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Abstract

We introduce two notions of complexity of a system of polynomials p1, . . . , pr ∈ Z[n]
and apply them to characterize the limits of the expressions of the form µ(A0∩T−p1(n)A1∩
. . .∩T−pr(n)Ar) where T is a skew-product transformation of a torus Td and Ai ⊆ Td are
measurable sets. The dynamical results obtained allow us to construct subsets of integers
with specific combinatorial properties related to the polynomial Szemerédi theorem.
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0. Introduction

A. Configurations in sets of positive density

The Szemerédi theorem on arithmetic progressions ([Sz]) states that if a set E ⊆ Z
has positive upper Banach density, then for any r ∈ N, there exist integers a and n 6= 0
such that {a, a + n, a + 2n, . . . , a + rn} ⊂ E. (We recall that the upper Banach density
d∗(E) of a set E of integers is given by d∗(E) = lim supN−M→∞

|E∩[M,N ]|
N−M+1 . When the

limit limN−M→∞
|E∩[M,N ]|
N−M+1 exists we will denote it by UD(E), for “uniform density”.)

∗Bergelson and Leibman were supported by NSF grants DMS-0345350 and DMS-0600042.
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Szemerédi’s theorem has been extended to multidimensional “polynomial” progressions
([BL]). In particular, it was proven in [BL] that if p1, . . . , pr are integral polynomials (that
is, polynomials with rational coefficients taking integer values on Z) with pi(0) = 0 for
i = 1, . . . , r, then any set E ⊆ Z with d∗(E) > 0 contains configurations of the form
C(a, n) = {a, a + p1(n), a + p2(n), . . . , a + pr(n)} with n ∈ Z \ {0}. Moreover, in the
linear case as well as the polynomial case, the set

{

n ∈ Z : C(a, n) ⊂ E for some a ∈ Z
}

is syndetic, i.e., this set meets any sufficiently long interval in Z. (See [F1] and [BM].)
The homogeneity condition, pi(0) = 0, in the formulation is quite essential. Thus

for p(n) = 2n + 1, a simple non-homogeneous polynomial, the 2-element configuration
{a, a + p(n)} does not appear in E = 2Z or E = 2Z + 1. (By a change of variables
qi(n) = pi(n − n0) the homogeneity condition can be replaced by the condition that the
polynomials vanish simultaneously for some n0 ∈ Z.)

It is significant that the foregoing counterexample to existence of a non-homogeneous
configuration is rooted in a “non-randomness” displayed by the set E. We will be giving a
precise definition of “randomness” of a set of integers, and for sets E with this property and
d∗(E) > 0, every non-trivial polynomial progression type will occur in E. (A polynomial
progression type is trivial if for some i 6= j, pi − pj = const.) For sets with only the
condition d∗(E) > 0, the existence of a specific non-homogeneous configuration depends
on the configuration in question. For example, as we will see, one can produce a set E
with UD(E) > 0 so that all linear 2-term configuration occur (and moreover, do so in
abundance) but some linear 3-term configurations do not occur.

The length of the configuration plays a role here and the foregoing example is gener-
alized in the following.

Proposition 0.1. Let r ∈ N, let b1, b2, . . . , br be distinct integers, and let m ∈ N and
l ∈ Z, l 6≡ 0mod m. There exists a set E with UD(E) > 0 such that
(i) For any integers b′1, b

′
2, . . . , b

′
r−1, m′ ∈ N and l′ ∈ Z the set

N ′ =
{

n ∈ Z : {a, a + b′1(m
′n + l′), a + b′2(m

′n + l′), . . . , a + b′r−1(m
′n + l′)} ⊂ E

for some a ∈ Z
}

is syndetic, but
(ii) the set

N =
{

n ∈ Z : {a, a + b1(mn + l), a + b2(mn + l), . . . , a + br(mn + l)} ⊂ E
for some a ∈ Z

}

is empty.

One can ask quite generally if for two kinds of configurations there exists a set of
positive upper density containing configurations of one kind but not of the other kind.
We will give a partial answer to this based on an appropriate notion of the “complexity”
of a polynomial configuration, for which, given polynomial systems P = {p1, . . . , pr} and
Q = {q1, . . . , qs} of different complexity, there exists a set E with UD(E) > 0 containing
one configuration but not the other. To each system of homogeneous (vanishing at 0)
polynomials, P = {p1, . . . , pr} we asign a complexity index and determine a particular set
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EP of positive density for which this complexity index will play a role. Namely, there will be
a non-homogeneous version of a P -progression, specifically, C(a, n) =

{

a, a + p1(mn + l),
a + p2(mn + l), . . . , a + pr(mn + l)

}

for some m,n 6= 0 so that no C(a, n) appears in
EP with n 6= 0, while at the same time, for every polynomial system Q = {q1, . . . , qs}
of complexity less than P , the analogous configurations C ′(a, n) =

{

a, a + q1(mn + l),
a + q2(mn + l), . . . , a + qs(mn + l)

}

appear in EP for a syndetic set of n ∈ Z for every
choice of m and l. The foregoing can be strengthened and we can speak of arbitrary
“composite Q-configurations”

{

a, a+ q1(h(n)), a+ q2(h(n)), . . . , a+qs(h(n))
}

for any non-
constant integral polynomial h, and these too will be found in EP , when the complexity
of Q is less than that of P , for a syndetic set of n.

Remark. As a matter of fact, we will find it convenient to introduce not one but two
complexity indices, W (P ) and V (P ) (Weyl complexity and Vandermonde complexity).
The reason for doing so and the pertinent details will be clarified in the ensuing discussion.

B. Dynamically defined sets of integers

As in the ergodic theoretical proof of Szemerédi’s theorem (as well as its extension to
polynomial progressions), the analogy between sets of integers with positive upper Banach
density and subsets of positive measure in the state space of a dynamical system plays a
role in the present discussion, and the sets EP referred to in the foregoing section will be
defined using certain dynamical systems called Weyl systems. We will not be using ergodic
theoretic techniques explicitly, but some important ergodic theoretical ideas underly the
construction which we will try to explain in this section.

We recall that an ergodic system (X,B, µ, T ) consists of a probabilty space (X,B, µ)
and an (invertible) measure preserving transformation T : X −→ X having no nontrivial
A ∈ B (0 < µ(A) < 1) invariant. Ergodic systems form a plentiful source of sets of integers
of positive density. By the ergodic theorem, if A ∈ B has µ(A) > 0, then for almost every
x ∈ X the visiting time set E(A, x) = {n : Tnx ∈ A} has density equal to µ(A), and
particularly d∗(E(A, x)) > 0. A simple but crucial observation is that outside of a (fixed)
set of measure 0 of points x ∈ X, a configuration C(a, n) =

{

a, a+p1(n), a+p2(n), . . . , a+
pr(n)

}

will occur in E(A, x) if {p1(n), p2(n), . . . , pr(n)}n∈Z is a “recurrence pattern” for
A, i.e., if for some n

µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
)

> 0. (0.1)

The initial a is determined by the condition T ax ∈ A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A and
thus (for a.e. x) forms a set of positive density. A converse of the foregoing is also valid:
if A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A = ∅ (rather than just a set of measure 0) then clearly
C(a, n) cannot occur in any E(A, x). This makes it plausible that sets of the form E(A, x)
will play an important role for our purposes.

The notion of recurrence patterns for ergodic systems has been studied extensively,
and it is known ([B]) that for the class of weakly mixing (WM) systems, these include all
polynomial configurations (homogeneous or not) provided the pi have positive degree and
do not differ by constants. We can now give a precise definition to the notion of randomness
of a set E alluded to in §A. We call E a WM set if E = E(A, x) for an invertible WM system
(X,B, µ, T ) where x is “generic” for (X,BA, µ, T ); that is, 1

N

∑N
n=1 1B(Tnx) −→ µ(B) for
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every set B ∈ BA, the algebra of sets spanned by {TnA}n∈Z.
For general ergodic systems it has been shown ([BL]) that any system of homogeneous

polynomials forms a recurrence pattern, and this underlines the fact that homogeneous
progressions occur for any E with d∗(E) > 0. (Here E need not have the form E(A, x)
exactly as above, but this will hold for an extended notion of genericity.)

In this paper we confine ourselves to the Weyl systems. A Weyl system is an ergodic
system (X,B, µ, T ) where X is a compact commutative Lie group (which is either a torus
or the product of a torus and of a finite commutative group) and T is a unipotent affine
transformation thereof. To motivate the special role of Weyl systems in our discussion,
it will be instructive to make reference to the notion of characteristic factors for non-
conventional ergodic averages ([HK1] and [Z]). Recall that a factor (Y,D, ν, S) of an
ergodic system (X,B, µ, T ) is an ergodic system with a measurable, measure preserving
map π: X −→ Y satisfying π◦T = S◦π. One says that (Y,D, ν, S) is a characteristic factor
of (X,B, µ, T ) for the pattern {p1(n), . . . , pr(n)}n∈Z if for any set of functions f1, . . . , fr ∈
L∞(X) and their “projections” f̄1, . . . , f̄r ∈ L∞(Y ),

lim
N−M→∞

∥

∥

∥

1
N −M

N
∑

n=M+1

f1(T p1(n)x) . . . fr(T pr(n)x)

− 1
N −M

N
∑

n=M+1

f̄1(T p1(n)x) . . . f̄r(T pr(n)x)
∥

∥

∥

L2(X)
= 0.

The consequence of this relevant for our purposes is that for a system (X,B, µ, T ) and a
characteristic factor (Y,D, ν, S)

lim
N−M→∞

1
N −M

N
∑

n=M+1

µ(A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A) > 0 (0.2)

for every A ∈ B with µ(A) > 0 if and only if

lim
N−M→∞

1
N −M

N
∑

n=M+1

µ(B ∩ S−p1(n)B ∩ . . . ∩ S−pr(n)B) > 0 (0.3)

for every B ∈ D with ν(B) > 0.
A second fact relevant to us is the fundamental result in [HK1] and [Z] asserting

that, for any linear pattern, every dynamical system has a characteristic factor which is a
nilsystem or an inverse limit of such (a pro-nilsystem). A nilsystem is a system (Y,D, ν, S)
where Y is a homogeneous space G/Γ of a nilpotent Lie group G and Γ is a co-compact
subgroup of G, and there is an element g ∈ G so that S(xΓ) = gxΓ for each x ∈ G. Let
G2 = [G,G] and Gl = [Gl−1, G] for l ≥ 2; we define the “level” of a nilpotent group G as
the first l such that Gl+1 = {1}. In [HK1] and [Z], for every system X and every k ∈ N a
natural factor with the structure of a level k pro-nilsystem is constructed; we will call it
the kth HKZ factor of X. It is proven in [HK2] and [L1] that for any system X and any
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“polynomial pattern” P = {p1(n), . . . , pr(n)}, a certain HKZ factor of X is characteristic.
The minimal k such that for every system X the (k−1)st HKZ factor of X is characteristic
with respect to P is called the complexity of P = {p1, . . . , pr} and is denoted by C(P ).
The Weyl complexity of P , W (P ), is the complexity of P measured with respect to Weyl
systems only; it is an open question whether W (P ) may differ from C(P ).

Suppose now that E(A, x) is a dynamically defined set corresponding to a system
(X,B, µ, T ), and that A∩T−p1(n)A∩ . . .∩T−pr(n)A = ∅ for all n. Then (0.2) does not hold
and if (Y,D, ν, S) is a nilsystem which is a characteristic factor for {p1, . . . , pr}, we will have
for some B ∈ D with ν(B) > 0, 1

N−M

∑N
n=M+1 µ(B ∩ S−p1(n)B . . . S−pr(n)B) −→

N−M→∞
0.

This implies that for most y ∈ Y , E(B, y) will be a set of positive density in which
configurations {a, a+p1(n), . . . , a+pr(n)} are rare, and it makes it plausible that for some
y they will be absent entirely from E(B, y). If this heuristic principle is valid then we
can restrict to sets defined by nilsystems to obtain sets of positive density where certain
polynomial progressions are absent. We remark now that Weyl systems can be viewed as
a special class of nilsystems (see Section 3 below) and it will be shown in the sequel that
these special systems will be adequate for our purposes. In the examples constructed from
Weyl systems we will find a dichotomy: either a polynomial progression does not occur
at all (nontrivially, i.e. not in the form (a, a, . . . , a)), or it occurs in “abundance”. In the
latter case the corresponding configurations C(a, n) occur in E with “positive density” of
(a, n). This will accord with the dynamical property inherent in (0.2).

In a way, Weyl systems form a rather natural class of ergodic systems for the task at
hand. Indeed, it follows from [B] that dynamically generated WM sets (namely, the visiting
time sets coming from weakly mixing systems) contain all possible polynomial configura-
tions of the form {a, a + p1(n), ..., a + pk(n)} provided the (not necessarily homogeneous)
polynomials pi are not constant and do not differ by constants. Now, weak mixing is
characterized by the absence of a Kronecker factor, namely the factor that is formed by a
rotation on a compact monothetic commutative groups. It follows that dynamically gen-
erated sets of positive density with non-trivial combinatorial properties of the sort we are
interested in should come from ergodic systems having nontrivial Kronecker factor. Since
the Kronecker systems allow one to construct sets with rather restricted combinatorial
properties (see the remark after Theorem 0.6 below), one is led to dealing with extensions
of Kronecker systems, and Weyl systems form the simplest class of extensions which is
sufficient for achieving the stated goals.

The actual calculation of W (P ) for a system P of polynomials will be carried out
algebraically and we will find that a related calculation leads to another measure of
complexity which we call Vandermonde complexity and denote by V (P ) (see Section 4).
Our analysis will show that this parameter also plays a role in measuring the “size” of
{(a, n) : C(a, n) ⊂ E}. The minimal complexity V = W = 1 is achieved by linearly inde-
pendent systems of polynomials. Roughly speaking, the more linear relations are between
polynomials p1, . . . , pr and their powers pk

1 , . . . , pk
r , k ∈ N, the higher is the complexity of

the system {p1, . . . , pr}, and the more difficult it will be to have associated configurations
in a given set of integers.

Here are some values of complexities of polynomial systems:
1. V (p1, . . . , pr) = W (p1, . . . , pr) = 1 if the polynomials pi are linearly independent;
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2. V (b1n, b2n, . . . , brn) = W (b1n, b2n, . . . , brn) = r, and V (b1p(n), b2p(n), . . . , brp(n)) =
W (b1p(n), b2p(n), . . . , brp(n)) = r for any nonconstant polynomial p and any nonzero dis-
tinct integers b1, . . . , br;
3. V (n, 2n, n2) = 2 and W (n, 2n, n2) = 3;
4. V (n, 2n, n3) = W (n, 2n, n3) = 2.
(See Section 5 for details.)

C. Formulation of main results
Let (X,B, µ, T ) be a Weyl system. To make the discussion in this introduction more

concrete, let us restrict ourselves to a standard Weyl system (X, T ): X is the d-dimensional
torus Td and T (x1, x2, . . . , xd) = (x1 + α, x2 + x1, . . . , xd + xd−1), (x1, . . . , xd) ∈ X, where
α ∈ T is irrational. For k = 1, . . . , d+1, let Lk =

{

(0, . . . , 0, xk, . . . , xd) ∈ X
}

, and let Xk−1

be the factor-torus X/Lk (with the canonical projection X −→ Xk−1). One can show (see
Section 3) that the tori X1, X2, . . . are the HKZ factors of (X, T ). Let P = {p1, . . . , pr}
be a system of (distinct) integral polynomials with zero constant term; then W (P ) = k iff
Xk−1 is a characteristic factor for P , and we have:

Theorem 0.2. (See Proposition 6.2 below.) Let k = W (P ) and let A0, . . . , Ar be measur-
able subsets of X independent of Xk−1. Then

lim
N−M→∞

1
N −M

N
∑

n=M+1

µ
(

A0 ∩ T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar
)

=
r

∏

i=0

µ(Ai).

One can also show (see Lemma 6.3) that the (k − 1)st factor Xk−1 is “optimal” in this
theorem and cannot be replaced by Xk−2.

The next, k-dimensional factor-torus Xk = X/Lk+1 of X is characteristic for P in a
stronger sense:

Theorem 0.3. (See Proposition 6.5 below.) Let k = W (P ) and let A0, . . . , Ar be measur-
able subsets of X independent of Xk. Then

lim
n→∞

µ
(

A0 ∩ T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar
)

=
r

∏

i=0

µ(Ai).

Lemma 6.7 says that, again, Xk cannot be replaced by Xk−1 in this theorem.
Turning to the Vandermonde complexity, and interpreting X as the direct sum Xk−1⊕

Lk for any k, we have the following:

Theorem 0.4. (See Proposition 6.9 below.) Let k = V (P ) and let Ai = Xk−1 × Ii,
i = 0, . . . , r, where I0, . . . , Ir are subsets of Lk of positive measure. Then

lim
N−M→∞

1
N −M

N
∑

n=M+1

µ
(

A0 ∩ T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar
)

> 0.

Again, Xk−2 does not work for this theorem, at least for a nonconnected Weyl system;
this follows from Proposition 7.5.
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The reader will find an example illustrating the above results at the beginning of
Section 6.

The Weyl and Vandermonde complexities induce a hierarchy on the set of all systems
of polynomials so that, applying the dynamical method to a suitable Weyl system, one can
construct a set of integers which contains many configurations corresponding to systems
of smaller complexities and no configuration of a certain form corresponding to a system
of larger complexity. In order to give a more precise formulation of our results let us first
introduce some notions describing the “largeness” and the “regularity” of occurrences of
polynomial configurations in a set of integers.

For a set of integers E, we will say that E has uniform density α and write UD(E) = α
if the limit limN→∞

|E∩ΦN |
|ΦN | exists and equals α for every Følner sequence {ΦN} in Z.1 For

a sequence of real numbers αn we will write UC-lim
n

αn = α if limN→∞
1

|ΦN |
∑

n∈ΦN
αn = α

for any Følner sequence {ΦN} in Z. Let E ⊆ Z have positive uniform density. Let P =
{p1, . . . , pr} be a system of integral polynomials. We will say that E is UC-positive with
respect to P (“UC” for “Uniform Cesáro”) if UD

({

a ∈ Z : a, a+p1(n), . . . , a+pr(n) ∈ E
})

exists for all n ∈ Z and

UC-lim
n

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

> 0,

that is, the UC-limit exists and is positive. (In particular, this implies that there exists
δ > 0 such that the set of n for which

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

> δ

is syndetic in Z.)
We will say that E is UC-balanced with respect to P if

UC-lim
n

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

= UD(E)r+1.

(In particular, this implies that for any ε > 0 the set of n for which

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

> UD(E)r+1 − ε

is syndetic in Z.)

1 We recall that a Følner sequence in Z is a sequence (ΦN ) of finite sets ΦN ⊂ Z with the
property that limN→∞

|(ΦN+n)4ΦN |
|ΦN | = 0 for every n ∈ Z. At the beginning of Introduction we

defined the uniform density of a set E ⊆ Z as limN−M→∞
|E∩[M,N ]|
N−M+1 ; it is not hard to see that the

definition involving Følner sets is only ostensibly more general. Indeed, a momentary reflection
reveals that, given a Følner sequence {ΦN} in Z, one can construct another Følner sequence
(eΦN ) with the properties (i) for each N , eΦN is a disjoint union of intervals, eΦN =

SkN
i=1 IN,i,

with minkN
i=1 |IN,i| −→ ∞ as N →∞; and (ii) |Φ̃N4ΦN |

|ΦN | −→ 0 as N →∞.
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Finally, we will say that E is balanced with respect to P if

lim
n→∞

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

= UD(E)r+1

(this implies that for any ε > 0 one has

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

> UD(E)r+1 − ε

for all but finitely many n ∈ Z).
Our main combinatorial result is that using Weyl systems one can construct a set E

of integers with strong combinatorial properties:

Theorem 0.5. (See Theorem 7.1 below.) Let {p1, . . . , pr} be a system of integral poly-
nomials with zero constant term and let k = V (p1, . . . , pr). There exists a set E ⊂ Z of
positive uniform density such that
(i) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
V (q1, . . . , qs) < k and any nonconstant integral polynomial h, the set E is UC-positive
with respect to the system

{

q1(h(n)), . . . , qs(h(n))
}

;
(ii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < k, any nonconstant integral polynomial h and any integers c1, . . . , cs, the
set E is UC-balanced with respect to the system

{

q1(h(n)) + c1, . . . , qs(h(n)) + cs
}

;
(iii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < k − 1, any nonconstant integral polynomial h and any integers c1, . . . , cs,
the set E is balanced with respect to the system

{

q1(h(n)) + c1, . . . , qs(h(n)) + cs
}

;
(iv) there exist nonzero integers m and l such that E contains no configuration of the form
{

a, a + p1(mn + l), . . . , a + pr(mn + l)
}

, a, n ∈ Z.

Remark. The reader may notice that the assertion (i) of Theorem 0.5 is “weaker” than
the assertions (ii) and (iii), since the “shifting” constants ci are absent in it. It is not clear
whether a “shifted” version of (i) is true; the methods employed in this paper do not allow
one to get such a result. (See the remark after Proposition 6.9 below.)

The integers m and l appearing in the formulation of Theorem 0.5 are not arbitrary (for
instance, l cannot be divisible by m because in this case the polynomial Szemerédi theorem
guarantees the existence of corresponding configurations). In general, these m and l depend
on the system P = {p1, . . . , pr} (see Theorem 7.2). However, when the system P consists
of linear polynomials pi(n) = bin, i = 1, . . . , r, the foregoing nondivisibility restriction is
the only restriction that cannot be avoided. This fact is reflected in the following theorem
which, while similar in spirit to Theorem 0.5, has a different arrangement of quantifiers.

Theorem 0.6. (See Corollary 7.4 below.) For any r,m ≥ 2 there exists a set E ⊂ Z of
positive uniform density such that
(i) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
V (q1, . . . , qs) < r and any nonconstant integral polynomial h, the set E is UC-positive with
respect to the system

{

q1(h(n)), . . . , qs(h(n))
}

;
(ii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < r, any nonconstant integral polynomial h and any integers c1, . . . , cs, the
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set E is UC-balanced with respect to the system
{

q1(h(n)) + c1, . . . , qs(h(n)) + cs
}

;
(iii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < r − 1, any nonconstant integral polynomial h and any integers c1, . . . , cs,
the set E is balanced with respect to the system

{

q1(h(n)) + c1, . . . , qs(h(n)) + cs
}

;
(iv) E contains no arithmetic progressions of the form

{

a, a+(mn+ l), . . . , a+r(mn+ l)
}

,
a, n, l ∈ Z, with l not divisible by m.

Remark. It is natural to inquire whether our examples can be constructed by utilizing
Kronecker systems (rotations on compact commutative groups) which form a rather par-
ticular subclass of Weyl systems. It turns out that some special cases of the situation
described in items (i) of Theorems 0.5 and 0.6 can indeed be obtained (albeit in a very
cumbersome way) with the help of Kronecker systems. On the other hand the closer
scrutiny reveals that Kronecker systems can not provide the more complicated examples
which appear in the formulations of these theorems.

The paper is organized as follows. In Section 1 we give a detailed description of the
dynamical method that will be used throughout this paper. In Section 2 we introduce some
linear algebra notation related to a system of polynomials. In Section 3 we define Weyl
dynamical systems and discuss their elementary properties. In Section 4 we introduce the
Weyl and the Vandermonde complexities of a system of integral polynomials; in Section 5
we describe their properties and give examples. In Section 6 we obtain measure-theoretical
results similar to Theorems 0.2, 0.3, and 0.4. In Section 7 we prove (somewhat more precise
versions of) Theorems 0.5 and 0.6.
Acknowledgement. We thank H. Furstenberg for constructive criticism and numerous
useful suggestions.

1. Orbit of the diagonal

As we have already mentioned in the Introduction, the ergodic approach to com-
binatorics, which goes back to Furstenberg’s seminal paper [F1], establishes a two-way
connection between the family of sets of integers satisfying d∗(S) > 0 and the family of
visiting time sets E(A, x) in ergodic measure preserving systems. In one direction, this
connection is manifested by Furstenberg’s correspondence principle which is behind the
derivation of Szemeredi’s theorem from a corresponding multiple recurrence result. In the
other direction, this connection provides a natural method of creating sets of integers with
preassigned combinatorial properties. We will now describe this method in some detail.

Let (X,B, µ, T ) be an ergodic Borel measure preserving system on a compact space
X, let A be a measurable set in X with µ(A) > 0, let x0 ∈ X, and let P = {p1, . . . , pr} be
a system of integer polynomials (or, at this stage, a system of integer valued sequences).
Define E =

{

n ∈ N : Tnx0 ∈ A
}

. Then for a, n ∈ N we have

a ∈ E ∩
(

E − p1(n)
)

∩ . . . ∩
(

E − pr(n)
)

iff a, a + p1(n), . . . , a + pr(n) ∈ E

iff T ax0, T a+p1(n)x0, . . . , T a+pr(n)x0 ∈ A iff T ax0 ∈ A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A.

Thus, for any n ∈ N, the set En =
{

a : a, a + p1(n), . . . , a + pr(n) ∈ E
}

is the same as
{

a : T ax0 ∈ A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
}

.
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Let ∆Xr+1 =
{(x

x...
x

)

, x ∈ X
}

be the diagonal in Xr+1. Consider the “polynomial

action” g(n)
(x0

x1...
xr

)

=

( x0

T p1(n)x1...
T pr(n)xr

)

, n ∈ N, on Xr+1 corresponding to the system ̂P =

{0, p1, . . . , pr} and let O( ̂P , ∆Xr+1) =
⋃

n∈N g(n)∆Xr+1 be the “orbit” of ∆Xr+1 under
this action. Then, for n ∈ N,

T ax0, T a+p1(n)x0, . . . , T a+pr(n)x0 ∈ A iff x, T p1(n)x, . . . , T pr(n)x ∈ A for x = T ax0

iff g(n)
(x

x...
x

)

∈ Ar+1 only if g(n)∆Xr+1 ∩Ar+1 6= ∅ only if O( ̂P , ∆Xr+1) ∩Ar+1 6= ∅.

So, a configuration of the form a, a + p1(n), . . . , a + pr(n) is contained in E only if
O( ̂P , ∆Xr+1) ∩Ar+1 6= ∅.

On the other hand, let µ∆Xr+1 be the measure on ∆Xr+1 induced by the measure
µ on X, that is, µ∆Xr+1 (A0 × A1 × . . . × Ar) = µ(A0 ∩ A1 ∩ . . . ∩ Ar), Ai ⊆ X. Sup-
pose that µ̃P (A0 × . . . × Ar) = limN−M→∞

1
N−M

∑N
n=M+1 g(n)µ∆Xr+1 (A0 × . . . × Ar)

exists for any measurable A0, . . . , Ar ⊆ X (it does if P is a system of polynomials – see
[HK2] and [L1]); then µ̃P is a probability measure on Xr+1 supported by the topological

closure O( ̂P , ∆Xr+1) of O( ̂P , ∆Xr+1). Now assume that the set Ar+1 has “substantial

intersection with O( ̂P , ∆Xr+1)”, namely, suppose that µ̃P (Ar+1) = δ > 0. This means
that limN−M→∞

1
N−M

∑N
n=M+1 µ∆Xr+1

(

g(n)−1Ar+1
)

= δ, or equivalently,

lim
N−M→∞

1
N −M

N
∑

n=M+1

µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
)

= δ.

For S ⊆ Z let d(S) denote, if it exists, the density of S, d(S) = limN→∞
1
N

∣

∣S∩{1, . . . , N}
∣

∣.
Choose our point x0 so that for any set B of the form B = T c1A∩ . . .∩T clA, c1, . . . , cl ∈ Z,
one has d

({

a : T ax0 ∈ B
})

= µ(B). (This is always possible when T is ergodic by the
ergodic theorem.) Then for every n ∈ N, d(En) = µ

(

A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
)

and
hence limN→∞

1
N

∑N
n=1 d(En) = δ. So, not only E contains configurations of the form

{

a, a + p1(n), . . . , a + pr(n)
}

, but contains many such configurations, and they occur in E
quite regularly.

This suggests how one can attempt to construct a set E ⊂ Z which contains no
configurations

{

a, a+ p1(n), . . . , a+ pr(n)
}

and many configurations
{

a, a+ q1(n), . . . , a+
qs(n)

}

for another system Q = {q1, . . . , qs} of integral polynomials: it suffices to find a
dynamical system (X, T ) and a set A ⊂ X such that µ̃Q(As+1) > 0 whereas µ̃P (Ar+1) > 0.
Then one chooses a “typical” point x0 of A and defines E to be the set of return times of
x0 to A, E = E(A, x0).
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2. Span and Rank of a system of polynomials

Let us first introduce some linear algebra notation. Given a finite system of vectors
(

a1,1...
ar,1

)

, . . . ,
(a1,k...

ar,k

)

∈ Rr, we will denote, for short, the subspace span
{

(

a1,i...
ar,i

)

, i = 1, . . . , k
}

of Rr by span
(a1,1 a1,2 ... a1,k... ... ...

ar,1 ar,2 ... ar,k

)

. We also will write

rank
(a1,1 a1,2 ... a1,k... ... ...

ar,1 ar,2 ... ar,k

)

= dim span
(a1,1 a1,2 ... a1,k... ... ...

ar,1 ar,2 ... ar,k

)

.

Given r real-valued polynomials q1, . . . , qr with zero constant term, we will denote by

R-span
(q1...

qr

)

(“R” for “range”) the subspace of Rr spanned by the range of
(q1...

qr

)

:

R-span
(q1...

qr

)

= span
{(

q1(x)...
qr(x)

)

, x ∈ R
}

.

For polynomials qi,j , i = 1, . . . , r, j = 1, . . . , k, with zero constant term, we define

R-span
(q1,1 q1,2 ... q1,k... ... ...

qr,1 qr,2 ... qr,k

)

= R-span
(

q1,1...
qr,1

)

+ R-span
(

q1,2...
qr,2

)

+ . . . + R-span
(q1,k...

qr,k

)

and

R-rank
(q1,1 q1,2 ... q1,k... ... ...

qr,1 qr,2 ... qr,k

)

= dim R-span
(q1,1 q1,2 ... q1,k... ... ...

qr,1 qr,2 ... qr,k

)

.

Clearly, we have

Lemma 2.1. The R-span and R-rank of a polynomial matrix
(q1,1 q1,2 ... q1,k... ... ...

qr,1 qr,2 ... qr,k

)

are invari-

ant under column operations (that is, multiplying a column by a nonzero constant or a
nonzero polynomial, and adding one column to another) on the matrix.

The following lemmas will be utilized below for finding the R-span of a polynomial
matrix:

Lemma 2.2. Let qi,j be polynomials with zero constant term and deg qi,j ≤ d for all i, j.
Then

(i) R-span
(q1,1 q1,2 ... q1,k... ... ...

qr,1 qr,2 ... qr,k

)

is spanned by the values of
(q1,1(x) q1,2(x) ... q1,k(x)... ... ...

qr,1(x) qr,2(x) ... qr,k(x)

)

at any dis-

tinct nonzero x1, . . . , xd ∈ R:

R-span
(q1,1 q1,2 ... q1,k... ... ...

qr,1 qr,2 ... qr,k

)

= span
(q1,1(x1) ... q1,k(x1) q1,1(x2) ... q1,k(x2) ... q1,1(xd) ... q1,k(xd)... ... ... ... ... ...

qr,1(x1) ... qr,k(x1) qr,1(x2) ... qr,k(x2) ... qr,1(xd) ... qr,k(xd)

)

.

(ii) R-span
(q1,1 q1,2 ... q1,k... ... ...

qr,1 qr,2 ... qr,k

)

is spanned by the coefficients of
(q1,1 q1,2 ... q1,k... ... ...

qr,1 qr,2 ... qr,k

)

: if qi,j(x) =

ci,j,1x + . . . + ci,j,dxd, ci,j,l ∈ R, then

R-span
(q1,1 q1,2 ... q1,k... ... ...

qr,1 qr,2 ... qr,k

)

= span
(c1,1,1 ... c1,1,d c1,2,1 ... c1,2,d ... c1,k,1 ... c1,k,d... ... ... ... ... ...

cr,1,1 ... cr,1,d cr,2,1 ... cr,2,d ... cr,k,1 ... cr,k,d

)

.
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(iii) More generally, let h1, . . . , hl be linearly independent polynomials without constant
term such that qi,j are their linear combinations: qi,j = bi,j,1h1 + . . . + bi,j,lhl, bi,j,t ∈ R.
Then

R-span
(q1,1 q1,2 ... q1,k... ... ...

qr,1 qr,2 ... qr,k

)

= span
(b1,1,1 ... b1,1,l b1,2,1 ... b1,2,l ... b1,k,1 ... b1,k,l... ... ... ... ... ...

br,1,1 ... br,1,l br,2,1 ... br,2,l ... br,k,1 ... br,k,l

)

.

Proof. (i) follows from Lagrange’s interpolation formula for polynomials of degree ≤ d.
(ii) is a special case of (iii).

Here is the proof of (iii): for j = 1, . . . , k define Bj =
(b1,j,1 ... b1,j,l... ...

br,j,1 ... br,j,l

)

. Then

R-span
(

q1,j...
qr,j

)

= span
{(

q1,j(x)...
qr,j(x)

)

, x ∈ R
}

= span
{

Bj

(

h1(x)...
hl(x)

)

, x ∈ R
}

= Bj span
{(

h1(x)...
hl(x)

)

, x ∈ R
}

= BjRl = span Bj .

So,

R-span
(q1,1 q1,2 ... q1,k... ... ...

qr,1 qr,2 ... qr,k

)

=
k

∑

j=1

R-span
(

q1,1...
qr,1

)

=
k

∑

j=1

span Bj .

As a corollary, we get:

Lemma 2.3. Let qi,j be polynomials with zero constant term, let h be a noncon-

stant polynomial, and let q̂i,j(x) = qi,j(h(x)) − qi,j(h(0)). Then R-span
(q̂1,1 ... q̂1,k... ...

q̂r,1 ... q̂r,k

)

=

R-span
(q1,1 ... q1,k... ...

qr,1 ... qr,k

)

.

Proof. It is enough to check this for k = 1, that is, to show that, for integral polynomials

qi with zero constant term, R-span
(

q̂1...
q̂r

)

= R-span
(q1...

qr

)

. It follows from Lemma 2.2(i) that

R-span
(

q̂1...
q̂r

)

= span
{(

q1(x+h(0))−q1(h(0))...
qr(x+h(0))−qr(h(0))

)

, x ∈ R
}

, and we have

span
{(

q1(x+h(0))−q1(h(0))...
qr(x+h(0))−qr(h(0))

)

, x ∈ R
}

= span
{(

q1(x)−q1(h(0))...
qr(x)−qr(h(0))

)

, x ∈ R
}

= span
{(

q1(x)−q1(0)...
qr(x)−qr(0)

)

, x ∈ R
}

= span
{(

q1(x)...
qr(x)

)

, x ∈ R
}

= R-span
(q1...

qr

)

.

(The second equality stems from the fact that for any system of vectors V and any v, v′ ∈ V
one has span(V − v) = span(V − v′).)
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3. Weyl dynamical systems

A Weyl system is a dynamical system (X, T ) where X is a compact commutative Lie
group and T is an affine unipotent transformation of X (that is, Tx = ϕ(x) + α where
α ∈ X and ϕ is an automorphism of X satisfying (ϕ − IdX)d = 0 for some d). A natural
example of a Weyl system is given by the system (X, T ) where X = Tl ×Z, T = R/Z and
Z is a finite Abelian group, and

T (x1, . . . , xl, z) =
(

x1 + α1, x2 + m2,1x1 + α2, . . . , xl +
∑l−1

i=1 ml,ixi + αl, z + w
)

,

αi ∈ T, mj,i ∈ Z and w ∈ Z. When X is connected (and so, is a torus) we will say that
(X,T ) is a connected Weyl system.

Any closed subgroup M of X is, topologically, either a torus or a union of finitely
many tori, and is a single torus if connected. We will call a subtorus of X any translate
x + M of a closed connected subgroup M of X.

Clearly, the product of several Weyl systems is a Weyl system.
A Weyl system possesses a sequence of natural factors: for k = 1, . . . , d let Lk =

ker(ϕ − IdX)d−k+1 and Xk−1 = X/Lk; then the projection maps πk:X −→ Xk, k =
0, . . . , d − 1, commute with the action of T . The natural factors Xk, k = 1, . . . , d, are
the HKZ factors for the system (X, T ). Indeed, a Weyl system (X, T ) can be viewed
as a nilsystem: if we define a group G as the extension of the torus X by the group of
automorphisms of X generated by ϕ, then G is a nilpotent (nonconnected) Lie group,
and X is a homogeneous space of G with T = ϕ + α being a translation on X. Under
this interpretation, the sequence G = 〈L1, ϕ〉 ⊇ L2 ⊇ . . . ⊇ Ld is the lower central series
of G. It is proved in [Z], Lemma 6.58 that the k-th natural factor Xk = X/Lk+1 is the
characteristic factor of X for all systems of k linear integral polynomials, that is, the
(k + 1)-st HKZ factor. (See [L2].)

A Weyl system (X, T ) has good ergodic properties: if T is ergodic, then the orbit of
every point is uniformly distributed in X; if T is not ergodic, then the closure of the orbit
of any point is a coset of a closed subgroup of X, and the orbit is uniformly distributed in
this coset. Moreover, “polynomial orbits” of points, and even of subtori of X, also possess
an analogous property.

Let us be more precise. Recall that for a set E ⊆ Z we write UD(E) = α
if the limit limN→∞

|E∩ΦN |
|ΦN | exists and equals α for every Følner sequence {ΦN} in

Z, and for a sequence {βn}n∈Z of real numbers we write UC-lim
n

βn = β if the limit

limN→∞
1

|ΦN |
∑

n∈ΦN
βn exists and equals β for every Følner sequence {ΦN} in Z. For a

torus (or, more generally, a compact commutative Lie group) M we will denote by µM the
normalized Haar measure on M ; if M is a closed subgroup of X and x ∈ X, we will denote
by µx+M the image of µM by the translation by x. We will say that a sequence {xn}n∈Z
(in a, potentially, “larger” space X ⊇ M) is well distributed in M if xn ∈ M for all n, and
for any continuous function f on M one has UC-lim

n
f(xn) =

∫

M f dµM . More generally,

we will say that a sequence of tori {Dn}n∈Z is well distributed in M if Dn ⊆ M for all n,
and for any continuous function f on M one has UC-lim

n

∫

Dn
f dµDn =

∫

M f dµM .
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Let P = {p1, . . . , pr} be a system of integral polynomials with zero constant term.
For a point y ∈ Xr we will denote by O(P, y) the orbit of y under the action of P , that

is, O(P, y) =
{(

T p1(n)
...

T pr(n)

)

y
}

n∈Z
. For a torus D ⊆ Xr we will denote by O(P, D) the orbit

of D under the action of P , that is, O(P,D) =
⋃

n∈Z

(

T p1(n)
...

T pr(n)

)

D. O(P,D) will stand

for the topological closure of O(P, D). We will also denote by ̂P the “extended system”

{0, p1, . . . , pr} and by O( ̂P , y) and O( ̂P ,D) the orbits

{( IdX

T p1(n)
...

T pr(n)

)

y

}

n∈Z

and, respectively,

⋃

n∈Z

( IdX

T p1(n)
...

T pr(n)

)

D.

For a vector u ∈ Rl we will denote by umod 1 the image of u in Tl = Rl/Zl. If N
is a rational subspace of Rl (that is, a subspace defined by linear equations with rational
coefficients), then N mod1 is a subtorus of Tl.

The following fundamental fact is a direct consequence of the classical Weyl’s work
on uniform distribution ([We]) (modulo the easy modification that upgrades Weyl’s results
from uniform to well distribution).

Theorem 3.1. Let q1, . . . , ql be real-valued polynomials with zero constant term. The

closure of the sequence
{(

q1(n)...
ql(n)

)

mod 1
}

n∈Z
is a disjoint union of finitely many subtori of

Tl. If this sequence is dense in a single subtorus (which may coincide with Tl), then it is
well distributed in this subtorus.

Let (X,T ) be a connected Weyl system and let P = {p1, . . . , pr} be a system of
integral polynomials. It is easy to see that the orbit O(P, y) of a point y ∈ Xr under
the action of P is described by a polynomial formula, that is, in coordinates on the torus

Xr,
(

T p1(n)
...

T pr(n)

)

y = (q1(n), . . . , ql(n)), n ∈ Z, where qi are polynomials and l = r dim X.

Hence, it follows from Theorem 3.1 that M = O(P, y) is a subtorus of Xr or a disjoint
union of finitely many subtori of Xr, and when M is a single subtorus, the sequence
{(

T p1(n)
...

T pr(n)

)

y
}

n∈Z
is well distributed in M .

Assume now that (X, T ) is a disconnected Weyl system having c components. Re-
placing T by T c we arrive at a system which is a union of finitely many connected Weyl
systems and our argument, applied to each of these systems, shows that M = O(P, y) is
still a finite union of subtori of Xr.

We will need the following more general fact:

Proposition 3.2. Let (X, T ) be a Weyl system and let P = {p1, . . . , pr} be a system of
integral polynomials. For any subtorus D of Xr the closure M = O(P, D) of the orbit of
D under the action of P is a subtorus of Xr or a union of finitely many subtori of Xr. If
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M is a single subtorus, the sequence Dn =
{(

T p1(n)
...

T pr(n)

)

D
}

n∈Z
is well distributed in M .

Proposition 3.2 can be deduced from the multiparameter version of Theorem 3.1
(which is also essentially contained in [We]). Indeed, choose an element y ∈ D such that
the sequence {my}m∈Z is dense (and so, well distributed) in D. Then M is equal to the

closure of the two-parameter sequence ym,n =
(

T p1(n)
...

T pr(n)

)

my, n,m ∈ Z, which, by the two-

parameter version of Theorem 3.1, is a finite union of subtori of Xr. If M is a single torus,
{ym,n}n,m∈Z is well distributed in M , that is, for any continuous function f on M and
any Følner sequence {ΨN} in Z2 one has limN→∞

1
|ΨN |

∑

(m,n)∈ΨN
f(ym,n) =

∫

M f dµM .
On the other hand, for each fixed n the sequence {ym,n}m∈Z is well distributed in Dn.
Consider a Følner sequence {ΦN} in Z and a sequence {KN} of integers that increases fast
enough. We then have

lim
N→∞

1
|ΦN |KN

∑

n∈ΦN
1≤m≤KN

f(ym,n) = lim
N→∞

1
|ΦN |

∑

n∈ΦN

lim
K→∞

1
K

K
∑

m=1

f(ym,n)

= lim
N→∞

1
|ΦN |

∑

n∈ΦN

∫

Dn

f dµDn .

Since ΦN ×{1, . . . , KN} is a Følner sequence in Z2, we obtain lim
N→∞

1
|ΦN |

∑

n∈ΦN

∫

Dn
f dµDn

=
∫

M f dµM .
Here is another corollary of Theorem 3.1:

Corollary 3.3. Let α1, . . . , αk be rationally independent elements of T and let qi,j,
i = 1, . . . , k, j = 1, . . . , l, be integral polynomials with zero constant term. The sequence
{(q1,1(n)α1+...+qk,1(n)αk...

q1,l(n)α1+...+qk,l(n)αk

)}

n∈Z
is well distributed in the subtorus R-span

(q1,1 ... qk,1... ...
q1,l ... qk,l

)

mod 1

of Tl.

Proof. Let L = R-span
(q1,1 ... qk,1... ...

q1,l ... qk,l

)

and let M = L mod 1. (Note that since L is a

“rational” subspace of Rl (that is, is spanned by vectors with rational coordinates), M is

a subtorus.) For any i and any n ∈ Z,
(qi,1(n)...

qi,l(n)

)

∈ L, so
(q1,1(n)α1+...+qk,1(n)αk...

q1,l(n)α1+...+qk,l(n)αk

)

∈ M for

all n.
Assume that χ is a character on Tl (with values in the additive torus T), χ(x1, . . . , xl) =

∑l
j=1 ajxj with a1, . . . , al ∈ Z, such that χ

(q1,1(n)α1+...+qk,1(n)αk...
q1,l(n)α1+...+qk,l(n)αk

)

= 0 for all n. Then, in

T, we have
(

l
∑

j=1

ajq1,j(n)
)

α1 + . . . +
(

l
∑

j=1

ajqk,j(n)
)

αk = 0
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for all n, and since α1, . . . , αk are rationally independent in T, we deduce that
∑l

j=1 ajqi,j(n)

= 0 for all n and for all i = 1, . . . , k. This implies that
∑l

j=1 ajqi,j = 0 for all i = 1, . . . , k,
and thus χ|M = 0.

We have established that the sequence
{(q1,1(n)α1+...+qk,1(n)αk...

q1,l(n)α1+...+qk,l(n)αk

)}

n∈Z
is not contained

in a proper subgroup of M ; by Theorem 3.1, it is well distributed in M .

To achieve the goals formulated in the introduction, it will be sufficient to deal with
Weyl systems of a special form. A standard Weyl system (of depth d) is the system (X, T )
with X = Td and

T (x1, x2, . . . , xd) =
(

x1 + α, x2 + x1, x3 + x2, . . . , xd + xd−1
)

, x = (x1, . . . , xd) ∈ X,

where α ∈ T is irrational. By [F2] Proposition 3.11, (X, T ) is ergodic. A quasi-standard
Weyl system of depth d is a system (X, T ) where X = Td and

T (x1, . . . , xd) =
(

x1 + α1, x2 + m2,1x1 + α2, . . . , xd +
∑d−1

i=1 md,ixi + αd

)

,

with αi ∈ T, mj,i ∈ Z, α1 is irrational and mj,j−1 6= 0 for all j = 2, . . . , d. A quasi-standard
Weyl system is also ergodic. For a standard or a quasi-standard Weyl system the natural
factors Xk have form Xk = X/Lk+1 where Lk+1 =

{

(0, . . . , 0, xk+1, . . . , xd), xi ∈ T
}

.

Lemma 3.4. Any quasi-standard Weyl system is a factor, η: ˜X −→ X, of a standard Weyl
system ( ˜X, ˜T ) of the same depth; η has finite fibers and commutes with the projections πk,
k = 0, . . . , d− 1, onto the natural factors.

Rather than formally proving this lemma we illustrate it on a simple example, which
indicates how the general result can be proved. Consider the quasi-standard Weyl system
(T3, T ) where

T (x, y, z) = (x + α1, y + 2x + α2, z + 4x + 3y + α3).

This system is the factor of the standard Weyl system (T3, ˜T )

˜T (x, y, z) = (x + α1, y + x, z + y)

via the factor-map
(x, y, z) 7→ (x + a, 2y + x + b, 6z + 7y + x)

with a, b ∈ T satisfying 2a = α1 − α2 and 3b = −α1 + 2α2 − α3.

We would like to remark that while we find it convenient to work with quasi-standard
Weyl systems, all the combinatorial results in this paper could be obtained by employing
the standard Weyl systems only. We would also like to mention the following fact, which
demonstrates a universal property of standard Weyl systems:

Theorem 3.5. ([FrK]) Any ergodic connected Weyl system is a factor of a product of
several standard Weyl systems.

Disconnected Weyl systems do not provide much novelty: any disconnected ergodic
Weyl system (Y, R) is a union Y = X(1)∪ . . .∪X(m) of m ≥ 2 isomorphic tori; R cyclically
permutes these tori and, for each i = 1, . . . ,m, (X(i), Rm|X(i)) is a connected Weyl system.
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4. Weyl and Vandermonde complexities

We fix a standard Weyl system (X, T ), where X = Td and

T (x1, x2, . . . , xd) =
(

x1 + α, x2 + x1, x3 + x2, . . . , xd + xd−1
)

, x = (x1, . . . , xd) ∈ X,

with an irrational α ∈ T; we will always assume that d is large enough so that its value will
not affect our further computations. (Namely, d will have to be larger than the complexities
of the polynomial systems under consideration.) For k = 0, . . . , d we define subtori Lk =
{

(0, . . . , 0, xk, . . . , xd), xi ∈ T
}

⊂ Td, Fk =
{

(0, . . . , 0, xk, 0, . . . , 0), xk ∈ T} ⊂ Td, a factor
torus Xk = X/Lk+1, and let πk:X −→ Xk be the projection map. We will also denote by
Fk the image of Fk under πk, so that if we identify Xk with Tk, we identify Fk with the
subgroup Fk =

{

(0, . . . , 0, xk), xk ∈ T} of Tk.
Let now P = {p1, . . . , pr} be a system of integral polynomials with zero constant term.

(We will always assume that the polynomials p1, . . . , pr are all distinct.) One checks by
induction that for any n ∈ Z,

Tn(x1, x2, . . . , xd) =
(

x1 + nα, x2 + nx1 +
(n
2

)

α, . . . , xd +
∑d−1

i=1

(n
i

)

xd−i +
(n

d

)

α
)

.

For a polynomial p and k ∈ N we will write p[k] for
(p
k

)

= 1
k!p(p − 1) . . . (p − k + 1), and

p[0] = 1. Let g(n) =

( IdX

T p1(n)
...

T pr(n)

)

, n ∈ Z. For x = (x1, x2, . . . , xd) ∈ X, the orbit O( ̂P , x̄) =

{g(n)x̄}n∈Z ⊆ Xr+1 of the point x̄ =
(x

x...
x

)

under the action of ̂P = {0, p1, . . . , pr} is























x1, x2, . . . , xd

x1 + p1(n)α, x2 + p1(n)x1 + p1(n)[2]α, . . . , xd +
∑d−1

i=1 p1(n)[i]xd−i + p1(n)[d]α
...

...
...

x1 + pr(n)α, x2 + pr(n)x1 + pr(n)[2]α, . . . , xd +
∑d−1

i=1 pr(n)[i]xd−i + pr(n)[d]α























n∈Z
(4.1)

By Corollary 3.3, when x1, . . . , xd and α are rationally independent in T, O( ̂P , x̄) is well
distributed (and hence, dense) in the subtorus















































x1
x1...
x1

x2
x2...
x2
......

xd−1
xd−1...
xd−1

xd
xd...
xd















































+ R-span















































0 0 0 ... 0 0
p1 0 0 ... 0 0... ... ... ... ...
pr 0 0 ... 0 0
0 0 0 ... 0 0

p[2]
1 p1 0 ... 0 0... ... ... ... ...

p[2]
r pr 0 ... 0 0
......

......

......

......

......
0 0 0 ... 0 0

p[d−1]
1 p[d−2]

1 p[d−3]
1 ... p1 0... ... ... ... ...

p[d−1]
r p[d−2]

r p[d−3]
r ... pr 0

0 0 0 ... 0 0
p[d]
1 p[d−1]

1 p[d−2]
1 ... p[2]

1 p1... ... ... ... ...
p[d]

r p[d−1]
r p[d−2]

r ... p[2]
r pr















































mod1
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of Xr+1 '
(

T(r+1)
)d

(and is contained in this subtorus if x1, . . . , xd, α are rationally
dependent). The closure of the orbit O( ̂P , ∆Xr+1) of the entire diagonal ∆Xr+1 = {x̄, x ∈
X} of Xr+1 is therefore the subtorus

H = O( ̂P , ∆Xr+1) = R-span Θd mod1 ⊆ Xr+1

where for each k ∈ N we define Θk as the (r + 1)k × 2k matrix

Θk =















































1 0 ... 0 0 0 0 0 ... 0 0
1 0 ... 0 0 p1 0 0 ... 0 0... ... ... ... ... ... ... ... ...
1 0 ... 0 0 pr 0 0 ... 0 0
0 1 ... 0 0 0 0 0 ... 0 0
0 1 ... 0 0 p[2]

1 p1 0 ... 0 0... ... ... ... ... ... ... ... ...
0 1 ... 0 0 p[2]

r pr 0 ... 0 0
......

......

......

......

......

......

......

......

......
0 0 ... 1 0 0 0 0 ... 0 0
0 0 ... 1 0 p[k−1]

1 p[k−2]
1 p[k−3]

1 ... p1 0... ... ... ... ... ... ... ... ...
0 0 ... 1 0 p[k−1]

r p[k−2]
r p[k−3]

r ... pr 0
0 0 ... 0 1 0 0 0 ... 0 0
0 0 ... 0 1 p[k]

1 p[k−1]
1 p[k−2]

1 ... p[2]
1 p1... ... ... ... ... ... ... ...

0 0 ... 0 1 p[k]
r p[k−1]

r p[k−2]
r ... p[2]

r pr















































.

For k ≤ d, let Hk = πr+1
k (H) ⊆ Xr+1

k ; identifying Xk with Tk and Xr+1
k with

(

T(r+1)
)k

,
we get

Hk = R-span Θk mod 1 ⊆ Xr+1
k . (4.2)

If we supress the 1-st and the (k + 1)-st columns from the matrix Θk+1, we obtain the

matrix
(

0
Θk

)

. Hence we have

Hk+1 ⊇ R-span
(

0
Θk

)

mod 1. (4.3)

Assume now that for some k ≤ d one has F r+1
k ⊆ Hk. Using formula (4.3), this implies

that F r+1
k+1 ⊆ Hk+1, and of course F r+1

l ⊆ Hl for all l > k, which gives H ⊇ Lr+1
k . Let us

call the minimal k with this property the Weyl complexity of P and denote it by W (P ) or
W (p1, . . . , pr).

We note that the first component X of Xr+1 actually plays no role in determining
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W (P ). For k ≤ d let

Λk =







































p1 0 0 ... 0 0... ... ... ... ...
pr 0 0 ... 0 0

p[2]
1 p1 0 ... 0 0... ... ... ... ...

p[2]
r pr 0 ... 0 0
......

......

......

......

......
p[k−1]
1 p[k−2]

1 p[k−3]
1 ... p1 0... ... ... ... ...

p[k−1]
r p[k−2]

r p[k−3]
r ... pr 0

p[k]
1 p[k−1]

1 p[k−2]
1 ... p[2]

1 p1... ... ... ...
p[k]

r p[k−1]
r p[k−2]

r ... p[2]
r pr







































.

The subtorus M = R-span Λd mod 1 ⊆ Xr is the (translated to 0) orbit of a “generic”

point x̄ of the diagonal ∆Xr under the action of P : M = O(P, x̄)− x̄ where x̄ =
(x...

x

)

and
x is a point of X whose coordinates and α are rationally independent. For k ≤ d let

Mk = πr
k(M) = R-spanΛk mod 1 ⊆ Xr

k .

Then Hk = ∆Xr+1
k

⊕ ({0}×Mk) ⊆ Xk ×Xr
k . It follows that F r+1

k ⊆ Hk iff F r
k ⊆ Mk. Put

w0(P ) = 0 and for each k ∈ N let

wk(P ) = dim Mk = R-rankΛk.

Since wk(P ) = wk−1(P ) + dim(Mk ∩F r
k ), we have F r

k ⊆ Mk iff wk(P )−wk−1(P ) = r. We
obtain:

Proposition 4.1. The Weyl complexity W (P ) equals the minimal k for which Mk ⊇ F r
k ,

and the minimal k for which wk(P )− wk−1(P ) = r.

We will now formally introduce the Vandermonde complexity for our system P. Let
τk be the projection of X to Fk; we define the Vandermonde complexity of P , V (P ) or
V (p1, . . . , pr), as the minimal k for which τ r+1

k (H) = F r+1
k . Identifying the subtorus F r+1

k
of Xr+1 with Tr+1 we have

τ r+1
k (Hk) = R-span





1 0 0 0 ... 0 0
1 p[k]

1 p[k−1]
1 p[k−2]

1 ... p[2]
1 p1... ... ... ... ... ...

1 p[k]
r p[k−1]

r p[k−2]
r ... p[2]

r pr



 mod 1 = R-span





1 0 0 ... 0 0 0
1 p1 p2

1 ... pk−2
1 pk−1

1 pk
1... ... ... ... ... ...

1 pr p2
r ... pk−2

r pk−1
r pk

r



 mod1.

Define vk(P ) = R-rank

(

p1 p2
1 ... pk−2

1 pk−1
1 pk

1... ... ... ... ...
pr p2

r ... pk−2
r pk−1

r pk
r

)

, k ∈ N; then τ r+1
k (Hk) = F r+1

k iff τ r
k (Mk) =

F r
k iff vk(P ) = r. We see that

Proposition 4.2. V (P ) equals the minimal k for which τ r
k (Mk) = F r

k , and the minimal
k for which vk(P ) = r.
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5. Properties of Vandermonde and Weyl complexities and examples

We start with the Vandermonde complexity.

Lemma 5.1. For any system P = {p1, . . . , pr} of r integral polynomials with zero constant
term, V (P ) ≤ r.

Proof. We have

det

(

p1 p2
1 ... pr

1... ... ...
pr p2

r ... pr
r

)

=
r

∏

i=1

(

pi ·
r

∏

j=i+1

(pj − pi)
)

6= 0.

(This is the Vandermonde determinant, which explains our terminology.) Thus, the vectors
(

p1(x)...
pr(x)

)

, . . . ,
(pr

1(x)...
pr

r(x)

)

are linearly independent for all but finitely many x, and so, vr(P ) = r.

Hence, V (P ) ≤ r.

Here are some properties of the Vandermonde complexity, which are clear from the
definition and Proposition 4.2:

Proposition 5.2. Let {p1, . . . , pr} be a system of integral polynomials with zero constant
term.
(i) If {q1, . . . , qs} ⊆ {p1, . . . , pr}, then V (q1, . . . , qs) ≤ V (p1, . . . , pr).
(ii) V (p1, . . . , pr) = 1 iff p1, . . . , pr are linearly independent.
(iii) If p1, . . . , pr are all linear, V (p1, . . . , pr) = r.
(iv) V is invariant under polynomial substitutions: for any nonzero integral polynomial h
with zero constant term, V

(

p1(h(x)), . . . , pr(h(x))
)

= V
(

p1(x), . . . , pr(x)
)

.
(v) For any nonzero integer m 6= 0, V (mp1, . . . ,mpr) = V (p1, . . . , pr).

Examples of computation of Vandermonde complexity.
Consider the system P = {x, 2x, x2}. Using the “coefficient method” from

Lemma 2.2(ii), we get

v1(P ) = R-rank
( x

2x
x2

)

= rank
(

1 0
2 0
0 1

)

= 2

and

v2(P ) = R-rank
(

x x2

2x 4x2

x2 x4

)

= rank
(

1 0 1 0
2 0 4 0
0 1 0 1

)

= 3,

so V (P ) = 2.
For the system P = {x, x2, x + x2, x + 2x2} we have

v1(P ) = R-rank

( x
x2

x+x2

x+2x2

)

= rank
(1 0

0 1
1 1
1 2

)

= 2

and

v2(P ) = R-rank

(

x x2

x2 x4

x+x2 x2+2x3+x4

x+2x2 x2+4x3+4x4

)

= rank
(1 0 1 0 0

0 1 0 0 1
1 1 1 2 1
1 2 1 4 4

)

= 4,
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so V (P ) = 2.

For the system P = {x, x2, x + x2, x + 2x2, x + 3x2},

v1(P ) = R-rank





x
x2

x+x2

x+2x2

x+3x2



 = rank

(1 0
0 1
1 1
1 2
1 3

)

= 2,

v2(P ) = R-rank







x x2

x2 x4

x+x2 x2+2x3+x4

x+2x2 x2+4x3+4x4

x+3x2 x2+6x3+9x4





 = rank

(1 0 1 0 0
0 1 0 0 1
1 1 1 2 1
1 2 1 4 4
1 3 1 6 9

)

= 4

and

v3(P ) = R-rank







x x2 x3

x2 x4 x6

x+x2 x2+2x3+x4 x3+3x4+3x5+x6

x+2x2 x2+4x3+4x4 x3+6x4+12x5+8x6

x+3x2 x2+6x3+9x4 x3+9x4+27x5+27x6





 = rank

(1 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 1
1 1 1 2 1 1 3 3 1
1 2 1 4 4 1 6 12 8
1 3 1 6 9 1 9 27 27

)

= 5,

so V (P ) = 3.

The Weyl complexity has properties similar to those of the Vandermonde complexity:

Proposition 5.3. Let {p1, . . . , pr} be a system of integral polynomials with zero constant
term.
(i) If {q1, . . . , qs} ⊆ {p1, . . . , pr}, then W (q1, . . . , qs) ≤ W (p1, . . . , pr).
(ii) W (p1, . . . , pr) = 1 iff p1, . . . , pr are linearly independent.
(iii) If all p1, . . . , pr are linear, W (p1, . . . , pr) = r.
(iv) For any nonzero integral polynomial h with zero constant term, W

(

p1(h(x)), . . . ,
pr(h(x))

)

= W
(

p1(x), . . . , pr(x)
)

.
(v) For any nonzero integer m, W (mp1, . . . , mpr) = W (p1, . . . , pr).
(vi) W (p1, . . . , pr) ≥ V (p1, . . . , pr).

Proof. (i) is clear from the definition. (ii) and (vi) follow from Proposition 4.1. It follows
from formula (4.2) and Lemma 2.2(i) that for the system P (h) =

{

p1(h(x)), . . . , pr(h(x))
}

we have O( ̂P (h),∆Xr+1) = O( ̂P , ∆Xr+1); this implies (iv). We postpone the proof of (iii)
and of (v) until the end of this section.

Remark. The fact that W (P ) is finite for any system of integral polynomials P is a
consequence of the general study of HKZ factors; we do not prove it here. W (P ) may
be strictly larger than V (P ) as an example at the end of this section demonstrates. A
question that we leave open is whether W (p1, . . . , pr) is always ≤ r.
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The definition of the Weyl complexity via the standard Weyl system is, actually,
inconvenient for practical usage. We will modify it a little bit by replacing the standard
Weyl system by a quasi-standard one. Let (X, T ) be a quasi-standard Weyl system, let
Lk =

{

(0, . . . , 0, xk, . . . , xd)
}

, Xk = X/Lk+1, Fk =
{

(0, . . . , 0, xk)
}

⊆ Xk, πk be the
projection of X to Xk and τk be the projection of X to Fk, k = 1, . . . , d; let ∆Xr+1 =
{(x...

x

)

, x ∈ X
}

be the diagonal of Xr+1, and let x̄ be a “generic” point of the diagonal
of Xr. Let P = {p1, . . . , pr} be a system of integral polynomials with zero constant

term and with W (P ) ≤ k, let H = O( ̂P , ∆Xr+1) ⊆ Xr+1, M = O( ̂P , x̄) − x̄ ⊆ Xr,
Hk = πr+1

k (H) ⊆ Xr+1
k and Mk = πr

k(M) ⊆ Xr
k , k = 1, . . . , d. (Note that in analogy

with the case of a standard Weyl system, H and M (as well as Hk and Mk for all k) are
subtori of Xr+1 and Xr (respectively, of Xr+1

k and Xr
k).) Let ( ˜X, ˜T ) be a standard Weyl

system for which (X, T ) is a factor, η: ˜X −→ X, as in Lemma 3.4, and let ˜H, M˜ , ˜Lk,
˜Fk, ˜Hk and M˜ k, k = 1, . . . , d, be the corresponding subtori of ˜Xr+1, ˜Xr, ˜X, ˜Xk, ˜Xr+1

k

and ˜Xr
k respectively. Then for all k, Fk = η( ˜Fk), Hk = η( ˜Hk) and Mk = η(M˜ k). So,

H ⊇ Lr+1
k iff ˜H ⊇ ˜Lr+1

k , M ⊇ Lr
k iff M˜ ⊇ ˜Lr

k, Hk ⊇ F r+1
k iff ˜Hk ⊇ ˜F r+1

k , and Mk ⊇ F r
k iff

M˜ k ⊇ ˜F r
k . Since η has finite fibers, dim Hk = dim ˜Hk and dim Mk = dim M˜ k. We obtain

that for computing the Weyl complexity of the system {p1, . . . , pr} any quasi-standard
Weyl system can be used:

Proposition 5.4. W (P ) equals the minimal k for which H ⊇ Lr+1
k , the minimal k

for which M ⊇ Lr
k, the minimal k for which Hk ⊇ F r+1

k , and the minimal k for which
Mk ⊇ F r

k ; wk(P ) = dim Mk for all k.

An analogous fact holds for the Vandermonde complexity:

Proposition 5.5. For any quasi-standard Weyl system, vk(P ) = dim τ r
k (M) for all k;

V (P ) equals the minimal k for which τ r+1
k (H) = F r+1

k and the minimal k for which
τ r
k (M) = F r

k .

Proof. For any quasi-standard Weyl system (X,T ),

τ r+1
k (H) = R-span

(1 0 0 ... 0
1 hk(p1) hk−1(p1) ... h1(p1)... ... ... ...
1 hk(pr) hk−1(pr) ... h1(pr)

)

mod 1,

where for each i = 1, . . . , k, hi is a polynomial of degree i with zero constant term. (Under
h(p) we understand the polynomial h(p(x)).) Performing suitable column transformations

of the last matrix and using Lemma 2.1, we come to R-span

(1 0 0 ... 0
1 hk(p1) hk−1(p1) ... h1(p1)... ... ... ...
1 hk(pr) hk−1(pr) ... h1(pr)

)

=

R-span





1 0 0 ... 0
1 pk

1 pk−1
1 ... p1... ... ... ...

1 pk
r pk−1

r ... pr



.

Similarly,

τ r
k (M) = R-span

(

hk(p1) hk−1(p1) ... h1(p1)... ... ...
hk(pr) hk−1(pr) ... h1(pr)

)

mod1 = R-span

(

pk
1 pk−1

1 ... p1... ... ...
pk

r pk−1
r ... pr

)

mod 1.
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(To clarify what we mean under “suitable column transformations” let us consider an
example. For the Weyl system (T3, T ) where

T (x1, x2, x3) =
(

x1 + α, x2 + 3x1, x3 + x2 + 2x1 + α
)

,

one checks that

Tn(x1, x2, x3) =
(

x1+nα, x2+3nx1+ 3
2n(n−1)α, x3+nx2+ 1

2 (3n2+n)x1+ 1
2 (n3−n2+2n)α

)

,

n ∈ Z, and so,

τ r
3 (M) = R-span

(

1
2 (p3

1−p2
1+2p1) 1

2 (3p2
1+p1) p1... ... ...

1
2 (p3

r−p2
r+2pr) 1

2 (3p2
r+pr) pr

)

mod1 = R-span

(

p3
1 p2

1 p1... ... ...
p3

r p2
r pr

)

mod 1.)

Now we may also get:

Proof of Proposition 5.3(v). Let (X,T ) be a standard Weyl system and m be a nonzero
integer. Put R = Tm; (X,R) is then a quasi-standard Weyl system. Let P = {p1, . . . , pr}
be a system of integral polynomials with zero constant term and let mP = {mp1, . . . , mpr}.
Using an index to specify what transformation we consider, we have OR( ̂P , ∆Xr+1) =
OT (m ̂P , ∆Xr+1). Since the first orbit is responsible for W (p1, . . . , pr) and the second orbit
is responsible for W (mp1, . . . , mpr), these two numbers coincide.

Consider the quasi-standard Weyl system

T (x1, . . . , xd) =
(

x1 + α, x2 + 2x1 + α, . . . , xd +
∑d−1

i=1

(d
i

)

xi + α
)

.

For n ∈ Z one has

Tn(x1, x2, . . . , xd) =
(

x1 + nα, x2 + 2nx1 + n2α, . . . , xd +
∑d−1

i=1

(d
i

)

nixd−i + ndα
)

.

For this system,
Mk = R-span Λ′k mod 1 (5.1)

where

Λ′k =







































p1 0 0 ... 0 0... ... ... ... ...
pr 0 0 ... 0 0
p2
1 2p1 0 ... 0 0... ... ... ... ...

p2
r 2pr 0 ... 0 0
......

......

......

......

......
pk−1
1 (k−1

k−2)pk−2
1 (k−1

k−3)pk−3
1 ... (k−1)p1 0

... ... ... ... ...
pk−1

r (k−1
k−2)pk−2

r (k−1
k−3)pk−3

r ... (k−1)pr 0

pk
1 ( k

k−1)pk−1
1 ( k

k−2)pk−2
1 ... (k

2)p2
1 kp1... ... ... ... ...

pk
r ( k

k−1)pk−1
r ( k

k−2)pk−2
r ... (k

2)p2
r kpr







































and by Proposition 5.4,
wk(P ) = dim Mk = R-rank Λ′k (5.2)

for all k ∈ N. We will use this definition of the numbers wk(P ) in our computations.
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Proof of Proposition 5.3(iii). If pi are linear, pi(x) = cix, i = 1, . . . , r, formula (5.1)
and Lemma 2.2 (ii) imply

Mk = span



























c1 0 ... 0 0 ... 0 ... ... 0... ... ... ... ... ...
cr 0 ... 0 0 ... 0 ... ... 0
0 c2

1 ... 0 2c1 ... 0 ... ... 0... ... ... ... ... ...
0 c2

r ... 0 2cr ... 0 ... ... 0
......

......

......

......

......

......
0 0 ... ck

1 0 ... ( k
k−1)ck−1

1 ... ... kc1... ... ... ... ... ...
0 0 ... ck

r 0 ... ( k
k−1)ck−1

r ... ... kcr



























mod 1

= span



























c1 0 0 ... ... 0 ... 0... ... ... ... ...
cr 0 0 ... ... 0 ... 0
0 c2

1 c1 ... ... 0 ... 0... ... ... ... ...
0 c2

r cr ... ... 0 ... 0
......

......

......

......

......
0 0 0 ... ... ck

1 ... c1... ... ... ... ...
0 0 0 ... ... ck

r ... cr



























mod 1,

and one has F r
k ⊆ Mk iff k ≥ r.

Examples of computation of Weyl complexity.
Consider the system P = {x, 2x, x2}. Using the formula (5.2) and Lemma 2.2(ii) we

get

w1(P ) = R-rank
( x

2x
x2

)

= rank
(

1 0
2 0
0 1

)

= 2,

w2(P ) = R-rank







x 0
2x 0
x2 0
x2 2x
4x2 4x
x4 2x2





 = rank





1 0 0 0 0
2 0 0 0 0
0 1 0 0 0
0 1 0 2 0
0 4 0 4 0
0 0 1 0 2



 = 4,

w3(P ) = R-rank















x 0 0
2x 0 0
x2 0 0
x2 2x 0
4x2 4x 0
x4 2x2 0
x3 3x2 3x
8x3 12x2 6x
x6 3x4 3x2















= rank











1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 2 0 0 0 0
0 4 0 0 0 4 0 0 0 0
0 0 0 1 0 0 2 0 0 0
0 0 1 0 0 0 3 0 3 0
0 0 8 0 0 0 12 0 6 0
0 0 0 0 1 0 0 3 0 3











= 7 = w2(P ) + 3,

and thus, W (P ) = 3. (Recall that V (P ) = 2.)
In contrast, for the system P = {x, 2x, x3},

w1(P ) = R-rank
( x

2x
x3

)

= rank
(

1 0
2 0
0 1

)

= 2,

w2(P ) = R-rank







x 0
2x 0
x3 0
x2 2x
4x2 4x
x6 2x3





 = rank





1 0 0 0 0 0
2 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 2 0
0 4 0 0 4 0
0 0 0 1 0 2



 = 5,

24



and therefore, W (P ) = 2.
One can easily see that for any system P of 3 polynomials one has W (P ) ≤ 3. For

example, if a, b, c, d ∈ Z with (a, b) 6= (c, d), then
V (x, ax + bx2, cx + dx2) = 2 if at least one of b, d is nonzero;
W (x, ax + bx2, cx + dx2) = 2 when both b and d are nonzero, W (x, ax, cx + dx2) = 3.
In a recent preprint, [Fr], N. Frantzikinakis classifies all the possibilities for the values of
the Weyl complexity for a system of 3 polynomials.

6. Characteristic factors and large intersections

In this section we investigate dynamical properties of Weyl systems. In particular,
we connect the information given by Weyl and Vandermonde complexities of a family of
polynomials with the multiple recurrence properties along this family. (These results will
be utilized in combinatorial constructions dealt with in Section 7.) We begin with a simple
example that conveys the flavor of what will be done in this section. Let us consider the
quasi-standard Weyl system on X = T4,

T (x1, x2, x3, x4) = (x1 + α, x2 + 2x1 + α, x3 + 3x2 + 3x1 + α, x4 + 4x3 + 6x2 + 4x1 + α),

where α ∈ T is irrational, and the system of polynomials P = {n, 2n, n2}, for which we
know that V (P ) = 2 and W (P ) = 3. Let A0, A1, A2, A3 be four measurable subsets of X
with positive measure. We have the following results:

(i) If the sets Ai do not depend on the first coordinate x1 (that is, each Ai = T× Ii with
Ii ⊆ T3), then

UC-lim µX
(

A0 ∩ T−nA1 ∩ T−2nA2 ∩ T−n2
A3

)

> 0.

(ii) If the sets Ai are independent of the algebra of subsets which depend only on x1, x2 (that
is, µT2(Ai∩Lx1,x2) = µX(Ai), where Lx1,x2 = {(x1, x2)}×T2, for almost all (x1, x2) ∈ T2)
then

UC-lim µX
(

A0 ∩ T−nA1 ∩ T−2nA2 ∩ T−n2
A3

)

= µX(A0)µX(A1)µX(A2)µX(A3).

(iii) If the sets Ai are independent of the algebra of subsets which depend only on x1, x2, x3

then

lim
n→∞

µX
(

A0 ∩ T−nA1 ∩ T−2nA2 ∩ T−n2
A3

)

= µX(A0)µX(A1)µX(A2)µX(A3).

It can be shown (see Lemmas 6.3 and 6.7 and Proposition 7.5 below) that in each of these
three statements, the hypothesis of the independence of the sets Ai of the corresponding
algebras cannot be weakened. Moreover, each of these results still holds if the variable n
is replaced by any nonconstant integral polynomial h(n) (see Propositions 6.12–6.14).

We now move to the general situation. Throughout this section let P = {p1, . . . , pr}
be a system of integral polynomials with zero constant term.

Let X and X ′ be compact commutative Lie groups with normalized Haar measures µX
and µX′ thereon, and let π:X −→ X ′ be a surjective (and continuous) homomorphism.
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Denote by Fz, z ∈ X ′, the fibers of π, Fz = π−1(z). For a function f ∈ L1(X), the
conditional expectation E(f |X ′) of f with respect to X ′ is the function on X ′ defined by

E(f |X ′)(z) =
∫

Fz

f dµFz =
∫

F0

f(z + x) dµF0(x).

(For f ∈ L2(X), E(f |X ′) is the orthogonal projection of f onto the subspace π∗(L2(X ′))
of L2(X).) We will consider E(f |X ′) as a function on X, as well as on X ′.

We say that a measurable set A ⊆ X is independent of X ′ if E(1A|X ′) = µX(A); this
is equivalent to saying that for almost all fibers Fz, z ∈ Z, of π one has µFz (A) = µX(A).
If A1, . . . , Ar are subsets of X independent of X ′, then

∏r
i=1 Ai ⊆ Xr is independent of

(X ′)r.
We say that a measurable set B ⊆ X originates from X ′ if B = π−1(B′) for some

B′ ⊆ X ′. If B1, . . . , Br ⊆ X originate from X ′ then
∏r

i=1 Bi ⊆ Xr originates from (X ′)r.
If B is a closed subgroup of X that originates from X ′ then B = π−1(B′) for the subgroup
B′ = π(B) of X ′, and for any f ∈ C(X) one has

∫

B f dµB =
∫

B′ E(f |X ′) dµB′ .
Let (X,T ) be a quasi-standard Weyl system. We will first show that if W (P ) ≤ k, then

Xk−1 is a characteristic factor for P . (Cf. [F1], §10 and [F3], p.54.) Put g(n) =

( IdX

T p1(n)
...

T pr(n)

)

and Dn = g(n)∆Xr+1 , n ∈ Z. By Proposition 5.4, the torus H =
⋃

n∈ZDn ⊆ Xr+1

contains Lr+1
k . Hence, the property of a point x = (x1, . . . , xd) ∈ (Tr+1)d to belong to

H does not depend on the coordinates xk, . . . , xd. Thus, H = (πr+1
k−1)

−1(Hk−1) so that H
originates from Xr+1

k−1. Let f0, . . . , fr be continuous functions on X and let f =
⊗r

i=0 fi

(that is, f is the function on Xr+1 defined by f(x0, . . . , xr) = f0(x0) · . . . · fr(xr)). Since
H originates from Xr+1

k−1, we have

∫

H
f dµH =

∫

Hk−1

E(f |Xr+1
k−1) dµHk−1 .

Since the sequence {Dn}n∈Z is well distributed in H, UC-lim
n

∫

Dn
f dµDn =

∫

H f dµH and

UC-lim
n

∫

Dn

E(f |Xr+1
k−1) dµDn =

∫

H
E(f |Xr+1

k−1) dµH =
∫

Hk−1

E(f |Xr+1
k−1) dµHk−1 .

For any z̃ = (z0, . . . , zr) ∈ Xr+1
k−1,

E(f |Xr+1
k−1)(z̃) =

∫

z̃+Lr+1
k

f0⊗. . .⊗fr dµz̃+Lr+1
k

=
r

∏

i=0

∫

zi+Lk

fi dµzi+Lk =
r

∏

i=0

E(fi|Xk−1)(zi),

so E(f |Xr+1
k−1) =

⊗r
i=0 E(fi|Xk−1). For any n we have

∫

Dn

f dµDn =
∫

∆Xr+1

g(n)f dµ∆Xr+1 =
∫

X
f0 · T p1(n)f1 · . . . · T pr(n)fr dµX ,
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and similarly

∫

Dn

E(f |Xr+1
k−1) dµDn =

∫

∆
Xr+1

k−1

g(n)E(f |Xr+1
k−1) dµ∆

Xr+1
k−1

=
∫

Xk−1

E(f0|Xk−1) · T p1(n)E(f1|Xk−1) · . . . · T pr(n)E(fr|Xk−1) dµXk−1 .

Thus,

UC-lim
n

∫

X
f0 · T p1(n)f1 · . . . · T pr(n)fr dµX

= UC-lim
n

∫

Xk−1

E(f0|Xk−1) · T p1(n)E(f1|Xk−1) · . . . · T pr(n)E(fr|Xk−1) dµXk−1 .

Since continuous functions are dense in L∞(X) in L1-topology, we obtain that Xk−1 is a
characteristic factor for the system P :

Proposition 6.1. Let (X, T ) be a quasi-standard Weyl system, let W (P ) ≤ k, and let
f0, . . . , fr ∈ L∞(X). Then

UC-lim
n

∫

X
f0 · T p1(n)f1 · . . . · T pr(n)fr dµX

= UC-lim
n

∫

Xk−1

E(f0|Xk−1) · T p1(n)E(f1|Xk−1) · . . . · T pr(n)E(fr|Xk−1) dµXk−1 .

We remark that one can derive from Proposition 6.1 and Theorem 3.5 the fact that the
natural factor Xk−1 is a characteristic factor for any (not necessarily quasi-standard) Weyl
system. We do not give the details here since this fact is not needed in the sequel.

Applying Proposition 6.1 to the characteristic functions 1A0 , . . . , 1Ar of subsets
A0, . . . , Ar of X that are independent of Xk−1 we get

Proposition 6.2. Let (X,T ) be a quasi-standard Weyl system, let W (P ) ≤ k, and
let A0, . . . , Ar be measurable subsets of X independent of Xk−1. Then UC-lim

n
µX

(

A0 ∩
T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar

)

=
∏r

i=0 µX(Ai).

To be sure that Xk−1, the (k−1)-st natural factor of X, is the “optimal” characteristic
factor for a system of Weyl complexity k, we have to check that Xk−2 is not characteristic.
This is so indeed:

27



Lemma 6.3. Let (X, T ) be a quasi-standard Weyl system of depth d ≥ k − 1 and let
W (P ) ≥ k. Then there exist functions f0, . . . , fr ∈ L∞(X) such that

UC-lim
n

∫

X
f0 · T p1(n)f1 · . . . · T pr(n)fr dµX

6= UC-lim
n

∫

Xk−2

E(f0|Xk−2) · T p1(n)E(f1|Xk−2) · . . . · T pr(n)E(fr|Xk−2) dµXk−2 .

Proof. By Proposition 5.4, H does not contain Lr+1
k−1. Thus there exists x̃ =

(x0, x1, . . . , xr) ∈ Lr+1
k−1 \H. For each i = 0, 1, . . . , r fix a nonnegative continuous function

fi on X such that fi(xi) > 0 and f0 ⊗ f1 ⊗ . . .⊗ fr|H = 0. The function f0 ⊗ f1 ⊗ . . .⊗ fr
is zero on g(n)∆Xr+1 for all n, thus

∫

X
f0 · T p1(n)f1 · . . . · T pr(n)fr dµX = 0

for all n. On the other hand, each function E(fi|Xk−2) is positive in a neighborhood of
the point 0 in Hk−2, so

∫

Hk−2

E(f0|Xk−2)⊗E(f1|Xk−2)⊗ . . .⊗ E(fr|Xk−2) dµHk−2 > 0.

Since the sequence {g(n)∆Xr+1
k−2
}n∈Z is well distributed in Hk−2, the last expression is equal

to

UC-lim
n

∫

Xk−2

E(f0|Xk−2) · T p1(n)E(f1|Xk−2) · . . . · T pr(n)E(fr|Xk−2) dµXk−2 .

In the case W (P ) < k, Xk−1 is characteristic for the system P in a stronger sense:

Proposition 6.4. Let (X, T ) be a quasi-standard Weyl system, let W (P ) < k, and let
f0, . . . , fr ∈ L∞(X). Then

lim
n→∞

(

∫

X
f0 · T p1(n)f1 · . . . · T pr(n)fr dµX

−
∫

Xk−1

E(f0|Xk−1) · T p1(n)E(f1|Xk−1) · . . . · T pr(n)E(fr|Xk−1) dµXk−1

)

= 0.
(6.1)

In particular, we obtain:

Proposition 6.5. Let (X, T ) be a quasi-standard Weyl system, let W (P ) < k, and
let A0, . . . , Ar be measurable subsets of X independent of Xk−1. Then limn→∞ µX

(

A0 ∩
T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar

)

=
∏r

i=0 µX(Ai).

To prove Proposition 6.4 we need to show that if at least one of the functions
f0, . . . , fr ∈ L∞(X) is orthogonal to the subspace L2(Xk−1) of L2(X), then limn→∞

∫

X f0 ·
T p1(n)f1 · . . . · T pr(n)fr dµ = 0. This follows from the following fact:
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Lemma 6.6. If f0, . . . , fr are characters on X of which at least one is orthogonal to
L2(Xk−1) then

∫

X f0 · T p1(n)f1 · . . . · T pr(n)fr dµ = 0 for all but finitely many n ∈ Z.

Proof. We may and, for simplicity, will assume that (X,T ) is a standard Weyl system:
X = Td, T (x1, x2 . . . , xd) = (x1 + α, x2 + x1, . . . , xd + xd−1) (though the proof is the same
for any quasi-standard system). Let fi = exp

(

2πi(mi,1x1 + . . . + mi,dxd)
)

2, mi,j ∈ Z,
i = 0, . . . , r. Then

T pi(n)fi = exp
(

2πi(mi,1(x1 + pi(n)α) + mi,2(x2 + pi(n)x1 + pi(n)[2]α) + . . .

+mi,d(xd +
d−1
∑

j=1

pi(n)[j]xd−j + pi(n)[d]α)
)

,

i = 0, . . . , r, and

f0 ·
∏r

i=1 T pi(n)fi = exp
(

2πi(x1
(

m0,1 +
∑r

i=1
∑d

j=1 mi,jpi(n)[j−1]
)

+x2
(

m0,2 +
∑r

i=1

∑d
j=2 mi,jpi(n)[j−2]

)

+ . . .

+xd
(

m0,d +
∑r

i=1 mi,d
)

+ α
∑r

i=1

∑d
j=1 mi,jpi(n)[j]

)

,

n ∈ Z. Thus,
∫

X f0 ·T p1(n)f1 · . . . ·T pr(n)fr dµ = 0 whenever at least one of the coefficients
m0,1 +

∑r
i=1

∑d
j=1 mi,jpi(n)[j−1], m0,2 +

∑r
i=1

∑d
j=2 mi,jpi(n)[j−2], . . ., m0,d +

∑r
i=1 mi,d

is nonzero, that is, when N(n)m 6= 0 where m is the vector











m0,1...
mr,1...
m0,d...
mr,d











and N(n) is the matrix









1 1 ... 1 0 p1(n) ... pr(n) 0 p1(n)[2] ... pr(n)[2] 0 p1(n)[3] ... pr(n)[3] ... ... 0 p1(n)[d−1] ... pr(n)[d−1]

0 0 ... 0 1 1 ... 1 0 p1(n) ... pr(n) 0 p1(n)[2] ... pr(n)[2] ... ... 0 p1(n)[d−2] ... pr(n)[d−2]

0 0 ... 0 0 0 ... 0 1 1 ... 1 0 p1(n) ... pr(n) ... ... 0 p1(n)[d−3] ... pr(n)[d−3]

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 ... 0 0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 1 1 ... 1









,

n ∈ Z. Assume that N(n)m = 0 for infinitely many n ∈ Z. Since the condition N(n)m = 0
is polynomial in n, we then have N(n)m = 0 for all n ∈ Z. In particular, N(0)m = 0,

therefore (N(n)−N(0))m = 0 and
(

N(0)
N(n)−N(0)

)

m for all n ∈ Z. We have

N(0) =
(1 1 ... 1 0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 0 0 ... 0

0 0 ... 0 1 1 ... 1 0 0 ... 0 0 0 ... 0 ... ... 0 0 ... 0... ... ... ... ... ... ... ... ... ... ... ... ... ...
0 0 ... 0 0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 1 1 ... 1

)

,

2 In the expression “2πi”, π is not a projection but 3.14 . . ., and i is not the index appearing
in the rest of the formula but

√
−1.
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so
















1 1 ... 1 0 0 ... 0 0 0 ... 0 ... ... 0 0 ... 0
0 0 ... 0 1 1 ... 1 0 0 ... 0 ... ... 0 0 ... 0... ... ... ... ... ... ... ... ... ... ... ...
0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 1 1 ... 1
0 0 ... 0 0 p1(n) ... pr(n) 0 p1(n)[2] ... pr(n)[2] ... ... 0 p1(n)[d−1] ... pr(n)[d−1]

0 0 ... 0 0 0 ... 0 0 p1(n) ... pr(n) ... ... 0 p1(n)[d−2] ... pr(n)[d−2]

...
...

...
...

...
...

...
...

...
...

...
...

0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 0 p1(n) ... pr(n)
0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 0 0 ... 0

















m = 0

and thus (after erasing the r + 1 first columns, and the first and the last lines)














1 1 ... 1 0 0 ... 0 ... ... 0 0 ... 0
0 0 ... 0 1 1 ... 1 ... ... 0 0 ... 0... ... ... ... ... ... ... ... ...
0 0 ... 0 0 0 ... 0 ... ... 1 1 ... 1
0 p1(n) ... pr(n) 0 p1(n)[2] ... pr(n)[2] ... ... 0 p1(n)[d−1] ... pr(n)[d−1]

0 0 ... 0 0 p1(n) ... pr(n) ... ... 0 p1(n)[d−2] ... pr(n)[d−2]

...
...

...
...

...
...

...
...

...
0 0 ... 0 0 0 ... 0 ... ... 0 p1(n) ... pr(n)















m̃ = 0

for all n ∈ Z, where m̃ =











m0,2...
mr,2...
m0,d...
mr,d











∈ R(d−1)(r+1). After introducing the standard inner

product on the space R(d−1)(r+1), we interprete this identity as the fact that the vector m̃
is orthogonal to the subspace

H = R-span



































1 0 ... 0 0 0 ... 0
1 0 ... 0 p1 0 ... 0... ... ... ... ... ...
1 0 ... 0 pr 0 ... 0
0 1 ... 0 0 0 ... 0
0 1 ... 0 p[2]

1 p1 ... 0... ... ... ... ... ...
0 1 ... 0 p[2]

r pr ... 0
......

......

......

......

......

......
0 0 ... 1 0 0 ... 0
0 0 ... 1 p[d−1]

1 p[d−2]
1 ... p1... ... ... ... ... ...

0 0 ... 1 p[d−1]
r p[d−2]

r ... pr



































(6.2)

of R(d−1)(r+1). Comparing the formulas (6.2) and (4.2) we see that Hmod 1 = Hd−1. If
W (p1, . . . , pr) ≤ k − 1 then H contains Lr+1

k−1, and thus H contains the subspace Lk−1 =
{

(0, . . . , 0, u0,k−1, . . . , ur,k−1, . . . , u0,d−1, . . . , ur,d−1), ui,j ∈ R
}

of R(d−1)(r+1). But if fi is
orthogonal to Xk−1 for some i then mi,j 6= 0 for some j ≥ k and thus m̃ is not orthogonal
to Lk−1.

The following lemma shows that the assumption W (P ) < k in Proposition 6.4 cannot
be weakened:

Lemma 6.7. Let (X,T ) be a quasi-standard Weyl system of depth d ≥ k and let W (P ) ≥
k. Then there exist functions f0, . . . , fr ∈ L1(X) such that identity (6.1) does not hold.
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Proof. In the notation of the proof of Lemma 6.6, if W (P ) ≥ k then H does not contain

Lr+1
k−1, and thus there exists a vector m̃ =











m0,2...
mr,2...
m0,d...
mr,d











∈ Z(d−1)(r+1) with mi0,j0 6= 0 for

some i0 and some j0 ≥ k and orthogonal to H. For the vector m =

















0...
0

m0,2...
mr,2...
m0,d...
mr,d

















∈ Zd(r+1)

we then have N(n)m = 0 for all n. Put fi = exp
(

2πi(mi,1x1 + . . . + mi,dxd)
)

, i =
0, . . . , r; then, for any n ∈ Z, f0 · T p1(n)f1 · . . . · T pr(n)fr is a constant of modulus 1.
On the other hand, since mi0,j0 6= 0 with j0 ≥ k, we have E(fi0 |Xk−1) = 0, and thus
E(f0|Xk−1) · T p1(n)E(f1|Xk−1) · . . . · T pr(n)E(fr|Xk−1) = 0 for all n ∈ Z.

We now turn to the Vandermonde complexity; let us assume that V (P ) ≤ k. To
simplify notation, assume also that (X,T ) is a quasi-dtandard Weyl system of depth k
(that is, X = Xk = Tk). Let functions fi ∈ L1(X), i = 0, . . . , r, be nonnegative, with
∫

X fi dµX > 0, and independent of Xk−1 in a very strong sense: assume that they only
depend on the last, kth coordinate of X. Then

Proposition 6.8. If V (p1, . . . , pr) ≤ k then UC-lim
n

∫

X f0 ·T p1(n)f1 ·. . .·T pr(n)fr dµX > 0.

Proposition 6.8 is equivalent to the following:

Proposition 6.9. Let V (p1, . . . , pr) ≤ k and let Ai = Xk−1 × Ii, i = 0, . . . , r, where
I0, . . . , Ir are subsets of Fk of positive measure. Then UC-lim

n
µX

(

A0 ∩ T−p1(n)A1 ∩ . . . ∩
T−pr(n)Ar

)

> 0.

Proof. We may assume that I0, . . . , Ir are open intervals in Fk ' T. Let A =
∏r

i=0 Ai.
Since τ r+1

k (H) = F r+1
k , there is a point x̃ ∈ H with τ r+1

k (x̃) ∈ I0 × . . . × Ir. Thus,
A ∩ H 6= ∅. Since A ∩ H is open in H, µH(A ∩ H) > 0. Since the sequence Dn is well
distributed in H,

UC-lim
n

µX
(

A0 ∩ T−p1(n)A1 ∩ . . .∩ T−pr(n)Ar
)

= UC-lim
n

µDn(A∩Dn) = µH(A∩H) > 0.

Remark. If a set A is independent of Xk−1 then so is the set T cA for any c ∈ Z; this implies
that the assertions of Proposition 6.2 and Proposition 6.5 remain true if the intersection
A0 ∩ T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar is replaced by A0 ∩ T−p1(n)−c1A1 ∩ . . . ∩ T−pr(n)−crAr

with arbitrary ci ∈ Z (see also Proposition 6.15 and Proposition 6.17 below). A similar
extension of Proposition 6.9 does not hold: one can construct an explicit example of a
system of integer polynomials P = {p1, . . . , pr} with V (P ) = 2, integers c1, . . . , cr, a quasi-
standard Weyl system (T2, T ) and intervals I0, . . . , Ir in T such that for Ai = T× Ii ⊆ T2

one has
(

A0 ×
∏r

i=1 T−ciAi
)

∩H = ∅.
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We will now obtain further refinements of the preceding results by considering the sys-
tem of integral polynomials P (h) =

{

p1(h(n)), . . . , pr(h(n))
}

, where h is any nonconstant
integral polynomial. If h(0) = 0, by Proposition 5.3 the system P (h) has the same Weyl

complexity as P . Let, again, g(n) =

( IdX

T p1(n)
...

T pr(n)

)

, n ∈ Z; then even if h(0) 6= 0, we have:

Lemma 6.10. For any nonconstant integral polynomial h the sequence
{

g(h(n))∆Xr+1

}

n∈Z is well distributed in H.

Proof. By Proposition 3.2, the sequence g(h(n))∆Xr+1 , n ∈ Z, is well distributed in H if
it is dense in H. Let x be a “generic” point of X, that is, let the coordinates of x and the
elements αi ∈ T in the definition of the quasi-standard Weyl system be rationally indepen-
dent. Then the closure Hx = {g(n)x̄, n ∈ Z} ⊆ Xr+1 of the orbit of x̄ under g has form
x̄+R-span Q mod 1 for some polynomial matrix Q. The closure Kx = {g(h(n))x̄, n ∈ Z} ⊆
Xr+1 of the orbit of x̄ under g(h) has form g(h(0))x̄ + R-span

(

Q(h)−Q(h(0))
)

mod 1.
Since g(h(0))x̄ ∈ Hx and R-span

(

Q(h) − Q(h(0))
)

= R-span Q by Lemma 2.3, we obtain
Kx = Hx. Hence,

⋃

n∈Z
g(h(n))∆Xr+1 =

⋃

x∈X

Kx =
⋃

x∈X

Hx = H.

We may now strengthen Proposition 6.1:

Proposition 6.11. Let W (P ) ≤ k and let f0, . . . , fr ∈ L∞(X). For any nonconstant
integral polynomial h one has

UC-lim
n

∫

X
f0 · T p1(h(n))f1 · . . . · T pr(h(n))fr dµX

= UC-lim
n

∫

Xk−1

E(f0|Xk−1) · T p1(h(n))E(f1|Xk−1) · . . . · T pr(h(n))E(fr|Xk−1) dµXk−1 .

Applying this to fi = 1Ai , we get

Proposition 6.12. Let W (P ) ≤ k and let A0, . . . , Ar be measurable subsets of X inde-
pendent of Xk−1. For any nonconstant integral polynomial h one has

UC-lim
n

µX
(

A0 ∩ T−p1(h(n))A1 ∩ . . . ∩ T−pr(h(n))Ar
)

=
r

∏

i=0

µX(Ai).

When W (P ) < k, Lemma 6.6 immediately implies:

Proposition 6.13. If W (P ) < k and A0, . . . , Ar are measurable subsets of X independent
of Xk−1, then for any nonconstant integral polynomial h one has

lim
n→∞

µX
(

A0 ∩ T−p1(h(n))A1 ∩ . . . ∩ T−pr(h(n))Ar
)

=
r

∏

i=0

µX(Ai).

(We will no longer deal with functions on X but only with subsets of X, though our
statements can, of course, be easily reformulated in the language of functions.) Assuming
that X has depth k, directly from Lemma 6.10 we get
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Proposition 6.14. Let V (P ) ≤ k and let Ai = Xk−1 × Ii, i = 0, . . . , r, where I0, . . . , Ir

are subsets of Fk of positive measure. Then for any nonconstant integral polynomial h,

UC-lim
n

µX
(

A0 ∩ T−p1(h(n))A1 ∩ . . . ∩ T−pr(h(n))Ar
)

> 0.

Let m ≥ 2 and Zm = Z/mZ. We will now investigate the non-connected Weyl system
(Y, R) where Y = X × Zm and R:Y −→ Y is defined by R(x, j) = (Tx, j + 1); for further
generality, we will also add, when possible, “shifting constants” ci in the formulation of
our results:

Proposition 6.15. Let W (P ) ≤ k, and let B be a measurable subset of Y independent
of Xk−1 × Zm. Then for any nonconstant integral polynomial h and any c1, . . . , cr ∈ Z,

UC-lim
n

µY
(

B ∩R−p1(h(n))−c1B ∩ . . . ∩R−pr(h(n))−crB
)

= µY (B)r+1.

Proof. Let B =
⋃

j∈Zm
(Aj × {j}). Then A0, . . . , Am−1 are independent of Xk−1, and

µX(A0) = . . . = µX(Am−1) = µY (B). Put Bj = Aj × {j}, j ∈ Zm.
For l ∈ {0, . . . , m − 1}, consider the system P (h(mn + l) =

{

p1(h(mn + l)) +
c1, . . . , pr(h(mn + l)) + cr

}

of polynomials in the variable n. For any i and j,
R−pi(h(mn+l))−ciBj ⊆ X × {j − di} for all n ∈ Z, where di = pi(h(l)) + ci mod m. Thus,
for j0, j1, . . . , jr ∈ Zm, if ji = j0 + di for all i = 0, . . . , r then by Proposition 6.12

UC-lim
n

µY
(

Bj0 ∩R−p1(h(mn+l))−c1Bj1 ∩ . . . ∩R−pr(h(mn+l))−crBjr

)

= 1
m UC-lim

n
µX

(

Aj0 ∩ T−p1(h(mn+l))−c1Aj1 ∩ . . . ∩ T−pr(h(mn+l))−crAjr

)

= 1
m UC-lim

n
µX

(

Aj0 ∩ T−p1(h(mn+l))(T−c1Aj1) ∩ . . . ∩ T−pr(h(mn+l))(T−crAjr )
)

= 1
m

r
∏

i=0

µX(T−ciAji) = 1
m

r
∏

i=0

µX(Aji) = 1
mµY (B)r+1,

and otherwise Bj0 ∩R−p1(h(mn+l))−c1Bj1 ∩ . . . ∩R−pr(h(mn+l))−crBjr = ∅ for all n. Thus,

UC-lim
n

µY
(

B ∩R−p1(h(mn+l))−c1B ∩ . . . ∩R−pr(h(mn+l))−crB
)

=
∑

j0,...,jr∈Zm

UC-lim
n

µY
(

Bj0 ∩R−p1(h(mn+l))−c1Bj1 ∩ . . . ∩R−pr(h(mn+l))−crBjr

)

=
∑

j0∈Zm

UC-lim
n

µY
(

Bj0 ∩R−p1(h(mn+l))−c1Bj0+d1 ∩ . . . ∩R−pr(h(mn+l))−crBj0+dr

)

= m · 1
mµY (B)r+1 = µY (B)r+1.

Since this is true for every l = 0, 1, . . . , m− 1, we get

UC-lim
n

µY
(

B ∩R−p1(h(n))−c1B ∩ . . . ∩R−pr(h(n))−crB
)

= µY (B)r+1.

Remark. A similar proof allows one to get a more general result:
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Proposition 6.16. Let W (P ) ≤ k, and let B(0), . . . , B(r) be measurable subsets of Y
independent of Xk−1 × Zm. Then for any nonconstant integral polynomial h

UC-lim
n

µY
(

B(0) ∩R−p1(h(n))B(1) ∩ . . . ∩R−pr(h(n))B(r)
)

=
r

∏

i=0

µY (B(i)).

(This proposition gives Proposition 6.15 if we apply it to B(0) = B and B(i) = R−ciB,
i = 1, . . . , r.) Same remark applies also to Proposition 6.17 and, with certain modifications,
to Proposition 6.18 below.

If in the proof of Proposition 6.15 we replace UC-lim by lim and Proposition 6.12 by
Proposition 6.13, we get

Proposition 6.17. If W (P ) < k and B is a measurable subset of Y independent of
Xk−1 × Zm, then for any nonconstant integral polynomial h and any c1, . . . , cr ∈ Z,

lim
n→∞

µY
(

B ∩R−p1(h(n))−c1B ∩ . . . ∩R−pr(h(n))−crB
)

= µY (B)r+1.

In the notation of Proposition 6.15, assume now that V (P ) ≤ k, X has depth k and
B =

⋃

j∈Zm
Bj =

⋃

j∈Zm
(Aj×{j}) where each Aj has form Xk−1×Ij for Ij ⊆ Fk, j ∈ Zm,

of positive measure. Then, in the same way, we obtain from Proposition 6.14

Proposition 6.18. For any nonconstant integral polynomial h,

UC-lim
n

µY
(

B ∩R−p1(h(n))B ∩ . . . ∩R−pr(h(n))B
)

> 0.

7. Combinatorics

Let E ⊆ Z with UD(E) > 0 (that is, the uniform density UD(E) exists and is positive)
and let P = {p1, . . . , pr} be a system of integral polynomials (with not necessarily zero
constant term). For n ∈ Z, define

En =
{

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
}

= E ∩ (E − p1(n)) ∩ . . . ∩ (E − pr(n)).

Recall that E is UC-positive with respect to P if UC-lim
n

UD(En) > 0; that E is UC-

balanced with respect to P if UC-lim
n

UD(En) = UD(E)r+1; and that E is balanced with

respect to P if limn→∞ UD(En) = UD(E)r+1.
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Theorem 7.1. For any k ∈ N and any system {p1, . . . , pr} of integral polynomials with
zero constant term and with V (p1, . . . , pr) > k, there is a set E ⊂ Z of positive uniform
density such that
(i) for any system of integral polynomials {q1, . . . , qs} with zero constant term and with
V (q1, . . . , qs) ≤ k and any nonconstant integral polynomial h the set E is UC-positive with
respect to the system

{

q1(h(n)), . . . , qs(h(n))
}

;
(ii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) ≤ k, any nonconstant integral polynomial h and any integers c1, . . . , cs the
set E is UC-balanced with respect to the system

{

q1(h(n)) + c1, . . . , qs(h(n)) + cs
}

;
(iii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < k, any nonconstant integral polynomial h and any integers c1, . . . , cs the
set E is balanced with respect to the system

{

q1(h(n)) + c1, . . . , qs(h(n)) + cs
}

;
(iv) there exist nonzero integers m and l such that E contains no configuration of the form
{

a, a + p1(mn + l), . . . , a + pr(mn + l)
}

, a, n ∈ Z.

It is possible to characterize the pairs (m, l) that work for (iv). For fixed m and l,
consider the vectors uj = (u(0)

j , . . . , u(r)
j ) ∈ Rr+1, j = 0, . . . ,m − 1, where u(i)

j = 1 if

pi(l) ≡ j mod m and u(i)
j = 0 otherwise; we assume here p0 = 0. Let us say that the pair

(m, l) separates p1, . . . , pr on the level k if uj 6∈ R-span





1 0 0 ... 0
1 p1 p2

1 ... pk
1... ... ... ...

1 pr p2
r ... pk

r



 for some j. This may

only be the case when k < V (p1, . . . , pr). On the other hand, for m large enough there
exists l such that 0, p1(l), . . . , pr(l) are all different modulo m, and then the pair (m, l)
separates p1, . . . , pr on the level k for all k < V (p1, . . . , pr).

Example. For the system {x, x2, x + x2, x + 2x2}, m = 2 and l = 1 we have u0 =

(1
0
0
1
0

)

and u1 =

(0
1
1
0
1

)

. Since

u0 6∈ R-span





1 0
1 x
1 x2

1 x+x2

1 x+2x2



 = span

(1 0 0
1 1 0
1 0 1
1 1 1
1 1 2

)

,

the pair (2, 1) separates x, x2, x + x2, x + 2x2 on the level 1.

For the same system and (m, l) = (3, 1) we have u0 =

(1
0
0
0
1

)

, u1 =

(0
1
1
0
0

)

, u2 =

(0
0
0
1
0

)

,

and so, the pair (3, 1) also separates x, x2, x + x2, x + 2x2 on the level 1.

We may now strengthen Theorem 7.1:

Theorem 7.2. For any k ∈ N, any system {p1, . . . , pr} of integral polynomials with zero
constant term and with V (p1, . . . , pr) > k, and any integers m, l1, . . . , lν such that each
of the pairs (m, l1),. . .,(m, lν) separates p1, . . . , pr on the level k there is a set E ⊂ Z of
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positive uniform density such that
(i), (ii), (iii) as in Theorem 7.1;
(iv) E contains no configuration of the form

{

a, a + p1(mn + l), . . . , a + pr(mn + l)
}

,
a, n ∈ Z, with l ∈ {l1, . . . , lν}.

Example. Consider the system {x, 2x, . . . , rx}. The Vandermonde complexity of this

system equals r, and R-span







1 0 0 ... 0
1 p1 p2

1 ... pr−1
1

1 p2 p2
2 ... pr−1

2... ... ... ...
1 pr p2

r ... pr−1
r





 = span





1 0 0 ... 0
1 1 1 ... 1
1 2 22 ... 2r−1
... ... ... ...
1 r r2 ... rr−1



 is the hyperplane

described by the equation
∑r

i=0(−1)i
(r

i

)

u(i) = 0. For m = 2 and l = 1, the vector
u0 = (1, 0, 1, 0, . . . , 1or0) is not contained in this hyperplane, and thus the pair (2, 1)
separates the polynomials x, 2x, . . . , rx on the level r − 1. Actually, the following holds:

Lemma 7.3. For any r,m, l with l not divisible by m, the pair (m, l) separates the poly-
nomials x, 2x, . . . , rx on the level r − 1.

Proof. For any m and any l not divisible by m, the nonzero vectors ui corresponding to
these m, l and the system {x, 2x, . . . , rx} are



















1
0...
0
1
0...
0
1
0...



















,



















0
1
0...
0
1
0...
0
1...



















, . . .



















0
0...
0
1
0...
0
1
0...



















;

they are periodic with same distance b = m/ gcd(l,m) between “1”s. We therefore have
to check that for some j ∈ {0, . . . , b− 1} the number ej =

∑

0≤i≤r
i≡j mod b

(−1)i
(r

i

)

is nonzero.

Let λ be a primitive root of unity of degree b; then we have

0 6= (λ− 1)r =
r

∑

i=0

(−1)i(r
i

)

λr−i =
b−1
∑

j=0

∑

0≤i≤r
i≡j mod b

(−1)i(r
i

)

λr−j =
b−1
∑

j=0

ejλr−j ,

and thus one of ej must be nonzero.

Since V (x, 2x, . . . , rx) = r, we obtain:

Corollary 7.4. For any r,m ≥ 2 there is a set E ⊂ Z of positive uniform density such
that
(i) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
V (q1, . . . , qs) ≤ r− 1 and any nonconstant integral polynomial h, the set E is UC-positive
with respect to the system

{

q1(h(n)), . . . , qs(h(n))
}

;
(ii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) ≤ r − 1, any nonconstant integral polynomial h and any integers c1, . . . , cs,
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the set E is UC-balanced with respect to the system
{

q1(h(n)) + c1, . . . , qs(h(n)) + cs
}

;
(iii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < r − 1, any nonconstant integral polynomial h and any integers c1, . . . , cs,
the set E is balanced with respect to the system

{

q1(h(n)) + c1, . . . , qs(h(n)) + cs
}

;
(iv) E contains no arithmetic progressions of the form

{

a, a+(mn+ l), . . . , a+r(mn+ l)
}

,
a, n, l ∈ Z, with l not divisible by m.

Let {p1, . . . , pr} be a system of integral polynomials with zero constant term and
with V (p1, . . . , pr) > k and let integers m, l1, . . . , lν be such that each of the pairs
(m, l1),. . .,(m, lν) separates these polynomials on the level k. Consider the system (Y, R)
introduced at the end of the previous section, namely, Y = X×Zm and R(x, i) = (Tx, i+1),
where (X, T ) is a quasi-standard Weyl system of depth k. We keep the notation of the
preceding section. Let, again, B =

⋃

j∈Zm
Bj =

⋃

j∈Zm
(Aj × {j}) where Aj = Xk−1 × Ij ,

Ij are open intervals in Fk, j ∈ Zm. The dynamical reason for Theorem 7.2 being true is
the following proposition:

Proposition 7.5. The intervals Ij can be chosen so that B ∩ R−p1(mn+l)B ∩ . . . ∩
R−pr(mn+l)B = ∅ for all n ∈ Z and all l = l1, . . . , lν .

Proof. Let l be one of l1, . . . , lν Let di = pi(l)mod m ∈ Zm, i = 0, . . . , r. Let uj =
(u(0)

j , . . . , u(r)
j ) ∈ Rr+1, j ∈ Zm, where u(i)

j = 1 if di ≡ j and u(i)
j = 0 otherwise. We have

U = span(uj , j ∈ Zm) mod 1 =
{

∑

j∈Zm

ujtj , tj ∈ T
}

=
{

(t0, td1 , . . . , tdr ), tj ∈ T, j ∈ Zm
}

⊆ Tr+1.

Since (m, l) separates {p1, . . . , pr} on the level k, U is not contained in the subtorus
τ r+1
k (H) of F r+1

k (where τk is, again, the projection of X to Fk, and where we identify Fk

with T). Hence, the preimage of τ r+1
k (H) in Tm under the mapping (t0, t1, . . . , tm−1) 7→

(t0, td1 , . . . , tdr ) ∈ F r+1
k is a proper subtorus of Tm, so it is “negligible” in Tm. Thus, there

exist elements tj ∈ T for j ∈ Zm, such that not only (t0, td1 , . . . , tdr ) 6∈ τ r+1
k (H), but also

(tσ(0), tσ(d1), . . . , tσ(dr)) 6∈ τ r+1
k (H) for any permutation σ of Zm. Moreover, tj , j ∈ Zm,

can be chosen so that this will hold for each l = l1, . . . , lν . Put Ij = (tj−δ, tj+δ) ⊂ T = Fk,
j ∈ Zm, where δ > 0 is small enough to ensure Iσ(0) × Iσ(d1) × . . .× Iσ(dr) ∩ τ r+1

k (H) = ∅
for all σ, and, again, for any choice of l ∈ {l1, . . . , lν}. Now define Aj = Xk−1 × Ij ⊂ X.
Then for any permutation σ of Zm, Aσ(0) ×Aσ(d1) × . . .×Aσ(dr) ∩H = ∅.

Let l ∈ {l1, . . . , lν}. Put Bj = Aj × {j} ⊂ Y , j ∈ Zm, and B =
⋃

j∈Zm
Bj . Let ∆Y r+1

be the diagonal in Y r+1. One has B ∩R−p1(mn+l)B ∩ . . .∩R−pr(mn+l)B = ∅ for all n ∈ Z

if Br+1 ∩

( IdY

Rp1(mn+l)
...

Rpr(mn+l)

)

∆Y r+1 = ∅ for all n ∈ Z. Let K =
⋃

n∈Z

( IdY

Rp1(mn+l)
...

Rpr(mn+l)

)

∆Y r+1 . Put

z̄ = (z, . . . , z) ∈ (Zm)r+1 and ∆z = ∆Xr+1 × z̄, z ∈ Zm. Then ∆Y r+1 =
⋃

z∈Zm
∆z and

K =
⋃

z∈Zm
Hz, where Hz =

⋃

n∈Z

( IdY

Rp1(mn+l)
...

Rpr(mn+l)

)

∆z, z ∈ Zm. By Lemma 6.10, for each
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z ∈ Zm, Hz = H × (z, d1 + z, . . . , dr + z), and so

Br+1 ∩Hz =
(

Bz ×Bd1+z × . . .×Bdr+z
)

∩Hz

=
(

(

Az ×Ad1+z × . . .×Adr+z
)

∩H
)

× (z, d1 + z, . . . , dr + z) = ∅.

Example. Consider the polynomial system {x, 2x, 3x, 4x}. We have V (x, 2x, 3x, 4x) = 4,
and the pair (2, 1) separates x, 2x, 3x, 4x on the level 3. (Indeed, the vectors u0 =

(1, 0, 1, 0, 1) and u1 = (0, 1, 0, 1, 0) are not contained in R-span







1 0 0 0
1 x x2 x3

1 2x (2x)2 (2x)3

1 3x (3x)2 (3x)3

1 4x (4x)2 (4x)3





 =

span

(1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64

)

.)

Consider the Weyl system (Y,R) where Y = X×Z2 with X = T3 and R(x1, x2, x3, i) =
(x1 + α, x2 + x1, x3 + x2, i + 1) with an irrational α. For this system we have

τ5
3 (H) = R-span







1 0 0 0
1 x x[2] x[3]

1 2x (2x)[2] (2x)[3]

1 3x (3x)[2] (3x)[3]

1 4x (4x)[2] (4x)[3]





 = R-span







1 0 0 0
1 x x2 x3

1 2x (2x)2 (2x)3

1 3x (3x)2 (3x)3

1 4x (4x)2 (4x)3





 = span

(1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64

)

⊂ F 5
3 = T5.

The space U = span{u0, u1} = span

(1 0
0 1
1 0
0 1
1 0

)

=











t0
t1
t0
t1
t0



, t0, t1 ∈ T







is not contained in

τ5
3 (H), thus we can choose t0, t1 ∈ T such that





t0
t1
t0
t1
t0



,





t1
t0
t1
t0
t1



 6∈ τ5
3 (H) (this is so when

t0 6= t1). Next we choose δ > 0 such that for I0 = (t0 − δ, t0 + δ) and I1 = (t1 − δ, t1 + δ)
one has

(

I0 × I1 × I0 × I1 × I0
)

∩ τ5
3 (H) = ∅ and

(

I1 × I0 × I1 × I0 × I1
)

∩ τ5
3 (H) = ∅.

For A0 = X2×I0 ⊂ X and A1 = X2×I1 ⊂ X we then have
(

A0×A1×A0×A1×A0
)

∩H = ∅
and

(

A1×A0×A1×A0×A1
)

∩H = ∅. Finally, we put B = (A0×{0})∪ (A1×{1}) ⊂ Y .

Let now K =
⋃







IdY

R2n+1

R2(2n+1)

R3(2n+1)

R4(2n+1)





∆Y r+1 ⊂ Y 5 = X5 × Z5
2. Then K = H0 ∪ H1 where

H0 = H × {0, 1, 0, 1, 0} and H1 = H × {1, 0, 1, 0, 1}. Since

B5 ∩
(

X5 × {0, 1, 0, 1, 0}
)

=
(

A0 ×A1 ×A0 ×A1 ×A0
)

× {0, 1, 0, 1, 0}
and B5 ∩

(

X5 × {1, 0, 1, 0, 1}
)

=
(

A1 ×A0 ×A1 ×A0 ×A1
)

× {1, 0, 1, 0, 1},

we obtain B5 ∩ K = ∅. This implies B ∩ R−(2n+1)B ∩ R−2(2n+1)B ∩ R−3(2n+1)B ∩
R−4(2n+1)B = ∅ for all n ∈ Z.
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Proof of Theorem 7.2. In the notation of Proposition 7.5, take any point y ∈ Y . Since
(Y, R) is an ergodic Weyl system, it is uniquely ergodic and so, UD

({

a ∈ Z : Ray ∈ C
})

=
µY (C) for any open C ⊆ Y with µY (∂C) = 0. Define E =

{

a ∈ Z : Ray ∈ B
}

. Then
UD(E) = µY (B) > 0, and for any s ∈ N and a, c1, . . . , cs ∈ Z one has a, a+c1, . . . , a+cs ∈
E iff Ray, Ra+c1y, . . . , Ra+csy ∈ B iff Ray ∈ B ∩R−c1B ∩ . . . ∩R−csB.

Since B ∩R−p1(mn+l)B ∩ . . .∩R−pr(mn+l)B = ∅ for all n ∈ Z and l ∈ {l1, . . . , lν}, the
set E does not contain configurations of the form a, a + p1(mn + l), . . . , a + pr(mn + l).

Let {q1, . . . , qs} be a system of integral polynomials with zero constant term. Let
W (q1, . . . , qs) ≤ k, let h be a nonconstant integral polynomial, and let c1, . . . , cs ∈ Z. By
Proposition 6.15

UC-lim
n

µY
(

B ∩R−q1(h(n))−c1B ∩ . . . ∩R−qs(h(n))−csB
)

= µY (B)s+1.

For n ∈ Z put En =
{

a ∈ Z : a, a + q1(h(n)) + c1, . . . , a + qs(h(n)) + cs ∈ E
}

. We have
UD(En) = µY

(

B ∩ R−q1(h(n))−c1B ∩ . . . ∩ R−qs(h(n))−csB
)

, and so, UC-lim
n

UD(En) =

µY (B)s+1 = UD(E)s+1.
If W (q1, . . . , qs) < k, then by Proposition 6.17 we obtain limn→∞ UD(En) =

µY (B)s+1 = UD(E)s+1.
Finally, let V (q1, . . . , qs) ≤ k, and let h be a nonconstant integral polynomial. Put

En =
{

a ∈ Z : a, a + q1(h(n)), . . . , a + qs(h(n)) ∈ E
}

, n ∈ Z. By Proposition 6.18,

UC-lim
n

UD(En) = UC-lim
n

µY
(

B ∩R−q1(h(n))B ∩ . . . ∩R−qs(h(n))B
)

> 0.
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