R) > 0 and suppose n:= 1 is quasi-generic
along (Ni) for a measure v such that (X, v, S) has rational discrete spectrum. Then
there exists a subsequence (My)i>1 of (Ni)k>1 such that the following are equivalent:

(I) R is divisible along (M)i>1, that is,

IRNuNN{L, ..., M|
>
M

0

dMO(R N uN):= lim
k— 00

forallu € N;
(II) R is an averaging set of polynomial multiple recurrence along (My)i>1.

Remark 3.23. If R is RAP along (Ny)r>1 then it follows from the proof of Theorem 3.22
given below that in the statement of the theorem one can take My = Ny for all k € N.
On the other hand, if R is not RAP along (Ng)r>1 then this is not necessarily true. For
instance, take R C N such that the sequence 1 equals the sequence x from Example 3.9.
Then 1g is generic for a measure v such that (X;, v, §) has rational discrete spectrum
(see Remark 3.10). However, the set R is not divisible, since d(R N 27Z) does not exist.
For the same reason, 1z will not be a good weight for polynomial multiple convergence
(see Definition 2.2). Therefore it is indeed necessary to pass to a subsequence (My)x>1 of
(Ni)k>1 in Theorem 3.22.

For the proof of Theorem 3.22, we need the following variant of Lemma 2.9.

LEMMA 3.24. Let R CN and suppose 1r =n is quasi-generic along (Ni)k>1 for
a measure v, on X, C {0, % such that (X3, vy, S) has rational discrete spectrum.
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Let (X, T) be a topological dynamical system and let € P¢(X, T) be a measure with
a generic point x € X. If (X, u, T) is totally ergodic then

lim —ZlR(n)ﬂT”x) d™O(R) / fdu

k— 00
for each f € C(X).

Proof. Consider (77, x) € X, x X, where 77 € {0, 1}% is defined as 7j(n) = n(n) for all n €
N and 7(n) =0 for all n € Z \ N. Since (X, u, T) is totally ergodic and (X, vy, S) has
rational discrete spectrum, it follows that (X, u, T') and (X, v;, S) are spectrally disjoint
[34]. In particular, the only joining of these two systems is given by the product measure
vy Q@ u,ie. J((Xy, vy, S), (X, u, T)) = {v; ® u}. It follows that

(1, x) is quasi-generic along (N ), > for the product measure v, ® p. (3.16)
Fix f € C(X) and let F: X, — {0, 1} be given by F(z) =z(0). Then F € C(X;) and,

since 7 is quasi-generic along (N ), > for vy, we obtain

/ F dvy = lim —ZF(S”n)— lim _ZlR(n) d MO (R).
X

n

In view of (3.16), we have

hm—ZF@f((SXT)"(n,x))—/F@fd(w;@M):/X de,;/;(fdu.

k—oo N,

Finally, we only need to observe that
L L
nex _ n
N ; F® f((Sx T)"@.x) = 5 ; 1r(n) f(T"x)

and the proof is complete. O

LEMMA 3.25. Let R C N and suppose 1g =n is quasi-generic along (Ni)i>1 for a
measure v on X, C {0, 1}Z such that (X, v, S) has rational discrete spectrum. For u € N

and j €{0,1,...,u— 1}, let (R — j)/u denote the set {n € N:nu + j € R}. Then there
exists a subsequence (My)i>1 of (Ni)k>1 with the property that for every u € N and
J €0, 1,...,u—1} the point 0, j = Lg_j)u is quasi-generic along (My/u)i>1 for

a measure v, ; such that (X, i VuLjs S) has rational discrete spectrum.

Proof. By applying a standard diagonalization method, choose a subsequence (My)i>1
of (Ny)k>1 such that for every u € N the point 7 is quasi-generic along (My/u) > for a
measure u, with respect to the transformation S*. In other words, for every u € N and
every continuous function f € C({0, 1}%), the limit

My /u

lim - Z f (8™ 7)
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exists and equals f f du,, where 77 € {0, 1}2 is any two-sided sequence that extends 7 €
{0, 1}N. Define M, j = SJ u,, and note that My, j is S*-invariant. Since

1 u—1 1 u—1 '
o> [ rdwg=1 Y [ 55w
j=0 j=0
1 u—1 My /u
=— hm——z:ﬂW”M)
0
= lim —— Z F(8"7)
n=

=/fdw

1 u—1
= b =v. (3.17)
u s

we deduce that

In particular, we have that for each Borel-measurable function g on X,

1
lgl7a, = Xmmmsmy/mw L LLZ (3.18)

We deduce from (3.17) that p,,; is absolutely continuous with respect to v, that is,
any set that has zero measure with respect to v also has zero measure with respect to
tu,j. Therefore, any eigenfunction of the system (X, v, §) with eigenvalue A is an
eigenfunction of the system (X, py, j, S*) with eigenvalue A". The system (X, v, S)
has rational discrete spectrum and so the span of eigenfunctions with rational eigenvalue
is dense in L2(v). However, if a class of bounded measurable functions is dense in LZ(v),
then, by (3.18), it is also dense in LZ(MH, ). Hence, the span of eigenfunctions with rational
eigenvalue is dense in LZ(M,,, j)» which proves that (X;, 1., j, S") has rational discrete
spectrum.

Let ®: {0, 1}Z — {0, 1}Z denote the map defined by the rule ® (x)(n) = x(un + j) for
all x € {0, 1}%. It is straightforward to verify that ®(X,) = Xp, ; and that P satisfies

PoS=Sod. (3.19)

Let v, ; denote the push-forward of u, ; under ®. Since S71n is quasi-generic along
(My/u)i>1 for v, ; under the transformation S*, it follows from (3.19) that »,, ; is generic
for the measure v, ; along (My/u)i>1. Finally, observe that (me., Vy,j, S) has rational
discrete spectrum because (X, iy, j, S*) has rational discrete spectrum. O

THEOREM 3.26. Let R C N and suppose n:= 1g is quasi-generic along (Ny) for a
measure v such that (X;, v, S) has rational discrete spectrum. Then there exists
a subsequence (My)i>1 of (Ni)k>1 such that R is an averaging set of polynomial
multiple convergence along (My)i>1, that is, for all invertible measure-preserving
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systems (X, B, u, T), £ €N, A e B with u(A) >0 and for all polynomials p; € Q[t]

i=1,...,¢ with pi(Z) CZfori €{l, ..., L}, the limit
L
lim — Z IrM(ANTPIWAN... QTP Q) (3.20)
k—oo M,

=1

exists (cf. Definition 2.2).

Proof. By applying Lemma 3.25 we can find a subsequence (Mj)r>1 of (Ni)r>1 such
that, for every u € Nand every j € {0, 1, ..., u — 1}, the point 0, ; := L(g—j)/u is quasi-
generic along (Mg /u)>1 for a measure v, ; such that (X, o Vujs S) has rational discrete
spectrum. Let (X, B, u, T), £ €N, Ae B with u(A) >0and p; €eQ[r],i=1,...,¢,
with p; (Z) C Z fori €{l, ..., £} be arbitrary. Define

@) =pnAN T=PMWAAn...N T—pz(n)A)'

In view of Theorem 2.7, we can find for every € > 0 a basic nilsequence (f (Téf‘x)), where
T, is an ergodic nilrotation on some nilmanifold X =G/ TI', f € C(X) and x € X, such
that

lim sup — Z lp(n) — f(T7x)| <

N—o0 n=1

It thus suffices to show that the limit

lim — Z 1r(n) f(T}x) (3.21)

k— 00

exists, because from this it follows that

lim sup ﬁ Z 1r(n)p(n) — 11m mf — Z 1r(n)pn) <

k—o00
from which we can deduce that the limit in (3.20) exists, as € was chosen arbitrarily.
Let Xo, X1, ..., X,—1 denote the connected components of the nilmanifold X. Since
T, is ergodic, it cyclically permutes the connected components of X. We can therefore

assume without loss of generality that T¢ X ; = X j11 mod «- In particular, T;’ X;=Xj and,
according to Proposition 2.8, the nilsystem (X, ux;, Ty') is totally ergodic. Note that

My /u

lim ZlR(mf(T”x)—Z lim - Z Ly () f (T ),

where the limit on the left-hand side in the above equation exists if all the limits for
j=0,1,...,u—1 on the right-hand side exist. It remains to show that for every
jef0,1,..., u— 1} the limit

My /u

lim — Z Lg—jyu(n) f(T" )
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exists. Suppose ngx € X, for some joe{0,1,...,u—1}. Since (X, Kmx;, Tg“) is
totally ergodic (and uniquely ergodic), it follows from Lemma 3.24 that

Mk/u

klggoﬁ Z Lrjyum) f(Tg" x) = d M (R = j) /u) / [,
This finishes the proof. a

The proof of Theorem 3.22 hinges on Lemmas 3.24 and 3.25 and is a modification of
the proof of Theorem 1.4 given in §2.3.

Proof of Theorem 3.22. Let (X, B, i, T) be an invertible measure-preserving system, let
R C N with d¥©)(R) > 0 and assume n := 1g is quasi-generic along (N) for a measure
v such that (X, v, S) has rational discrete spectrum. Take any A € B with p(A) > 0 and
let p1, ..., pe € Qt] with p;(Z) CZ, pi(0)=0,i=1, ..., ¢, be arbitrary. Choose a
subsequence (My)r>1 of (Ni)i>1 such that the conclusions of both Theorem 3.26 and
Lemma 3.25 hold. We will show that

lim — Z 1r(n)p(n) > 0, (3.22)
n=1
where ¢(n) = w(ANT P WAN...ATPWA). The existence of the limit in (3.22)
follows from Theorem 3.26. It remains to show that the limit in (3.22) is positive.

Arguing as in the proof of Theorem 2.6, we can assume without loss of generality that

(¢(n)) is a nilsequence. By Theorem A.2 (see the appendix), there exists § > 0 such that
N
Jim Z @(un)>8 forallu e N. (3.23)
n=1
We can approximate (¢(n)) by a basic nilsequence (f (Tg"x)), where Ty is a nilrotation on
some nilmanifold X = G/ T, f € C(X) and x € X, such that |p(n) — f(Téf’x)| < §/4 for
alln e N.

Using Proposition 2.8, we can find u € N and a sub-nilmanifold ¥ C X containing x
such that (Y, wy, Tgu) is totally ergodic. It follows from Lemma 3.25 that 1g,, is quasi-
generic along (M} /u)ien for a measure v’ such that the system ({0, l}Z, v/, §) has rational
discrete spectrum. It now follows from Lemma 3.24 that

My Ju

lim — Z Lru() f(Tgux) = d™/ (R Ju) / fduy. (3.24)
Y
Finally, combining (3.23) and (3.24) and |¢(un) — f(T .X)| < /4, we obtain

My
1
lim - § 1r(n) Y (n) > lirgom Y " Lraun(m)y (n)
n=1

My /u

=+ (im - > L ) )
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My Ju

> 1( im —— 3" Lry(n) f(Thx) — gd(Mk/”)(R/u)>
=1

u \k—oo My
n—=

1/38 8
> —<Zd(M’</“)(R/u) —~ Zd(Mk/”)(R/u)) > 0.
u

This completes the proof. O

As an application of Theorem 3.22 together with Remark 3.23, we obtain a
strengthening of Theorem 2.18 that also applies to %-free numbers for a general set
P N\ {1}.

THEOREM 3.27. Suppose 98 C N\ {1}. Then there exist an increasing sequence of
positive integers (Ni)i>1 and a set D C Fgp with dNO (Fz \ D) =0 such that for all
r € N the following are equivalent:

e rebD;

o Fyp —risdivisible along (Ni)i>1;

o Fyp —risan averaging set of polynomial multiple recurrence along (Ny)x>1.

Proof of Theorem 3.27. Let 28 C N be arbitrary. If % is Behrend then Fz has zero
density and we can put D = (. Thus, let us assume that & is not Behrend. Therefore,
the logarithmic density of 8(Fg) is positive. Moreover, by Theorem 2.15, §(Fg) =
d(Nk)(}'g) for some increasing sequence (Ni)r>1. We now repeat word for word the
proof of Theorem 2.18 with density and divisibility replaced by density along (Ni)i>1
and divisibility along (Ng)k>1, respectively. O

4. Applications to combinatorics
In this section we show how the results obtained in the previous sections allow us to derive
new refinements of the polynomial Szemerédi theorem. In particular, prove Theorems 1.9
and 1.10.

First, let us recall Furstenberg’s correspondence principle.

PROPOSITION 4.1. (Furstenberg correspondence principle; see [8, 9]) Let E C N be a set
with positive upper density d(E) > 0. Then there exist an invertible measure-preserving
system (X, B, u, T) and a set A € B with u(A) > d(E) such that forallny, ..., ng €N,

dAENE—n)N---N(E—n)=pu(ANT™MAN---NT™A).  (4.1)

We now have the following result regarding averaging sets of polynomial multiple
recurrence along (Ni)g>1.

PROPOSITION 4.2. Let (Ny)i>1 be an increasing sequence and let R C N be an averaging
set of polynomial multiple recurrence along (Ny)x>1. Then for any set E C Nwith d(E) >
0 and any polynomials py, ..., p¢ € Q[t] which satisfy p;(Z) C Z and p;(0) =0 for all
ie{l,..., 1}, there exists B > O such that the set

{(neR:d(EN(E—pi(m)N---N(E— pe(n)) > B}

has positive lower density (with respect to (Ny)k>1).
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PROPOSITION 4.3. Let R C N be an averaging set of polynomial multiple recurrence
(along (Ni)k>1). Then for any E C N with d(E) >0 and any polynomials p1, ..., p¢ €
QIt] which satisfy pi(Z) CZ and p;(0) =0 for all i € {1, ..., £}, there exists a subset
R’ C R satisfying d(R') > 0 such that for any finite subset F C R’,

E(ﬂ(E N(E = pi(m)N---N(E— Pz(n)))> > 0.
nel

By combining Proposition 4.2 with Theorem 1.4, we immediately obtain a proof of
Theorem 1.9. Likewise, by combining Proposition 4.3 with Theorem 1.4, we immediately
obtain a proof of Theorem 1.10.

We can also get a slight generalization of Theorem 1.9: we can replace the notions
‘rational’ and ‘divisible’ with ‘rational along (Np)r>1’ and ‘divisible along (Ni)k>1’
for any increasing sequence (Ng)x>1 and, in virtue of Theorem 3.22, the statement of
Theorem 1.9 remains valid.

Proposition 4.2 is an immediate consequence of Furstenberg’s correspondence principle
and of the definition of averaging sets of polynomial multiple recurrence.

For the proof of Proposition 4.3 we need the following theorem.

THEOREM 4.4. (See [7, Theorem 1.1]) Let (X, B, u) be a probability space and suppose
ApeB, u(Ay) =26>0, forn=1,2,.... Then there exists a set P C N with d(P)>=$
such that for any finite subset F C P,

y,( m A,,) > 0.

neF

Proof of Proposition4.3. Let R CN be an averaging set of polynomial multiple
recurrence along (Np)r>1. Let E C N with d(E) > 0 and let pieQt],i=1,...,¢,
with p;(Z) C Z and p; (0) =0, foralli € {1, ..., £}.

By applying Proposition 4.1, we can find an invertible measure-preserving system
(X, B, u, T) and a set A € B with (A) > d(E) such that (4.1) is satisfied. Next, since
R is an averaging set of polynomial multiple recurrence along (Ng)k>1, we can find some
& > 0 such that the set

D=neR:u(ANT P WAN...AT P Q) > §)
has positive lower density, ie. d(D) =liminfy_, oo [DN{l,..., N}|/N >0. Let
ni, ny, n3, ...be an enumeration of D and let A; € B denote the set
A= ANT P AN QTP A,
Then, according to Theorem 4.4, we can find a set P C N with E(P ) = 6 such that for any

finite subset F' C P,
u(ﬂ An) > 0. (4.2)

neF
Let R' :={n; :i € P}. Then R’ C R and it is straightforward to show that d(R’) > 0.
Moreover, combining (4.2) with (4.1), for any finite subset {n1, . .., ng} C R’, we obtain

-
E(ﬂ(E N(E = pi(n))N---N(E - Pz(m)))) > 0.

i=1
From this the claim follows immediately. O
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For the special case of Z-free numbers, we have the following combinatorial corollary
of the above results.

THEOREM 4.5. For 2 C N\ {1} let Fgz denote the set of J-free numbers and let (Ny)>1
be any sequence of increasing positive integers such that d™N) (F ) exists and is positive.
Then there exists a set D C Fg with dNO(Fz \ D) =0 and such that for all r € D,
for all E C N with d(E) > 0 and any polynomials p; € Q[t], i =1, ..., £, which satisfy
pi(Z) CZ and p;(0) =0, foralli € {1, ..., £}, there exists § > 0 such that the set

{neFg—r:d(EN(E—pi(n))N---N(E = pe(n;))) > B}

has positive lower density with respect to (Ni)k>1. If, additionally, 2 is taut then one can
take D = F .

A proof of Theorem 4.5 follows immediately by combining Proposition 4.2 and
Theorem 3.27.

5. Rational sequences and Sarnak’s conjecture

Section 5 is divided into two subsections. In §5.1 we give a proof of Proposition 3.4, which
states that any automatic sequence generated by a synchronized automaton is WRAP.
In §5.2 we use Proposition 3.4 to strengthen a result obtained by Deshouillers, Drmota
and Miillner in [23], which states that sequences given by synchronized automata satisfy
Sarnak’s conjecture.

5.1. Synchronized automata and substitutions. We begin with a proof of
Proposition 3.4. For the convenience of the reader, we restate the proposition here.

PROPOSITION 3.4. Each automatic sequence given by a synchronized automaton M is
WRAP.

Proof. Let M = (Q, B, §, qo, T) be a synchronized complete deterministic automaton
with set of states Q := {qo, . . ., gr}, input alphabet B:={0, 1, ..., k — 1}, finite output
alphabet A, transition function §: Q x B — Q, initial state go and output mapping
7:0 — A. ForneN, let [n]; € B* be defined as in §3.1. Let a(n) = t(8(qo, [n]k)),
n € N, denote the automatic sequence generated by the synchronized automaton M.

Fix ¢ > 0. Let n; be such that at least k" (1 — &) words of length n; are synchronizing
(see Definition 3.3). In other words, if we set

K :={0<m < k™ : [m]y is synchronizing}

then we have |K| > k"1 (1 — ¢) (note that if w is a synchronizing word then so is every one
of its extensions). Notice that

a(n) = a(m) whenever n = m mod k™! for some m € K (5.1)
as [n]x and [m] share the last k"1 digits. Consider a’ given by

, a(n) if n mod k™! belongs to K,
a(n):=

0 otherwise.
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Notice that a’ is periodic of period k"1: for0 < m < K, j >0,

aim) ifmek,

a'(m+ jk") =
/ 0 otherwise.

Moreover, using (5.1), we obtain

1
dw(a,a’) =limsupsup —|{1 <n <N :anye #a, )l
N—>oo ¢ N

1
glimsupsupﬁHlgngN:n—f—Emodk”‘ Z K}|

N—oo ¢
K — K| _
T F

and the result follows. O

5.2. Orthogonality of RAP and WRAP sequences to the Mobius function. Let (X, T)
be a topological system, that is, X is a compact metric space and 7: X — X a
homeomorphism. Let u denote the classical Mobius function, i.e. for all n € N,

(—1)]‘ if there exist k distinct prime numbers py, . .., pk,
n(n) = such thatn = py - - - - - P,
0 otherwise.

We write (X, T) L p whenever limy_. (1/N) ZrI,V:1 f(Tx)p(n) =0forall f € C(X)
and x € X. Sarnak’s conjecture [56] states that

(X, T) L n whenever the topological entropy of T is zero. (5.2)

If x € AY is an automatic sequence generated by a synchronized automata then its sub-
word complexity is at most linear (see, for example, [2, Theorem 10.3.1]), which implies
that the entropy of the dynamical system (X, S) is zero. It is therefore natural to ask if
systems generated by such automatic sequences satisfy Sarnak’s conjecture. This question
was answered affirmatively in [23].

The next theorem states that any W-rational system satisfies Sarnak’s conjecture. In
view of Proposition 3.4, our result can be viewed as an extension of the main result in [23].

THEOREM 5.1. Let x € AN be WRAP. Then for all f € C(Xy) and z € X,

N

1
Jim ; F(S$"2)p(n) =0. (5.3)

Equivalently, (Xx, S) L u.
For the proof of Theorem 5.1 we need two lemmas. The first lemma is a slight

modification of Lemma 3.14 involving the Weyl pseudo-metric dw instead of the
Besicovitch pseudo-metric dp.
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LEMMA 5.2. Let x,ye AN, ny,...,ny€Z and oy, ...,ap € A.  Then, for C =

LPN7,
(jnl ng»

.....

1
limsup sup — Y~ [1e(S"%) — Le(8"H)| < ldw(x, y),
H—o00 meN m<h<m+H

where %, 3 € A” are any two-sided sequences extending x and y, respectively.

The proof of Lemma 5.2 is very similar to the proof of Lemma 3.14 and is omitted.
The next lemma, which is also needed for the proof of Theorem 5.1, states that RAP
sequences are orthogonal to the Mobius function .

LEMMA 5.3. Suppose x € AN is RAP and f € C(A%). Then

N
lim > f(S" B)p(n) =0. (5.4)
=1

N—oo N

Proof. Since any continuous function f € C(X,) can be approximated uniformly by

cylinder sets C = Cffll ,,,,,,,,,, ,‘i‘f, it suffices to show (5.4) for the special case where f =1¢ =
1.1 foranyny,...,ng€Zanday, ..., € A.

Ny ny

Hence, let £ e N, ny,...,ng€Zand oy, . . ., ay € A be arbitrary. Fix € > 0. Since x

is RAP we can find a periodic sequence y € AN such that dg(x, y) < €/¢. Let € A% be
a two-sided periodic sequence that extends y. Then, using Lemma 3.14, we get

lim sup
N—o00

<Aldp(x, y) =e. (5.5)

1 & 1 Y
5 2 Le(S"Hnm) - + ; 1c(S"5)r(n)

It is a well-known fact that Dirichlet’s prime number theorem along arithmetic
progressions is equivalent to the assertion that for any periodic sequence a(n) one
has limy— o (1/N) Zflv:] a(n)u(n) =0. In particular, a(n) =1c(S"y) is a periodic
sequence and hence

N
1 e
Jim Z} 1c(S"5)p(n) = 0.

Therefore, (5.5) simplifies to

lim sup <e.

N—o0

N
1 -
5 2 LeS"Hmn)
n=1
Since € > 0 was chosen arbitrarily, the proof of (5.4) is complete. O

Proof of Theorem 5.1. Let x € AN be WRAP and let f € C(X,) and z € X, be arbitrary.
It follows from Proposition 3.6 that z|n is WRAP and therefore z|y is also RAP. Hence
(5.3) follows directly from (5.4). O

In light of Theorem 5.1 it is natural to inquire about the behavior of averages of the

from |
= 2 [f6"aem (5.6)

m<h<m+H
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for large values of H and arbitrary m € N. It is believed that the expression in (5.6) does
not converge to 0 (as H approaches co) uniformly in m. Indeed, by Chowla’s conjecture
[18] (see also [27, 56]) it follows that for every word w € {0, I}H that appears in [Lz =
1y, where Q denotes the set of squarefree numbers, all words in v € {1, 0, 1} with
v? = w must appear in g. In particular (assuming Chowla’s conjecture), for every H > 1
there is m > 1 such that 1o(h) = u(m + h) for all A € [1, H] and therefore (5.6) with
f = lis close to 6/72. Nonetheless, using recent results of Matomiki, Radziwitt and Tao
[49], we will show that for large H and ‘typical’ m € N the averages in (5.6) are small.
Such averages of u (or, more generally, of bounded multiplicative functions) over ‘short
intervals’ have also been considered in [28, 48, 49, 62]. We obtain the following result in
this direction.

THEOREM 5.4. Letr x € AN be WRAP, let f e C(Xy)andlet z € Xy. Then for every § > 0
there exists Hy € N such that for all H > Hy the set of all m € N for which

<35 (5.7)

1
‘ﬁ > fSmum)

m<h<m+H

has lower density greater than or equal to 1 — 6.

It is not clear if Theorem 5.1 can be derived quickly from Theorem 5.4. However, we
will see that Theorem 5.4 is a corollary of a stronger result which is a strengthening of
Theorem 5.1 and which we state next.

THEOREM 5.5. Let x € AN be WRAP. Then for all f € C(Xy) and z € X,

1 1

lim — — h =0. .

Jim Y ‘ = > [ z)u(h)‘ 0 (5.8)
H/M—0 M<m<2M m<h<m+H

Before providing a proof of Theorem 5.5, let us show that Theorem 5.5 implies both

Theorems 5.1 and 5.4. We will need the following standard lemma, the proof of which is

included for the convenience of the reader.

LEMMA 5.6. For every H €N, let xg: N — C be a sequence bounded in modulus by 1.
If

1
lim  — )" xy(m)=0,

H—oo M
H/M—0 M<m<2M

then
1 N
lim NZxH(n)zo.

H—o00
H/N—0 n=1

Proof. Let Hy and N; be two sequences such that limg_,., Hy =00 and
limg_, oo (Hx/Ny) =0. Let £ € N be arbitrary. Then have

1 Ny 1 /2/ 1
'N—k ZXH]( (Vl) ' Z Z(F]{ . Z . ka(m)> + Fkak(Nk)
n=1 1< <logy (Ny) Ny /2] <m<Ny /271
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<Y 5

1<) <£ N

> ka(m)‘ +or

Nk , ,
Ni /20 <m <Ny j2i-1

whenever £ < log, (Ny). Note that

L2
Ni/2/ <m< Ny /201

because limg_, oo Hk/Nk/Zj =0forall j € {1, ..., £}. Hence,

(m| <

k—o00

Since £ € N was arbitrary, this finishes the proof. O

Proof that Theorem 5.5 implies Theorem 5.1. Define

1
b (H) = —

> f(S”z)ﬂ(h)‘

m<h<m+H
First, we observe that, according to Lemma 5.6,
1 H JH/M—0
- Z b (H) Hzoo H/M=0
M<Lm<2M
implies
1 N H H/N—0
— 00, —
5 Z by(H) ——"1""3 .
n=1
Let € > 0 be arbitrary, let Hy and Nj; be two sequences such that limg_, o Hy =

oo and limg— o~ (Hx/Ni) =0 and take Ji:={1 <n < Ny :b,(Hy) < 2}. It follows
from limg_, o0 (1/Ng) Z;Vil b, (Hy) = 0 that for sufficiently large k we have |J|/Ny >

1—e€. Forte{0,1,..., Hy — 1} define Ji;:= Jiy N (HyZ +t). Then for some r €
{0, 1, ..., H, — 1} we must have
|Jk,r| >1—¢
|(HyZ +r) N {1, ..., N}
We get
Ny n+Hg—1
1 Hy 1 H
— Y (S| < | > — Y fS"ubh)| + —
Ni N, H; Ny
n=1 ne(HyZ4+r)N{1,...,Ni} h=n
Hj, Hy,
<y > ba(HE) + 5
k ne(HyZ~+r)N{1,...,Ny} k
H; Hk|Jk r|6 Hy
Zb,l(Hk)+e+N T+6+Vk'

neldy

As k — oo the expression Hk|Jk’,|€ / Nk + € + Hy /Ny converges to €2 + ¢. Since € is
arbitrary, this finishes the proof. O
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Proof that Theorem 5.5 implies Theorem 5.4. We present a proof by contradiction.
Assume there exists some § > 0 such that one can find an increasing sequence (Hy)i>1
with the property that for every k the set

1

Dy = N:|— S" )| =8

k {me ‘Hk > " >‘ }
m<h<m+ Hy

satisfies d(Dg) = 8. Since d(Dy) > 8§, we can find Ny, € N such that Hy < Ni/k and such

that

L

Ny

S f(Shz)u(h)‘ > 8%

H,
k m<h<m+Hy

m=1
This contradicts the fact that according to Theorem 5.5 and Lemma 5.6,

Nk 1
— Y f(Shz)u(h)‘ =0. O

H,
k m<h<m+Hy,

. 1
lim —
k—oo Ni
m=1

Remark 5.7. From Theorem 5.4 it follows that for all x € AN that are WRAP, f € C(X,)
and z € X,., we have

N

1
lim li —
i sup D

H
1
o Z FS"™ M yun + h)‘ =0.
n=1 h=1
The remainder of this section is dedicated to proving Theorem 5.5. The following
lemma (which is a variant of Lemma 5.3) will be useful for this purpose.

LEMMA 5.8. Suppose x € AN is WRAP and f € C(Xy). Then

1 1
lim — > ‘ﬁ > f(Sh)E);L(h)‘zo. (5.9)

oo M
H/M—0 M<m<2M m<h<m+H

where ¥ € A% is any two-sided sequence extending x € AV,

Proof. Since any continuous function f € C(X,) can be approximated uniformly by
cylinder sets C = cy 11 ,,,,,,,,,, ,‘i‘f, it suffices to show (5.9) for indicator functions of cylinder
sets.

Let{eN,ny,...,ngeZanday, ..., ar € Abe arbitrary. Fix € > 0 and let y € AY
be a periodic sequence such that dy (x, y) <e/f. Let € AZ be a two-sided periodic

sequence that extends y. From Lemma 5.2 it follows that

1
= > (Ae(S"R) = 1e(S"H)m(n)

m<h<m+H

lim sup sup
H—>o00 meN

<ldw(x, y) <e. (5.10)

By a recent result of Matomiki, Radziwitt and Tao [49], for each periodic sequence a(n),

1 1
— Z ‘— Z a(h)u(h)‘—)O as H — oo, H/M — 0.
M<m<2M m<h<m+H
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Choosing a(n) = 1¢(8"y) we thus get

1 1
— Y ‘— > 1C(Shy)u(h)‘—>o as H—> oo, H/M — 0.  (5.11)
M<m<2M m<h<m+H
Combining (5.10) and (5.11), we obtain

. 1
PLESTIPD

— 00
(H/M)=>0 — M<m<2M

1
< lim —
H—soo M Z
(H/M)—0 M<m<2M

LY st Hum
H C

m<h<m+H

% ) 1C(Sh§)ﬂ(h)‘ te=e

m<h<m+H

Since € is arbitrarily, the proof of (5.9) is complete. O

Proof of Theorem 5.5. The following argument is analogous to the one used in the proof
of Theorem 5.1. Let x € AN be WRAP and let f € C(X,) and z € X, be arbitrary. It
follows from Proposition 3.6 that z|y is WRAP. Therefore, equation (5.8) follows from
5.9). O
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A. Appendix. Uniformity of polynomial multiple recurrence
In this appendix we derive a uniform version of the following polynomial multiple
recurrence theorem obtained in [12].

THEOREM A.1. (See [12, Theorem A]) Let £, u € N and let p; ; € Q[t] be polynomials
satisfying p; j(Z) CZ and p; j(0)=0, i=1,...,¢ j=1,...,u. Then for any
probability space (X, B, ), any u-tuple of commuting invertible measure-preserving
transformations Ty, ..., T, on (X, B, u) and any A € B with u(A) > 0,

N

1] P T P2 ) b
1}nglogfﬁ2u(AnH1Tj : Aﬂl_[lTj Aﬂ~~-ﬁl_[1Tj A>>O.
n= j= J= J=

The uniform version in question is given by the following theorem (a special case of
which was used in the proofs of Theorems 2.6 and 3.22).

THEOREM A.2. Forall £,d € N and all ¢ > 0 there exists § > 0 such that the following
holds. For any u €N, for any polynomials p; ;€ Q[t], i=1,...,¢ j=1,...,u,
satisfying deg(p; ;) <d, p; j(Z) CZ, p; j(0) =0, for any probability space (X, B, u),
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for any u-tuple of commuting invertible measure-preserving transformations Ty, ..., T,
on (X, B, n), for any A € B with u(A) > ¢ and for any s € N, has

N—-1 u u
. 1 —p1,j(sn) —p2,j(sn)
1 AN T. 77 AN T. "7 A
N;;in_MZMM( [, [,
n= j= j=

u
N ]_[ T, pe.jisn A) > 8. (A.1)

We remark that a slightly less general version of Theorem A.2 is stated in [30,
Theorem 4.1] without a proof.

In the course of proving Theorem A.2 we will make use of the following equivalent
combinatorial form of Theorem A.1.

THEOREM A.3. (See [11, Theorem 3.2]) Let £,u €N, let ¢ >0 and let p; ; € Z[t]
be polynomials satisfying p; j(0)=0,i=1,...,¢ j=1,...,u. Then there exists a
positive integer N = N (€, u, €, p; ) such that for all sets A C 74 with

|ANI[L NI
—_— > £
Nu

there exist n €N and ae€ A such that a+ (pi1(n), ..., piu(n)) €A for all ie
{1,2,...,¢}.

We will need the following theorem, which is of independent interest and can be
interpreted as a polynomial extension of [11, Theorem F2].

THEOREM A.4. For every £,d € N and every ¢ > 0 there exist K € N and B > 0 such
that for any probability space (X, B, n), any commuting invertible measure-preserving
transformations T; j, 1 <i <{Land 1 < j <d, and any A € B with u(A) > &, there exists
nefl,..., K} suchthat

d . d .
u(A n[] le;l"A n[Imyan- ]_[ T_” ) (A.2)

j=1 j=1
Moreover,
N-1 d ) d _ B
—nl —nl n/
lebnloozv I M(ADHTLJ.ADHTZJAH- HT > =
n=M j=1 j=1
(A3)
Proof. Letu:=d¢{ and, for 1 <i <{and 1 <t < u, define
n/ ift=@G—-1)d+jwithl <i<fand1<j<d,
pi(n) = (A4)
0  otherwise.

Let K = N(¢, u, €/2, p; ;) as guaranteed by Theorem A.3. For the remainder of this proof
let us call a set of the form {a} U {a + (pi1(n), ..., piu(n)):1<i <} for some a =
(ay, ..., a,) € N*and n € Na basic arrangement. Let J denote the collection of all basic
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arrangements contained in {1, ..., K}*. Set B :=¢/4|J|. We claim that (A.2) and (A.3)
are satisfied with this choice of K and 8.

Let (X, B, u) be an arbitrary probability space, let T; ;, 1 <i <€ and 1< j <d,
be commuting invertible measure-preserving transformations on X and let A € B with
w(A)>e. For 1 <t<u,letS;:=T;; where (i, j) €{l,..., £} x{1,...,d} is such
that r = (i — 1)d + j. It thus follows from (A.4) that

d u

[Tz =T]s"". (A.5)

j=1 =1

f@x) = % Z 14 (]_[ S,"’(x)).
t=1

(ny,...ny)Ell, K

Define

Clearly, f is a non-negative function and |, x f du > e. Therefore the set B :={x € X :
f(x) = e/2} satisfies u(B) > ¢/2. Also, for every x € B the set

Ey = {(nl, coom) €1, K] ]_[ S (x) € A}
=1
has density at least ¢/2 in [1, K%, i.e. |Ex| > (¢/2)K". By our choice of K, we are
guaranteed to find at least one basic arrangement contained in E.
We have shown that for every x € B there exists a basic arrangement contained in
E, C[1, K]*. Since there are |J| basic arrangements in [1, K]“, by the pigeonhole
principle there exists a set C C B with u(C) > ¢/2|J| such that E, contains the same basic

arrangement for every x € C. Suppose this basic arrangement is given by {(ay, ..., a,)} U
{@i,...,a0)+ (pii(), ..., piun)):1<i <t} Let C':=[[/_, S;*C. Then for any
x'eC'andanyiefl,..., ¢}, ifx:=[[/_; S; “(x') then by (A.5) and the definition of
EX9

li[ ()C) 1_[ szr(") 1_[ S“H‘P:r(")( ) e A.

= t=1
This shows that C " is contained in the intersection A N ]_[7: | TIT;.’JA N ]_[j-l:1 T{j’.ﬂ AN

N l—[] 1 T, 1’ A Since uw(C") = u(C) > B, this finishes the proof of (A.2).
Next, we glve a proof of (A.3). Let M > 1 be arbitrary. Note that for all m with
M(K — 1) <m < MK and all k w1th 1 <k <K the products mk are pairwise distinct.

For1 <j<d,1<m<Mand1l<i</defineR;;, = T’” It follows that
MK? d ) d ‘
—n/ —n/ _nJ
Y <ADHT1J.ADHT2JAH- HT )
n=1 j=1 j=1
1 MK K d _ , d
—(mk)’ —(mk)’ (mk)!
T Z <AOHT1’]. AOHTZ)J. an-nJ] 7] A)
m=M(K—1)+1 k=1 j=1 j=1 j:l
d
1 k) i —kJ
= Z u(Aﬂl_[RijAﬂl_[Rhm m]_[R@]m
m=M(K—1)+1 k=1 j=1
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In light of (A.2) we have

Z (A N ]—[ Rl—’;’mA N ]_[ R;’;’m N ]—[ R;’;’m )

k=1

for all 1 <m < M. Therefore,

| d
S z(mml,mmm,m mm,m)
j=1

m=M(K—1)+1 k=1
MK

1
e 2 P

m=M(K—-1)+1
_ B

This proves that

1 MK? d , d ) B
. . —n’ —n’ J
lim inf —— > u(An]_[Tw’? An]] i an- HT " ) >
n=1 j=1 j=1
(A.6)
Finally, it follows from the results in [61] that the limits on the left-hand side of (A.6) and
on the left-hand side of (A.3) exist and are equal. This finishes the proof of (A.3). O

Proof of Theorem A.2. Depending only on ¢, d € N and € > 0, choose 8 >0 and K > 1
as guaranteed by Theorem A.4. Note that coefficients of integer polynomials of degree d
can be written as fractions with denominator g := d!. Define b := ¢g! and pick any 6§ > 0
such that § < 8/bK?. We claim that (A.1) holds with this choice of §.

Let u,seN and let p; ; €Ql¢t], i=1,...,¢ j=1,...,u, with deg(p; ;) <d
pi,j(Z) C Z, p;,j(0) =0 and such that the denominators of the coefficients of p; ; (When
written as reduced fractions) are at most g. Furthermore, let Tq, ..., T,, be commuting
invertible measure-preserving transformations on a probability space (X, B, u) and let
A € B with u(A) > e. It follows from [61] that the limit on the left-hand side of (A.1)
exists and is equal to

N u u u
1 — o1 (s o (s
lim — " u(A N[z ™ " an]] ;™ an---n[] 1 ”““’”A).
N=eo N j=1 =1 =1
(A7)
It thus sufﬁces to show that (A.7) is bigger than 4.
For1 <i<{fand1<j<u,find a(l) (d) such that

2 2

pl](n)—a(l)n+a e a@nd,

By assumption, bal.(kj) € Z and hence skbkai(é? € Z for all s € N. Define

u skpkaq®

Ri,k:HTj Mo1<k<d.

Jj=1
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Clearly,

u d
i, j (b i
I1 Tj”*f( ) [1RY, forallneN.
=1 j=1

‘We thus have

N u u u
1 —p1,j(sn) —p2,j(sn) —pe.j(sn)
NZ/,L(AO“T]. AnTr " an. a1
n=1 j=1

Jj=1 Jj=1
A - (bsn) . (bsn) - (bsn)
—p1,;Osn —p2,jbsn —pe,jbsn
>NZM(AﬂnTj An]]r; An-n]]T; A)
n=1 j=1 j=1 j=1
| Wl d 4 , d .
_ —n/ —n’ . —n/
= ZM(AHHRL].ADHR“AH N1 R A).
n=1 j=1 j=1 j=1

From (A.3) it follows that

LN/b]

d d d
) i _ni i B
Jim 3 u(an] Ry an]] & an-n ] A)z oy =

n=1 j=1 j=1

Therefore,

N

N—o0

(1]
(2]

(3]

(4]
(5]
[6]
(71
(8]
91

[10]

n=1

1 P m) YT e ) o —pe(sm)
lim NZ;L(AQHTJ. Am]‘[Tj Aﬂ-~~ﬂHTj Al >s.
j=1

j=1 j=1
O
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