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Abstract. We introduce methods that allow us to derive continuous-time versions of various
discrete-time ergodic theorems. We then illustrate these methods by giving simple proofs
and refinements of some known results as well as establishing new results of interest.

1. Introduction
The goal of this paper is to introduce methods that allow one to obtain continuous-time
versions of various discrete-time ergodic results. While the classical von Neumann’s and
Birkhoff’s ergodic theorems were dealing with continuous families of invertible measure-
preserving transformations, it was very soon observed that ergodic theorems for Z-actions
hold true as well, are somewhat easier to handle, and, moreover, can be used as an
auxiliary tool for the derivation of the corresponding continuous-time results. (See,
for example, the formulation of the so-called Birkhoff’s fundamental lemma in [BiKo].
See also [Ko] and [H, §8].) Moreover, since not every measure-preserving Z-action
imbeds in a continuous measure-preserving R-flow, and since there are various important
classes of non-invertible measure-preserving transformations, it became, over the years,
more fashionable to study ergodic theorems for measure-preserving Z- and N-actions.
Numerous multiple recurrence and convergence results obtained in the framework of the
ergodic Ramsey theory also focused (mainly due to combinatorial and number theoretical
applications) on Z-actions and, more generally, actions of various discrete semigroups.
There are, however, questions in modern ergodic theory pertaining to measure-
preserving R-actions that naturally present themselves and are connected with interesting
applications but do not seem to easily follow from the corresponding results for Z-actions.
To better explain our point, let us consider some examples. We start with the R-version
of von Neumann’s ergodic theorem [vN]: if T7, r € R, is an ergodic one-parameter group
of measure-preserving transformations of a probability measure space (X, u), then, for
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any f e L2(X), limp_q—oo(1/(b — a))ff T'fdt= [y fdutin L2(X). An easy trick
shows that this result immediately follows from the corresponding theorem for Z-actions,
which says that if 7' is an invertible ergodic measure-preserving transformation of a
probability measure space (X, u), then, for any f € L2(X ),

N
> T"f:/xfdu in L2(X).

n=M+1

lim
N-M—oo N — M

Indeed, all one has to do is to apply the Z-version of von Neumann’s theorem to the
function f = fol T'f dt and the transformation T'!, utilizing the fact that, for any a, b € R,

[b]—1

/det Y rf- der+/ T'f dt.

n=[a]

(The R-version of Birkhoff’s pointwise ergodic theorem can be derived from its Z-version
in a similar way.) This argument is no longer applicable to ‘multiple ergodic averages’

b
: / Ty T'f, dt, (1)
b—a J,

where r > 2, @; € R, and f; € L°°(X); however, it can be modified so that one is still
able to show that the averages (1) converge in L?-norm as b —a —> oo as long as it is
known that for arbitrarily small u > O the averages (1/(N — M ))Z;\'= M1 TO e
TYH"f. converge as N — M — oo. (See, for example, [Aul].) Indeed, given ¢ > 0,

find § > 0 such that |T%'f — f|| <& for all ¢t € (0, §), where || -| = - l22x); then,
assuming without loss of generality thatsup | f;| <1,i =1, ..., r, wehave, forany ¢ € R,
|Tef; — Ted/o)f; | <e,i=1,...,r andso
HT(l,[f l_[TOI,S[T/Blf <re.
i=1
Hence,
1 [b/5]1-1 r
hm sup H— / TY'f; dt — ———— Tedng,
a0 1_! l [b/8]1—la/s] :[ZM 11 ’
1 /811 (m+1)8 _r r 5
< li T — | | T%°Mf; || dt
<gmen (20 8 [ | T -TTres]
n=[a/é§] i=1 i=1
1 a r b r
TY'f; ’ TY'f, H dz) <re.
b—a Jasislli_] l b—a Jips1s ,11 l
Since

lim Z l_[ Ta,c?n A
N-M—co N — Mn =M+1i=1

+ Here and below, T'f (w) = f(T'w), t € R, w € X, and the integral [f T'f dt is understood in the sense of
Bochner.
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exists in L>(X), and since ¢ is arbitrary, we get that

|
—_— TY'f; dt
b—a—so00 b —a a zl:! fl
also exists.
However, even this argument stops working if we consider, say, the ‘polynomial
averages’ (1/(b — a)) fah TP®Ff dt, where p is a polynomial or, more generally, the
‘polynomial multiple averages’

1 b
b—a / TPOf TP, ar, @)
a

where p; are polynomials, since in this case the function ¢(t) = TPOFf from R to L2(X)

is no longer uniformly continuous. The convergence of the corresponding discrete-time
averages

1 N

TP1(m) e T Pr () . 3
~ ,,:%1 f 7 (3)
is known (see [HoK?2, L3]) but, to establish the convergence in L2(X) of the averages (2),
one either has to go through all the main stages of the proof of the convergence
of averages (3) and verify the validity of the corresponding R-statements (see, for
example, [P], where the existence of the non-uniform limits (1/b) fob TPOf ..
TPr(Of, drt is established), or may try to find some alternative general method connecting
the convergence of discrete- and continuous-time averages. (Yet another approach to
proving convergence of multiple polynomial averages, utilized in [Au2], is based on a
‘change of variables’ trick and usage of equivalent methods of summation; this method
allows one to treat expressions like

where T; are commuting measure-preserving transformations. However, this method gives
no information about what the limits of such averages are and, also, it is not clear whether
it can be extended to obtain convergence of uniform averages (2).)

As another example where a passage from a discrete to a continuous setup is desirable
but not a priori obvious, let us mention the problem of the study of the distribution of
values of generalized polynomials. A generalized polynomial is a function that is obtained
from conventional polynomials of one or several variables by applying the operations of
taking the integer part, addition, and multiplication; for example, if p; (x) are conventional
polynomials, then

u(x) = [p1()1p2(x) + p3(x)1pa(x) + [ps(x)[pe(x)11* p7(x)

is a generalized polynomial. It was shown in [BL] that the values of any bounded vector-
valued generalized polynomial of integer argument are well distributed on a piecewise
polynomial surface, with respect to a natural measure on this surface. The proof was based
on the theorem on well distribution of polynomial orbits on nilmanifolds; since such a
theorem for continuous polynomial flows on nilmanifolds was not known at the time of
writing [BL], we could not prove that bounded generalized polynomials of continuous
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argument are well distributed on piecewise polynomial surfaces. (See [BL, Theorem B.].
As a matter of fact, the problem of extending the results from [BL] to the case of continuous
parameters served as an impetus for the present paper.)

In this paper we introduce two simple but quite general methods that allow one to deduce
continuous-time ergodic theorems from their discrete-time counterparts. To deliver the
zest of these methods, we will formulate now two easy to state theorems. Let F(¢) be
a bounded measurable function from [0, co) to a Banach space. (In our applications, F
will usually be ‘an ergodic expression’ that depends on a continuous parameter ¢ and takes
values in a functional space, say F(t) = Tltfl ----- Tk‘fk e LY(X), t € [0, 00), where T;
are one-parameter groups of measure-preserving transformations of a measure space X
and f; € L*°(X).)

PROPOSITION 1.1. (Additive method) If the limit limN_wo(l/N)Z,’;’:’O1 F(t+n)=A;

exists for almost every t € [0, 1), then the limit limb_>oo(1/b)f0b F(t) dt also exists and
1
equals [, A; dt.

PROPOSITION 1.2. (Multiplicative method) If the limit limy_—, oo(1/N)Y V"' F(nt) =
L, exists for almost every t € (0, 1), then the limit L = lim;,_mo(l/b)fob F(t)dt also
exists and, moreover, Ly = L for almost every t € (0, 1].

Each of these ‘methods’ has its pros and cons. The ‘additive’ method is very easy
to substantiate. However, it has the disadvantage that, being non-homogeneous, it
‘desynchronizes’ the expression F (), which may be an obstacle for certain applications.

Consider, for example, the expression F (1) =T/f - - - - - T!f appearing in the formulation
of the R-version of the ergodic Szemerédi theorem (see §8.4 below). In this case, F (¢ + n)
= Tl"fl ----- Tk”fk, where f; = Ti’ f,i=1,...,k, are, generally speaking, distinct

functions, which complicates application of the ‘discrete’ ergodic Szemerédi theorem. The
‘multiplicative method’ is quite a bit harder to establish, but it preserves the ‘structure’
of F(1): for F()=T[f ----- T!f, we now have F(nt)=(T)"f----- (TH"f. An
additional advantage of the multiplicative method is that it guarantees the equality of
almost all ‘discrete’ limits L;, and therefore gives more information about the ‘continuous’
limit L. (See Theorem 8.11 below.)

When it comes to convergence on average, there are many types of it (uniform, strong
Cesaro, etc) which naturally appear in various situations in classical analysis, number
theory, and ergodic theory, and for each of them one can provide a statement that connects
discrete and continuous averages. We therefore present several similar results; their proofs
are based on similar ideas, but utilizing these ideas in diverse situations we obtain a variety
of useful theorems. Here is the descriptive list of various kinds of averaging schemes we
will be dealing with. (In what follows, V stands for an abstract Banach space.)

e One-parameter standard Cesaro limits. The Cesaro limit of a sequence (v,) in V
is limN_mo(l/N)Zf:/:] v, and, for a measurable function f:[0, co) — V, it is
. b

limy_, oo (1/b) [y f(x) dx.

e One-parameter uniform Cesaro limits. The uniform Cesaro limit for a sequence
(vp) In V is limy_py—soc(1/(N — M))Z,I,V:MH v, and, for a measurable function

£ 110, 00) —> V,itis limp—g—oo(1/(b — a)) [7 £ (x) dx.
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(The ‘one-parameter averaging schemes’ above are, of course, a special case of the
corresponding ‘multiparameter schemes’ below, but we start with the one-parameter case
to make our proofs more transparent.)

An N¢-sequence (v,) in V is a mapping N — V, n > v,. For a parallelepiped P =
]—[?=1 la;, b;] C RY, we define [(P) = min|<;<4(b; — a;) and w(P) = H?:l (b; — a;).

e Multiparameter standard Cesaro limits. The Cesaro limit of an N¢ -sequence (v,) in V
is lim;(p)— 0o (1/W(P))Y_, cndnp Vn and, for a measurable function f : [0, 00)? — V,
it is liml(p)_wo(l/w(P))fP f(x)dx, where, in both cases, P runs over the set of
parallelepipeds of the form ]_[51=1 [0, b;]in [0, c0)?.

e Multiparameter uniform Cesaro limits. The uniform Cesaro limit of an N-sequence (v,,)
inVis liml(p)_,oo(l/w(P))ZnezdﬂP v, and, for a measurable function f : [0, 00)d —>
V,itis liml(p)_mo(l/w(P))fP f(x) dx, where, in both cases, P runs over the set of
parallelepipeds of the form ]_[jl=1 [a;, bi]in [0, c0)4.

e Two-sided (or, rather, all-sided) standard and uniform Cesaro limits. Instead of
N¢-sequences, functions on [0, 00)?, and parallelepipeds in [0, c0)¢, we deal with
74-sequences, functions on R¢, and parallelepipeds in R¥.

e Limits of averages along general Fglner sequences. Instead of averaging over
parallelepipeds of the form P = ]_[?: 1lai, bil, we consider averages over elements of a
general Fglner sequence (CIJI\/)‘fV"=1 in RY, limN_mo(l/w(CDN))fq)N f(x)dx, where w
stands for the Lebesgue measure on RY.

e Liminf and limsup versions for standard and uniform averages. When the limits above
do not (or are not known to) exist, but (v,) is a real-valued sequence and f is a real-valued
function, we consider the corresponding liminfs and limsups.

o Lim-limsup versions. If the limits limy_, oo (1/N )Z,}:/;Ol F (nt) do not, or are not known

to, exist, it may still be possible that for some L € V,

lim lim sup
t—0" N—o0

1 N-—1
-3 F(nt)—LH =0;
N n=0

it turns out that this suffices for the multiplicative method to work.

After proving several versions of Propositions 1.1 and 1.2, corresponding to different
averaging schemes, we will apply them to re-prove some known and establish some new
ergodic-theoretical results; here is a list of the applications that we obtain in §8.

o In §8.1, we show that characteristic factors for averages of the form

1

TPOf L TPrOf dr, 4)
w@m Jo, 7 &

where T',t€R, is a continuous one-parameter group of measure-preserving
transformations of a probability measure space X, p; are polynomials R — R, f; €
L*°(X), and (dy) is a Fglner sequence in R4, are Host—Kra—Ziegler factors of X. (A
non-uniform version of this result was obtained in [P].)
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o In §8.2, we prove that, for any d € N, a d-parameter polynomial flow on a nilmanifold
X is well distributed on a subnilmanifold of X. (This result is new and refines the fact that
any such flow is uniformly distributed in a subnilmanifold of X.)

o In §8.3, we prove the convergence of averages (4). (This result is new, strengthening
the results obtained in [P] and the one-parameter case of the results obtained in [Au2].)
We also prove that the averages (1/(b — a)) fab Tifi----- T! dt converge, where T; are
pairwise-commuting measure-preserving transformations. (This strengthens the linear
case of the results obtained in [Au2].)

o In §8.4, we obtain a continuous-time version of the polynomial ergodic Szemerédi
theorem.

o In §8.5, we prove that the values of bounded vector-valued generalized polynomials are
well distributed on a piecewise polynomial surface. This establishes the continuous version
of the well-distribution result from [BL] that we discussed above.

o In §8.6, we derive, from the corresponding discrete-time results in [BK, F], convergence
of multiple averages (2) with p; being functions of polynomial growth.

o Finally, in §8.7, we apply our methods to obtain continuous-time theorems dealing with
almost-everywhere convergence of certain ergodic averages.

2. A Fatou lemma and a dominated convergence theorem
Throughout §§2—7, V stands for a separable Banach space. We will repeatedly use the
following Fatou-like lemma and its corollary.

LEMMA 2.1. Let (X, (1) be a finite measure space and let ( f,) be a sequence of uniformly
bounded measurable functions from X to V. Then

fxfn du

Proof. Let M > 0 be such that || f,(x)|| < M for all x € X and n € N, and let s(x) =
limsup,__, o | fn(x)l, x € X. Fix ¢ >0. For each x € X, let n(x) € N be such that
I/l <s(x)+ ¢ forall n >n(x). Foreachn e N, let A, = {x € X : n(x) <n}. Then
A CAC--- and U2, An =X, so lim,—, o u(X\A,) =0. Let N be such that
W(X\Ay) < e. Then, foranyn > N,

’/andu S/XIIfnll duz/AN ||fn||du+/X\A[|\|/fn|| du

< (s+e)du+ Me
AN

< / sdp+e(u(X)+ M).
X

lim sup
n—-oQ

< / lim sup |1, | dps.
X

n—-oo

Since this is true for any positive ¢, || [y fu dull < [y s dp. O
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As a corollary, we get the following lemma.

LEMMA 2.2. Let (X, ) be a finite measure space. If a sequence (f,) of uniformly
bounded measurable functions from X to V converges to a function f : X —> V almost
everywhere on X, then fX fodp — fX fdu.

Remark. Of course, a more general dominated convergence theorem, where the || f,,|| are
not assumed to be bounded but only dominated by an integrable function, like in the
case of real-valued functions, also holds, but we will only need its special case given by
Lemma 2.2.

3. Additive method
When a and b are positive real numbers, we define

b Z v, ifa<b,
Z v, = { ne(a,h]NN

n>a 0 ifa>b.

3.1. Standard Cesaro limits.

THEOREM 3.1. Let f :[0, 00) —> V be a bounded measurable function such that the
limit

z= 11m Zf(t—l—n)

n>0
exists for almost every t € [0, 1]. Then limb_mo(l/b)fob f(x) dx also exists and is equal
1
10 [y A dt.

Proof. We may assume that the parameter b is an integer. For any b € N, we have

1 b lb—l 1 1 b 1
—/ f(x)dx:—Z/ ft+n)dt = / Zf(t—i—n)dt
b 0 bn=0 0

Since, for almost every ¢ € [0, 1], (l/b)Zn 0f(t~|—n) dt — A; as b —> 00, by
Lemma 2.2,

1 b 1
lim —/ f(x)dx =/ A dt. O
b—o0 b Jo 0

Remark. Of course, in the formulation of Theorem 3.1, the interval [0, 1] and the
expression f (¢ 4+ n) can be replaced by the interval [0, §] and the expression f (¢ 4 nd)
for any positive §.

3.2.  Uniform Cesaro limits.

THEOREM 3.2. Let f :[0, 00) —> V be a bounded measurable function such that the
limit

A, = lim Z f(t+n)

b— a—>oob— eyt
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exists for almost every t € [0, 1]. Then limp_y_—, 5o (1/(b — a))fab f(x) dx also exists and
. 1
is equal to [y A, dt.

Proof. We may assume that the parameters a, b are integers. For any sequences (ax), (bx)
of non-negative integers with by — ay —> +00, we have

1 bk 1 1 br—1
f(x) dx = / ft+n) dt_/ > fa+nya.
bk — Gk n=ay — dk n=ay
Since, for almost every ¢ € [0, 1],
1 br—1
f&+n)dt — A, ask — o0,
by — ay nZa:k !
by Lemma 2.2,
by 1
lim f(x)dx = / A, dt. O
k—so00 by — ay @ 0

3.3.  Multiparameter standard Cesaro limits. Let d € N. We will call a mapping
N — V,n > v, an N4 -sequence in V. We write R for [0, co). We will now introduce
notation that will allow us to formulate and prove the d-parameter versions of the above
theorems in complete analogy with the case d = 1.

For a,beRi,a:(al,...,ad), b=(by,...,by), we write a <b if a; <b; for
alli=1,...,d and a <b if a; < b; for all i. Under min(a, b) and max(a, b), we
will understand (min(ay, by), ..., min(ay, by)) and (max(ai, by), ..., max(aq, by)),
respectively. For a = (ay, ..., aq) € Ri and b= (b1, ..., by) € Rd, we define ab =

(arby, ..., aqbg) and, if b>0, a/b=(a1/by,...,aq/by) and b* = (b¥, ..., bYJ),
aeR.

Fora=(ai,...,aq) € Rflp we define w(a) =aj - - - ag and [(a) = min{ay, ..., aq}.
Note thatifa, b € Ri and 0 < a < b, then w(a)/w(b) <lIl(a)/l(b).

For a, b € RY, a < b, we define intervals [a, b] = {x e R% :a < x < b} and (a, b] =
{xeRf{_:a <x <b}.

For a, b € Ri, under Zb

n=a Vn» We will understand ), nanq.p) Vn if @ <D and O

otherwise, under Z v, we will understand ZneNdﬂ(a,b] v, if a < b and 0 otherwise,

n>a
and under fa v(x) dx we will understand f[a’b] v(x) dx.

Finally, for ¢ € Ry, by ¢, we will denote (c, ..., c) € Ri.

THEOREM 3.3. Let f : Ri —> V be a bounded measurable function such that the limit

A= Z fa+n

l(b)—>oo w(b) =

exists for almost every t € [0, 119. Then liml(b)ﬁw(l/w(b))fob f(x)dx also exists and
is equal to f[O 17 A, dt.
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Proof. We may assume that b € N?. Let (bx) be a sequence in N9 with [ (by) — o0 as
k —> oo. For any k € N, we have

br—1

1 (S 1
d d dt.
w(br) Jo S0 dx= (bk) Z /oud Jamdr= /oud w(bi) z::() Jtmadr

Since, for almost every ¢ € [0, l]d,

bkfi
—— 3" fG+ndi— A, ask—> oo,
w(be) =4

by Lemma 2.2,

1 b
lim / (x)dx =/ Ay dt. O
k—> 00 w(bk) 0 f [0,11¢ !

3.4. Multiparameter uniform Cesaro limits.

THEOREM 3.4. Let f : Rﬂ’r —> V be a bounded measurable function such that the limit

A= lim Zf(t+n)

l(b—a)—> 00 w(b e

exists for almost every t € [0, 11¢. Then

1 b
im —— d
)0 w(b — a) /a fx)dx

also exists and is equal to f[o 1} A; dt.

Proof. We may assume thata, b € N9, Let (ay), (by) be sequences in N9 with a; < by and
I(by — ar) —> oo as k —> oo. For any k € N, we have

1 by br—1
v dr — .
w(by — ar) Ja, Fx)dx w(bk — @) nzak /0 e f(t+n)dt

1 bkfl
f ———— > f+n)dr
[

0’]]d U)(bk — ak) n—=ay
Since, for almost every ¢ € [0, 119,
1 br—1

T ;) ft+n)ydt — A; ask —> oo,

by Lemma 2.2,
1 b
lim —/ (x) dx:/ A dt. O
k—so00 w(by — ay) ax ! [0,174 '

3.5. Liminf and limsup versions. In the case where f is a real-valued function, we may
obtain similar results involving liminfs of limsups, even if the limits A; do not exist.
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THEOREM 3.5. If f : Ri —> R is a bounded measurable function, then

l%b)—wo w(b) / f(X) dx = ,/[1) 174 l%liw)—>oo w(b) Z f(t +n) dt

n>0

and

lim sup (b)/ f()c)d)c</[01 hmsup—Zf(t—i-n)dt

1(b)—s00 W 1 1(h)—>o00 W(b) £=5

Proof. After adding a constant to f, we may assume that f > 0. We may also assume that
beN? Let (by) bea sequence in N? with I(b;) —> oo as k —> 0o. For any k € N, we
have

br—1

N S 1
d d dt.
wion) Jo TN (bk> Z/m Jrmde= /[o,m w2 T

By (the classical, real-valued) Fatou’s theorem,

be 1 br—1
li inf dx > i inf —— t dt
iminf S on Jy 4= /[o,l]d oo wiby) Z Je+m
= li f t dt. O
/[.0 14 /:E:(?O w b ’;) f( +n)

And, similarly, we have the following theorem.

THEOREM 3.6. If f : R‘i —> R is a bounded measurable function, then

lim inf dx > lim inf t dt
I(bnz?)goo w(b / fx)dx /[ 134 1(b— a)—n>oo w(b Zf( +n)

n>a
and
lim sup / fx)dx < / lim sup ! Z f@+n)dte.
I(h—a)—> 00 w(b - [0,11¢ I(b—a)—> 00 w(b —a) —

4. Multiplicative method—the one-parameter case
4.1. Standard Cesaro limits.

THEOREM 4.1. Let a bounded measurable function f :[0, co) —> V be such that, for
some ¢ > 0, the limit L, = limb_>oo(1/b)zz>0 f(nt) exists for almost every t € [0, c].
Then L; is almost everywhere constant, L; = L € V almost everywhere on [0, c], and
limb_mo(l/b)fob f(x) dx exists and equals L.

Following the referee’s suggestion, we will derive Theorem 4.1 from the following
classical fact. The proof of this result which we provide for the reader’s convenience has
an advantage of being easily extendible to the multiparameter case (Lemma 5.2 below).

LEMMA 4.2. Let (v,) be a sequence in 'V such that ||vy+1 — vull = O(1/n) and the
Cesdro limit L = th_)oo(l/N)Z —1 Un exists. Then lim, __, o v, = L.
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Proof. We may assume that L = 0, that is, limN_mo(1/N)Z,]1v:l v, = 0. Assume that
v, /> 0; let ¢ > 0 be such that, for any N € N, there exists n > N such that ||v,| > ¢.
Let @ > 0 be such that ||vn+1 — v|| < a/n for all n; put § = 82/16(1 + ¢/2a)a. Find
N € N such that ||(1/M)Z _1 Ul <éforall M > N. Find M > N such that ||vy]l > ¢
and 1/M < ¢/4a. Let, by the Hahn—Banach theorem, ¢ € V* be such that |¢(v)| < ||v||
forall v e V and ¢(vyr) = ||lvay||. Then, for any n > M,
n—1 n—1 o

vp) =o(vy) + v —vy) > |lv — v —vyll>e—m—M)—,
o (va) = p(vnr) n;Mw( a1 = V) = ou | m;n 41— Unl (n = M)
which is > /2 when (n — M)a/M <¢/2, that is, when M <n <M + eM/2a. Put
K=M+ |eM/2a]; then p(v,) > e/2forn=M + 1, ..., K. Thus,

>

ISy Sul)zr(e( 2
P D )
K K n=M+1 n=1 K n=M+1

n=1
1/ & 1 e
ZE( Z (p(vn)—SM)>E<(K—M)§—8M>

K

n=M+1
1 eM £ 1 £ 1\e
>—({——1)=-M)>—— (| ——— )= -6
M(1 + ¢/2a) 20 2 14+¢/2a 20 M)/2
&2
> _§5=3,
14+ &/20)8c
which contradicts the choice of N. O

Proof of Theorem 4.1. Let v, = (l/nc)fonc f(x)dx, n € N. Then, for any n,

1 (n+1)c
<n+1__>/ f(x)dx+—/ J(x) dx

lvig1 — vnll = =
< cnsup || f]] 4 Csup £l —0(1/n).
cn(n+1) cn+1)
Also, we have, forany N € N,

1 N—-1 1 NZ—I 1 nc
— v, = — —/ f(x)dx
N o N — nc Jo

N-—1

1

| =

/Cf(nt)dt—lfclNX:f(nt)dt
0 _C 0 Nn:O

N ¢
Since (l/N)Zf,V 01 f(nt) — L; as N — oo for almost every ¢ € [0, c], by Lemma 2.2,
1 N=

By Lemma 4.2, v, —> (l/c)foc L, dt. On the other hand,

0

2 |

1 b
lim v, = lim —/ f(x)dx.
n—>-00 b—so0 b 0

So, L = lim;,_,oo(l/b)fob f(x) dx exists and equals (1/¢) [y L, dt.
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Next, for any z€(0,c), we also have L= (l/z)foZ L;dt. So, for any ze€
[0, c], foz L; dt = zL, which implies that L; = L almost everywhere on [0, c]. O

4.2.  Uniform Cesaro limits.

THEOREM 4.3. Let a bounded measurable function f :[0, oco) —> V be such that for
some ¢ > 0, for almost every t € (0, c], the limit L; =limp_qs— 00 (1/(b — a))ZﬁM f(nt)
exists. Then L; is constant almost everywhere on (0, cl, Ly =L € V for almost every
t€(0,cl, andlimp_,_5o(1/(b — a))fah f(x) dx exists and equals L.

LEMMA 4.4. Let (v,) be a bounded sequence in V such that limp_,_, 5 (1/(b — a))
Zﬁm v, =0, let (by) be a sequence of positive real numbers with by —> 0o, and let

(o), (Bx) be sequences of real numbers such that 0 < By — oy < by for all k. Then
limg— o (1/b1) Y% 4, vn = 0.

Proof. Assume that ||v,|| <1 for all n. Let ¢ > 0. Let B > 1 be such that ||(1/(b — a))
sz vn|l < & whenever b —a > B. Let K be such that by > (B + 1)/¢ for all k > K.
Then, for any k > K, if f — ax > B, then

o >
— v < H vl < e
bk n>ay 'Bk — Ok n>oy
and, if By — ax < B, then also
Bk
1 — 1
‘_ S b < BT 0
bk n>oy bk

Proof of Theorem 4.3. Since, in particular, L; = limp_, 5o (1 /b)ZZ>O f(nt) for almost
every t € (0, c¢], we have L; =const= L for almost every ¢ € (0, c] by Theorem 4.1.
Replacing f by f — L, we may assume that L = 0. After replacing f(x) by f(cx/2),
we assume that c=2. Let a>0,b>a+ 1. For any n €N, (l/n)fab fx)dx =
fab//: f(nt) dt. Adding these equalities for all n € (b/2, b], and taking into account that

b/n <2forn > b/2, we get
b 2 Babn
Af f(x)dx =f > fowar,
a 0 n>a(a,b,t)

where A = ZZ>W2 1/n > 1/2, and, for every ¢ € (0, 2], a(a, b, t) = max{b/2, a/t} and
B(a, b, t) =min{b, b/t}. Thus,

1 b
H_b—a/a f(x)dx

\b,
where f,(t) = (1/(b — ) Y0400 f(nt), 1 € (0, 2].
We will now show that the functions f,,, for a >0,b>a 4 1, are uniformly
bounded. Let us assume that SUP e (0,00) lf) <1 Ifa<b/2, thenb—a>b/2 and,

<2 , ()

2
/ Jap(t) dt
0




From discrete- to continuous-time ergodic theorems 395

since B(a, b,t) —ala, b, t) <b/2, for any t € (0, 2], we have || f, ()| < (1/(b/2))
(b/2+1)<3. If a> b/2, then, for any ¢ € (0, 1/2], we have a(a, b, t) > a/t > 2a >
b> B(a,b,t), so fu,p(t)=0; and, since, for any t € (0, 2], B(a, b, t) —a(a, b, t) <
(b—a)/t,wehave || fapr®| <(1A/(b—a)((b—a)/t+1)<3forte[l/2,2].

For almost every ¢ € (0, 2], since B(a, b, t) — a(a, b, t) < (b —a)/tforalla >0, b >
a + 1, by Lemma 4.4,

. 1 . " Bla.b.t)
Jim fop) = lim o Y f(u) =0

t b—a—o0o b —a nsat@ b

Hence, by Lemma 2.2, f02 fap(@)dt — 0 as b —a — oo. So, by (5),

1 b
—/ f(x)dx — 0 asb—a—> 0. |
—al,

4.3. Liminf and limsup versions for uniform averages. In the case where f is a real-
valued function and the limits L; do not exist, we have liminf/limsup versions of the above
theorems. We start with the uniform case.

THEOREM 4.5. For any bounded measurable function f : [0, co) —> R and any ¢ > 0,

1 b 1 [c
lim inf dx > — li f —— t) dt
Jming = [ rearz [ imint ;ﬂ")
and
li ! bf()d <1/1 Ef(t)dt
msup —— X X — 1msup— n
b—a—>00 b—a a € J0 b—a— o0 b— n>a

Proof. We will only prove the first inequality. We may assume that f>0. Let
L =liminf,_,_ (/b — a))fab f(x)dx; find a sequence of intervals [ak, by] with
by — ax —> oo such that L =1limg__, oo (1/(bx — ak))ffkk f(x) dx. We may assume that
ar —> oo (after replacing each a; by max{ay, +/bx}) and that by /a —> 1 (after replacing
each interval [ag, bi] by a suitable subinterval).

For any ¢ > 0, we have

by /t

1
liminf —— f(nt) < hm inff ——— f(nt),
b—a—> 00 ’; bk/t—ak/t n>2ak:/t
SO
1 c 1 c b/t
- lim inf —— f(nt)dt < - / liminf —— f(nt) dt.
/0 b—a—00 ,; c Jo k—o0 bk/t—ak/t n>2ak:/t
By (the classical) Fatou’s lemma, we have
1 ¢ 1 b/t
- liminf —— f(nt) dt
c /0 k—so0 bi/t —ay/t n>2ak:/t
1 ¢ 1 b/t
< - lim inf _— 1) dt
= klﬂlgo/o b/t —ar/t 2. funy

n>ay [t
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and

1 c 1 b/t 1 1 ¢ bi/t
— lim inf _ t)dt = — liminf tf(nt) dt
im in /(; Z f(nt) - im in / Z f(nt)

Cc k—>o0 bk/t — ak/t noa/t k—so0 by — ay noar/t

bi/n
> / tf(nt) dt.

k — Ak n>ag/c Y ak/n

For every k € N, for each n we have

bi/n 1 by 1 by
In=/ tf(nt)dt=—2/ xf(x)dx:—zotk f(x)dx
a n= Jay n ak

k/n

with ay € [ak, bi], so
by 1 by
> In=ak/ fdx Y = =us f(x)dx,
n>ag/c ke n>ay/c n 9k

where s; = ank/c(l/nz) satisfies sxay/c —> 1 as k —> oo. Since, by our assumption,
also ay /ar —> 1, we get

1 1 bi/n 1 by,
Z lim 3 / tf (ur) di = lim Sk, fdx=L

¢ k—o0 by — ay noar/c Jak/n —o00 C by — ay ar

So, (1/¢) f§ lim infy—g—s0(1/(b — @)Y 5_, f(nt)dt < L. O

4.4.  Liminf and limsup versions for standard averages.

THEOREM 4.6. For any bounded measurable function f : [0, c0) —> R and any ¢ > 0,

hmmf / f(x) dx>—/ hmmf Zf(nt) dt
0

and

1P 1
limsupE/O f(x) dxgz/(; lim sup — Zf(nt) dt.

b—>00 b—>00 n>0

Proof. We may assume that f > 0. Let L =Ilim infb_mo(l/b)fé’ f(x)dx; choose a
sequence (by), with by —> 00 as k —> oo, such that limk_mo(l/bk)fobk fx)dx=L

Then also limy__, oo (1 /(b — ak))fai" f(x) dx = L, where a; = +/by, k € N. Forallt > 0,
we have

hm 1nf Z f(nt) = hm 1nf \/_ Z f(nt) < hm 1nf Z f(nt)
k n=a;

and, as in the proof of Theorem 4.5, by Fatou’s 1emma,

1 [€ 1 1 c bi/t
- lim inf f(nt)dt < - l1m inf / tf(nt) dt,
'/0 k—so0 by — ay, n;l:k —o00 by —ax 0 Z

n>ay [t

so it suffices to show that this last expression is <L.
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For every k e N, put My = Lbi/ 3] and subdivide the interval [ay, bx] into M} equal
parts: put by j = ag + j(by —ar)/My, j =0, ..., M. As in the proof of Theorem 4.5,
for any k and j we have

by, j/t by ;

1 ¢ / o 1Sk i k.j
— / Y tfnydr< —SLR / fydx, (6

bej =brj-1 Jo o p = bi,j — br,j—1 Ji

where oy ; € [bg j—1, by, ;] and s ; = Zn>bk /_I/C(l/nz). Since the function ¢(t) =
(t +8)/(t — 1) with § > 0 is decreasing, for any k and any j we have

1/2 2/3
br,j a +bi /M _ b +bi/15" )
O, jSk,j < <c =c 72 =!Ik,
(br,j—1 — D/c ag — 1 b/ —1
which tends to ¢ as k —> oo. Replacing oy sk, j by rx and taking the average of both sides
of the inequality (6) forafixedk and j =1, ..., My, we get
b/t b
1 L k
f Y tfnyde < % / F(x) dx,
b —ak Jo =), bk — ak Ja,
SO

1
— lim inf
¢ k—so00 by — ay

¢ b/t i by
/ > tf(anydi < lim —/ fx)dx=L. O
k—o0 c(bx — ag) Jq,

0 n>ay/t

5.  Multiplicative method—the multiparameter case
5.1. Standard Cesaro limits. We will use the notation introduced in §3.3.

THEOREM 5.1. Let a bounded measurable function f : Ri —> V be such that for some
ce Ri, c>0, the limit L; = liml(b)_mo(l/w(b))zzw f(nt) exists for almost every
t €[0, cl. Then L; is almost everywhere constant, Ly = L € V almost everywhere on
[0, c], and liml(b)_wo(l/w(b))fob f(x) dx exists and equals L.

Lete; =(1,0,...,0,0),...,eq=(0,0,...,0,1).

LEMMA 5.2. Let (v,) be an Nd—sequence in 'V such that the limit

v= lim Un
I(N)—o00 w(N)

n<N

exists and, for some o >0, for any n=(ny,...,ng) € N4, and for any i, one has
lVnte; — Unll < an;. Then limy)—s oo Vp = .

Proof. We may assume that v = 0, that is, lim;(x)—co (L/W(N))D_, .y Un =0. Assume
that v, /= 0 as [(n) —> oo; let ¢ > 0 be such that for any N € Nd,_there exists n > N
such that ||v,|| > . Put
e(e/4ad)?
204 + DA +¢/2ad)d”
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Find N e N? such that N1/ w(M))Y, <pr vnll <8 for all M > N. Find M=
(My, ..., Mg) > N, such that ||vy] > & and 1/M; < e/4ad for all i. Let, by the Hahn—
Banach theorem, ¢ € V* be such that |@(v)| < ||v] for all ve V and ¢(vy) = |lvpmll.
Then, for any n = (ny, ..., ng) > M,

d ni—1

(P(Un) = ‘P(UM) + Z Z ¢(v(n1,...,ni71,m+l,Mi+1,.‘.,Md) - v(nl,...,ni,1,m,Mi+1,‘..,Md))
i=1 m=M,-
n—1
> ol = D 100 LMo Ma) = Vi Mo M) |
m=M

d
> S—Z(l’li -M
i=1

which is > ¢/2 when ((n; — M;)a)/M; < e/2d for all i, that is, when M; <n; < M; +
eM;/2ad foralli. Put K; = M; + |eM;/2ad| and K = (K, ..., Kg); then ¢(v,) > &/2
for M <n<K and w(K) <w(M)(1 +¢&/2ad)?, w(K — M) > w(M) Hf=1(8/2ad —
1/M;) > w(M)(e /4oed)d. Now, we can represent Zn< x VUn as an alternating sum

Z Uy =2d2_:1<:|: Z vn) + XK: Un,

n<kK j=1 n=<R; n>M
where, for each j, for every i, the ith entry of R; is equal to either M; or to Kj;.
(For d =2, for instar;{ce, the formula is Y, _x Vn =D, — (a1, k) Vn  Don<(k, My) Vn —
ZnS(Ml,Mz) Un + D, Un.) For each j, ||Zn§Rj vl < w(R;)§ < w(K)3; thus,

1 ( K J 1 K 4

> — Zvn —2w(K)8>>—(p<Z vn)—28
” w(K) U)(K) nsM (K) n=M+1

1 K K-M

-— o) — 205> DE M) €
w(K) , 57, wK) 2

wM)(e/dad)! e g0 ele/ded)! o

~wM)(1 +¢/2ad)d 2 T 2(1 4 ¢/2ad)? o
which contradicts the choice of N. O

Proof of Theorem 5.1. Let

1 nc
vnz—f f(x)dx, neN,
w(nce) Jo

Then, for any n = (ny, ..., ng) e N andanyi €{l, ..., d},

1 1 1 ne d
<w<n+e,->_w<n>>/ f ) dx

w(c)
(n+ej)c
e ), S

w(cn) sup || £l w(c) sup || f]
T wl@Owmwrn +e)  wl)wkn +e))

”UnJre,- — vl =

=2sup [ fII/(ni 4+ 1).
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Also, we have, for any N € N,

Loy, 2! > ! /ncf(x)dx L 1/6f(nt)dt
w(N) T wN) g wne) Jo _w(N> w(c) Jo

n<N n<N

w(c) w(N) 2 fand.

n<N

Since (l/w(N))ZnEN f(nt) — L, as I[(N) — oo for almost every ¢ € [0, c], by
Lemma 2.2, (l/w(N))anN v, —> (1/w(c))foc L;dt. By Lemma 5.2, v, —
(1/w(c)) fy L dt. On the other hand,

1 b
li = 1 —_— dx.
T L S w(b)_/o o) dx

So, L = liml(b)ﬁw(l/w(b))fob f(x) dx exists and equals (1/w(c)) [y L: dt.
Next, for any z € (0, c), we also have L = (l/w(z))fé L;dt. So, for any z €
O, c], foz L; dt = w(z)L, which implies that L; = L almost everywhere on [0, c]. O

5.2.  Uniform Cesaro limits.

THEOREM 5.3. Let a bounded measurable function f : ]Rff_ —> V' be such that for
some ¢ € Ri, ¢ >0, for almost every t € (0, c], the limit L; =limp_,_,o0(1/(b — a))
Zn>a f(nt) exists. Then L; is constant almost everywhere on (0,c], Ly=L €V for
almost every t € (0, c], and limp_4— 5o (1/(b — a))fab f(x) dx exists and equals L.

LEMMA 5.4. Let (v,) be a bounded Nd-sequence in V such that

1
lim _ =0,
[(b—a)—> 00 w(b — a) nZ; Un
and let (by), (ax), and (By) be sequences in Ri such that 0 < By — oy < by, for all k and
[(by) —> oo. Then hmk_wo(l/w(bk))z v, =0.

n>ag

Proof. Assume that [|v, || <1 for all n. Let ¢ > 0. Let B > 1 be such that ||(1/w(b — a))
ZZ>a v, |l < & whenever I[(b —a) > B. Let K be such that I[(b;) > (B + 1)/e for all
k > K. Then, for any k > K, if [(Br — o) > B, then

l ,Bk 1 ,Bk
H TSP IR H = H o 2

n>ay n>ag

<€

and, if /(B — ax) < B, then also

H ! ﬂzkv B +1 -
why) S T 1w

Proof of Theorem 5.3. Since, in particular, L,=liml(b)_wo(l/w(b))X:Z>0 f(nt)
for almost every ¢ e (0,c], we have L;=const=L for almost every ¢ € (0, c]
by Theorem 5.1. Replacing f by f — L, we may assume that L =0. After
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replacing f(x) by f(cx/2), we assume that c=2. Let a>0,b>a+1. For

any neN, (1/wn) [’ f(x)dx = fab/,f f(nt)dt. Adding these equalities for all n €

(b/2, b], and taking into account that b/n <2 for n > b/2, we get kfab f(x)dx =
Jo YoR@hn | fnt)ydi, where A=Y"1_, > (1/w(m) = 1/2 and, for every 1 € (0, 21,

n>a(a,b,t

o(a, b, t) =max{b/2, a/t} and B(a, b, t) = min{b, b/t}. Thus,

[ [ e

where f,.5(t) = (1/w(b —a) P 40D tnr), t € (0, 21,

n>a(a,b,t) _
We will now show that the functions f, p, fora > 0, b > a + 1, are uniformly bounded.
Let us assume that sup, ¢ o) |/ ()| < 1. If a <b/2, then b —a > b/2 and, since
B(a, b, t) —a(a, b, 1) <b/2, forany r € (0, 2], we have

<2d

(M

/ Jap(0)dr],

I fa b < w(b/2+ 1) <34,

1
w(b/2)

If a > b/2, then, for any ¢ € (0, 214 with #; < 1/2 for some i, we have a(a, b, t); >
aij/t; > 2a; > b; > B(a, b, t)i, so fup(t) =0; and, since, for any ¢ € (0, 214, B(a, b, t) —
a(a, b, t) < (b —a)/t, we have

I far I < ;w((b —a)/t+1)<3? forallt €[1/2,2]".
w(b —a)

For almost every t € (0, 2]d, since B(a,b,t) —a(a,b,t) < (b —a)/t for all a,be
Ri, b>a+1, by Lemma 5.4,

B(a,b,t)
li Jap(@) = : lim : E f(nt)=0
m = —_— n = U.
I(—a)—so0 T4t w(t) 1—ay—o0 w((b — a)/1) s

Hence, by Lemma 2.2, [ fo »(t) d —> 0 as [(b — a) —> 0. So, by (7),

b
;[ fx)dx — 0 asl(b—a) — oc. O
wb—a) J,

5.3.  Liminf and limsup versions for uniform limits.

THEOREM 5.5. For any bounded measurable function f :]R‘_i|r —> R and any ce
Ri, ¢ > 0, one has

c

1 )
jminf w(b— )/ foydez 205 | it e — w(b Zf(m)dt

n>a

and

1 [ 1
lim sup / f(x)dx < el /0 lim sup Z f(nt) dr.

I(b—a)—> o0 w(b - I(h—a)—> o0 w(b —a) —
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Proof. We will only prove the first inequality. We may assume that f > 0. Let

1 b
L= liminf ——— dx;
l(blgl)ioo w(b—a)/a fx)dx

find a sequence of intervals [ag, bi] C Ri with [ (b — a;) —> o0 such that

1 bi
L= 1l _ dx.
Jm et —an ), T
We may assume that /(ay) —> oo (after replacing each a; by max{ag, /bx}) and that
w(by)/w(ay) —> 1 (after replacing each interval [ag, bx] by a suitable subinterval).
For any ¢ > 0, we have

bk/t
1 1
lim inf (nt) < 11m1 — (n1),
1(b— a)—>oo w(b— ,;f —o00 w(bk/t — ax/t) n>;k/zf
S0
1 c
lim inf nt) dt
w(c) Jo l(h—a)—oc w(b— ;f( )
c bk/l
< lmmf— f(nt) dt.
w(e) Jo k—o0 w(br/t —ar/1) ng/t
By (the classical) Fatou’s lemma, we have
1 c 1 b/t
lim inf —————— fnt) dt
w(c) Jo k—o0 w(bk/t —ar/t) n>2ak:/t

e | e/
= 0@ lklﬂlgof/() ot —aD) Y funydr

n>ay/t

and

1 o c 1 b/t
wio) minf /0 o a2 fend

n>ay/t
1 c b/t
lim inf ———— tf (nt) di
w(c) k—o0 w(by — ak) ngak:/t

1 1 bic/n
<—liminf ———— Z/ tf(nt) dt.

w(c) k—> 00 w(bk — ak)

n>ay/c /N

For every k € N, for each n we have

bi/n 1 by 1 by
I,,:/ tf(nt)dt:—z-/ xf(x)dx = 5 f(x)dx
ai/n w(n ) a w(” ) ay
with ay € [ag, by, so
by l by
Z I, = w(og) F(x) dx Z = w(og)sk Fx) dx,
w(n?)
n>ay/c Ak n>ag/c ak
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where s; = Zn>ak/c(1/w(n2)) satisfies sxw(ax/c) — 1 as k —> oo. Since, by our
assumption, also w(ay)/w(ar) — 1, we get

1 by /n
Z / tf(nt) dt

lim
U)(C) k—>00 w(bk - ak) n>ay/c ai/n

o wlo)sk b _
- kE)noo w(c) . w(by — ay) /ak fydx=L

So,

Z f(nt)dt <L. i

w(c) l(h a)—>oo w(b =

5.4. Liminf and limsup versions for standard averages.

THEOREM 5.6. For any bounded measurable function f :]R?YF —> R and any ce
R‘j_, ¢ > 0, one has

c

lim ! 4
o w<b>f frd> o [ ot s Zf () dt

and

lim sup —/ fx)d ’ msup —— Z f(nt) dt.

1(h)—o0 W(D) w(C) 0 l(b)—)oo w(b) =

Proof. We may assume that f>0. Let L =lim infb_mo(l/b)fob f(x)dx; choose a
sequence (by) in R? with [(by) —> o0 as k —> 00, such that

. 1o
(Jm w(bk)/o feodxy=L

Then also limg__, oo (1/w (b — ak))fal:‘ f(x)dx =L, where a; = /by, k e N. For all
t > 0, we have

it Zf )= Jmint o~ G Z fn)
< lim it o — a0 w(bk —a) n;k f(nt)

and, as in the proof of Theorem 5.5, by Fatou’s lemma,

c

minf ——— (nt) dt
w(L) 0 k—>oo w(bk ay) n>2ak f
c b/t
< lim inf tf (nt) dt,
w(c) k—o0 w(by —ax) Jo n;ak:/t !

so it suffices to show that this last expression is < L.
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For every k e N, put M; = Lb,f/ 3J and subdivide the interval [ag, br] into w(My)
equal parts: put by, ; =ax + j(bx — ax)/ Mg, j € {0} U N)Y N[0, My]. As in the proof
of Theorem 5.5, for any k and j we have

by, j/t

tf(nt) dt < w (%, j)Sk. j br.j

I <—"d ) (x)dx, (8)
w(bk,—bk, 1)/ w bt w(bk,j = bk, j-1) bk,jflf

where o j € [bi,j—1, bk, j] and sg j = Zn>bkj,1/c(1/w(”2))- For any k and any j,

w(bx,j) w(ax + b/ My)
w(o, j)Sk,j < = <w()——
w(bg,j—1 — 1)/w(c) w(ar — 1)
w(b,> + b/ 15y )
= w(c) 77 - = Ik
w(by 1)
which tends to w(c) as k —> oo. Replacing w(ay, j)sk,j by rx and taking the average of
both sides of the inequality (8) for a fixedk and j =1, ..., My, we get
Tk
/ tf(nt) dt < ——— f(x) dx,
w(by — ar) —ak) et w(bk — ak)
o)
1 c b/t
— liminf ——— > tfnyde

w(c) k—> 00 w(bk —ak) 0 nsag/t

Tk by
< lim —/ f(x)dx=L. O
k—> 00 w(c)w(bk — ak) a

5.5. A lim-limsup version for standard averages. It turns out that if the limits
liml(;,)_>oo(l/w(b))zz>o f(nt), t >0, do not exist, but, for some L € V, one has
lim, ., o+ lim sup; ), o |l (l/w(b))2ﬁ>0 f(nt) — L|| =0, we still have the result. For a
function % : (0, r)d —> V, r > 0, we write ess-lim;__, g+ h(t) = ho if, for any ¢ > 0, there
exists § € Ri such that ||h(¢) — hg|| < & for almost every ¢ € (0, 5].

THEOREM 5.7. Let f : Ri —> V be a bounded measurable function satisfying, for some
LeV,

ess-lim lim sup
t—0% J(h)— 00

(@Zﬂm_H_

n>0

Then 1imy ) — 0o (1/w (b)) [y f(x)dx =L

LEMMA 5.8. Let (v,) be a bounded Nd-sequence in 'V and let (by), (Bx) be sequences in
RY with 0 < By < by for all k and [(by) —> co. Then

b

1
o) 2

n>0

B

e

n>0

lim sup
k—> 00

< lim sup
I(b)—>00

w(by)
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and
lim sup vp || <2 lim sup Up
koo lw(bK) 5 " b—o0ll w(b) =

Proof. Assume that ||v,|| < 1 for all n. Let
b

1
‘szn .

Lete > 0 and let B > 1 be such that ||(1/w(b))zn>0 v |l < s + & whenever [(b) > B. Let
K be such that [(by) > B/¢ for all k > K. Then, for any k > K, if [(B;) > B, then

s = lim sup
I(b)—>00

1 ﬁk 1 }31(
Hw(zak)g” ”w(ﬁk),;)v” st

and, if [(By) < B, then also
B
H 1 Zk . ” _wB _ 1B

< < <e<s+H+e.
w(by) w(br) ~ 1(by)
So, lim sup;,__, o, ||(1/w(bk))2,,>o Unll <'s.

Forany S C{1,...,d} anda—(a1,...,ad),b=(b1,...,bd)e]Rd, let og(a, b) =
(c1y...,cq), where, for each i, ¢c; =a; if i € S and ¢; =b; if i € S. Then, for any
a, b € RL with a < b, we have

b os(a,b)
D= > - DY o
n>a SC{l,....d n>0
Since, forany S C {1, ..., d},
os5(bk/2,Bk)
lim sup Un|| =,
oo | W) =
we also get that
Bk
lim sup v || < 2%. O
ko0 || W(bK) ,DX,,:W !

Proof of Theorem 5.7. We may assume that L =0. Fix ¢ >0. Find 6 € Ri, §>0,
such that lim sup,__, o, ||(1/b)Zz>0 f(nt)|| < e for almost every t € [0, §], and define
gx)= f((§/2)x), x € Ri. Then lim sup,__, o, ||(1/b)ZZ>0 g(nt)]| < ¢ for almost every
t €0, 2]4.

Let beRY, b>1. Forany ne N, (1/w(n)fy g(x)dx = [y/" g(nr) dr. Adding
these equalities for all n € (b/2, b], and taking into account that b/n <2 for n > b/2,
we get A fob g(x)dx = f02 Zfibbt/)z g(nt) dt, where A = ZLb/z(l/w(n)) > 1/24, and, for
every ¢ € (0, 214, B(b, t):min{b b/t}. Thus,

2
<2! f g (1) dt|),
0

g(x) dx ©)]

[t |
where g,(1) = (1/w(b) 0% g(nr). 1 € (0, 2.
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Let us assume that SUP, R Ilg ()|l = Sup, cpd lfx)|l <1. Then, for any b >
1, for every t € (0, 214, we have les®] < A/wd))w(B(b, t)) <1, so the functions
gp are uniformly bounded. For almost every ¢ € (0, 2]d, since B(b,t) <b, by
Lemma 5.8, we have limsupl(,,)_>OO ||gb(t)||§2d8. Hence, by Lemma 2.1,

lim sup,_, oo || fiy g6(t) dil < 22s. So, by (9), lim sup,,__, o I1(1/b) [ g(x) dx|| < 2¥%e.
Since, for any b € R, b > 0, we have

bs/2
w(®) / (b= s |, S0

we get lim sup; ), o ||(1/w(b))f0 f(x)dx| < 23e. Since this is true for any positive

&, 1imy(py— 00 (1/w(B)) [ f(x) dx =0. 0

5.6. A lim-limsup version for uniform averages.

THEOREM 5.9. Let f : Rf{_ —> V be a bounded measurable function satisfying, for some
LeV,

ess-lim lim sup ” - Z f(nt) — H =

t—0% J(h—a)—> o0 n>a
Then limy(p—g)—s 00 (1/w(b — a))fa f(x)dx=L

LEMMA 5.10. Let (v,) be a bounded Nd-sequence in 'V and let (by), (ax), and (By) be
sequences in Ri such that 0 < By — ax < by for all k and I(by) —> oo. Then

B b
1
lim sup E V|l < limsup H— E V|-
k—s o0 || W(bk) n>ay " I(b—a)—> 00 w(b —a) nea "

Proof. Assume that ||v, || <1 for all n. Let
b

s = limsup HWZU
—da

l(b—a)—> 00 n>a

Let e > 0. Let B > 1 be such that
o2

w(b — a) Zvn

n>a

<s+¢

whenever /(b — a) > B. Let K be such that [(by) > (B + 1)/¢ for all k > K. Then, for
any k > K, if (B — ox) > B, then

1 Bk 1 Bk
v _— vl <s+e,
H w(bk) >Z " H w(Br — ax) >Z "

and, if /(B — ax) < B, then also
Br

1 I - 1

H Z Unll < M < & S Ky + £.
w(by) L(br)

n>og

So, lim SUPk—s 00 ”(l/w(bk))2n>ak vpll <'s. O
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Proof of Theorem 5.9. We may assume that L =0. Fix ¢ > 0. Find § € Ri, 8 > 0, such
that

<¢ forae.te€]0,d]

| b
lim sup Hm Z f(nt)

[(b—a)—> 00 n>a

and define g(x) = f((6/2)x), x € Ri. Then

b
lim sup Z g(nt)

H - <¢ forae.tel0, Z]d.
l(b—a)—> 00 w(b —a) n>a

Leta,beRf{_,aZO,bza—l—i.ForanyneNd,

1 b b/n
—_— / g(x)dx =/ g(nt) dt.
w(n) Jg a/n

Adding these equalities for all n € (b/2, b], and taking into account that b/n < 2 for
n>b/2, we get

b 2 Bla,b,n
A/ g(x) dx:/ Z g(nt) dt,
a 0

n>w(a,b,t)

where )\=zﬁ’,>b/2(1/w(n)) >1/2¢4, and for, every € (0, 2], a(a, b, t) = max{b/2,
a/t} and B(a, b, t) = min{b, b/t}. Thus,

1 b 5
Hw(b——a)/a g(x) dx /0 8a.b(t) dt

.b,
where gq5(t) = (1/w(b — a) L0, | g(nt), 1 € (0, 21,
We will now show that the functions g, 5, for a, b € Ri, b>a+ 1, are uniformly

bounded. Let us assume that SUP, cd. lg()| = SUP, cRd. lf)l<1. If a<b/2, then
b —a>b/2 and, since B(a, b, t) —a(a, b, t) <b/2, forany ¢t € (0, 2] we have

<2?

) 10)

l8a,b(D < w(b/2 + 1) <34,

w(b/2)
If a > b/2, then, for any t = (t1, ..., ty7) € (O, Z]d with #; < 1/2 for some i, we have
ala, b, t); > a;/t; >2a; > b; > B(a, b, t);,so f, ,(t) =0; and, since, for any ¢ € (0, 214,
B(a,b,t) —ala,b,t) <(b—a)/t, we have

Il fa,p (DI < ;w((b —a)/t+1) <3 forallre[1/2,2].
w(b —a)

For almost every ¢ € (0, 2]4, since

B(a,b,t) —ala,b,t) <(b—a)/t foralla,be ]Rfi, b>a+1,
by Lemma 5.10,
' 1 ' 1 Bla,b,1)
lim sup |ga.5(1)l| < —— lim sup Hm > g

I(b—a)—> o0 W() 1(p—a)y—> o0 n>atabi)

< —.
w(t)
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Since also lim sup;,_4)— o0 18a,6 (O[] < 3¢, we obtain that

2
&
f lim sup [|ga.5(0)|| drs/ 34 dr+f ——dt=c,,
0 I(b—a)—> o0 0,214\ [¢,2]¢ [e,21¢ (1)

where ¢, < dg297134 + 8(10g(2/8))d. Hence, by Lemma 2.1,

2
/ ga,b(t) dt
0

lim sup ‘ <cg.
[(b—a)—> 00
So, by (10),
lim sup H [ gx)dx| < 2dcS
[(b—a)—> 00 w(b )
Since, forany 0 < a < b,
1 bS/2
gx)dx = f(x)dx,
w(b —a) / w(b3/2 — as/2) as)2

we get

< che

lim sup H /f(x)dx
I(b—a)— ool Wb — a)

Since this is true for any positive & and ¢, —> 0 as & —> 0T, we obtain that
. b
limyp—q)—s 00 (1/w (b — a))fa f(x)dx=0. O

6. Two-sided limits and limits with respect to Fglner sequences

6.1.  Two-sided multiparameter limits. 'We will now pass from the (N¢, Ri) setup to the
(Zd, RY ) setup. We adapt the notation introduced above to this new situation: for a, b €
Rd,az(al,...,ad),bz(bl,...,bd), we write a <b ifa; <b; foralli=1,...,d,
and a < b if a; < b; for all i. When writing /(b) or w(b), we will always assume that

b > 0. As before, under Y7 v, we understand ¥ , ;a4 vy, and under fab v(x) dx we
a<n<b

n>a

understand [ _ _, v(x) dx.
Theorem 3.3 clearly implies the following.

THEOREM 6.1. Let f : RY — V be a bounded measurablefunction such that the limit

Ar= 1(b)—>oo w(2b) Z fa+m

exists for almost every t € [0, 11%. Then limz(b)_mo(l/w(Zb))f_b f(x) dx also exists and
is equal to f[o 1 Ar dt.

Theorem 3.4 can also be easily adapted to the R? case.

THEOREM 6.2. Let f : RY —s V be a bounded measurable function such that the limit

A= lim Zf(H—n)

I(b—a)—> o0 w(b— —

exists for almost every t € [0, 114. Then limyp—a)—s 0o (1/w(b — a))fab f(x) dx also exists
and is equal to f[O 1 A, dt.
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The derivation of Theorem 6.2 from Theorem 3.4 is based on the following fact.

LEMMA 6.3. For any s =(s1,...,sq) € {+, —}¢ =S, let R =R, x --- x Ry,. Let
f:RY — V be a bounded function and let L be an element of V such that, for any

s €S,
1 b
lim —/ f(x)dx=1L
abeRy,  wb —a) J,

Then
lim dx =
I(b—a)—> 00 w(b ,/ fx)dx =

Proof. We will assume that sup | f| < 1 and that L = 0. Given ¢ > 0, find / € R such that
11/ wb — a))fab f(x)dx|| <& whenevera, b e Rf forsome s € Sand [(b —a) > 1.

Now let a,beR? b>a, and I(b—a)>1/s. Let a=(ay,...,aq) and b=
(b1, ...,bg). For each i such that a; <0 < b;, partition the interval [a;, b;] into
subintervals [a;, 0] and [0, b;], and thus partition the d-dimensional interval [a, b] = {x :
a <x <b}into < 24 d-dimensional subintervals [pj. q;] such that, for each j, [p;, g;]1 €
]Rf for some s € S. Then, for each j,if [(g; — p;) > I, then

|
Hw(b—a) / fx)dx

and, if [(q; — p;) <, then

1

H— e
w(gj — pj)

qj
f(x)dx

w(b — a) i w(b —a) I(b—a) l/e

SO,

<24, O

Hw(b a)/ f(x)dx ZH f(x)dx

In the case where f is a real-valued function, the same proof gives a stronger result.

LEMMA 6.4. For any bounded measurable function f : R? — R,

1 b
lim inf dx = liminf ——— d
it [ rwas=ma] gt [ e o

[(b—a)—> 00

and

1 b
lim sup f f(x)dx_max{ lim sup —f f(x)dx}.
I(h—a)—> 00 w(b - S1 aper, wb—a)J,

l(b—a)—> 00

Lemma 6.4 allows us to derive the ‘two-sided’ version of Theorems 3.5 and 3.6.

THEOREM 6.5. If f : RY — R is a bounded measurable function, then

1t w2y w(2b) / Jedez ./o 1 w(2b) Z fe+n)di
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and

lim sup —/ f(x)dx</ lim Z f{&+n)dte.
[0,1]

I(b—a)—>o0 W(2D) d l(b)—)oo w(Zb)

THEOREM 6.6. If f : RY — R is a bounded measurable function, then

li f dx > lim inf t dt
l(blr(g—nmo w(b— /f(x) * /Ol]dl(b a)—n>oo w(b— Zf(—i—n)

n>a
and

1
lim sup / fx)dx < / lim sup f@+n)d:.
a) 011 1(b—a)— 00 W(b — a) Z

l(b—a)—> 0 w(b - n>a

For a, b € R? with a <0 < b, let us call ‘the interval’ (a,b) ={t e R?:a <t < b}
a P-neighborhood of 0 in RY and, for b e R‘i with b > 0, let us call ‘the interval’
[0, b) = {t e RL : ¢ < b} a P-neighborhood of 0 in R..

The ‘multiplicative’ theorems for Z? and R¢-actions take the following form.

THEOREM 6.7. Let a bounded measurable function f : R? — V be such that for some
P-neighborhood of 0 in R, for almost every t € P, the limit

L, =

= l(b)—>oo w(2b) Z fan

exists. Then L, =const=L almost everywhere on P and limjg)—, oo(1/w(2b))
Jo f@ydx =1L

THEOREM 6.8. Let a bounded measurable function f :R? —s V be such that for some
P-neighborhood of 0 in RY, for almost every t € P, the limit

1
L= lim Z f ()

[(b—a)—> 00 w(b a) n—a

exists. Then L; = const = L almost everywhere on P and

1 b
li T E— dx=1L
l(b—al)In—>oo w(b — a)/a flx)dx

THEOREM 6.9. For any bounded measurable function f:R? — R and any ¢ € R%,
c>0,

1 c
(x)d

|
lim inf —— lim 1) dt
1500 w(2b) /_,,f 0@ Jy minf w(2b) Z AL

and

lim sup
1(h)—s 00 w(2b)

/ fx)dx " lims Zf(nt)dt

w C) 0 l(b)—>oo w(2b)
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THEOREM 6.10. For any bounded measurable function f:R? — R and any c €
R, ¢ >0,

lim _ d ! ‘ lim —1 t)dt
1(b— a)—>oo w(b— / f()C) x= ~ w(c) 0 lb- a)—>oo wb —a Zf(’l)

n>a

and

lim sup / fx)dx < wic) /(;C lim sup Zf(nt)dt

l(b—a)—> o0 w(b - l(b—a)—> 00 w(b - n>a

THEOREM 6.11. Let f : RY — V be a bounded measurable function satisfying

b
> fw

n>—>b

ess-lim lim sup H
t—0% [(h)—s o0l W(2D)

Then limy(p)— 00 (1/w(2b)) [*, f(x) dx = 0.

THEOREM 6.12. Let f:RY — V be a bounded measurable function satisfying, for
some L €V,

ess-lim  lim sup H Z S(nt) — H

t—0% [(h—a)— o0 presp

Then 1imy(p—q)—s 00 (1/w(b — a))fa fx)dx=L

6.2. Limits with respect to an arbitrary Fplner sequence. Let us denote by w the
standard Lebesgue measure on R? (this agrees with the notation used in the previous
sections). A Fglner sequence in R? is a sequence (®y)F_, of subsets of finite measure
such that, for any y € R, w(®yA(Dy + y)/w(®y) —> 0as N —> oo.

LEMMA 6.13. Let f : R —> V be a bounded measurable function with the property that

)/ f(x)dx=LeV.

lim
I(b—a)—>o0 w(b —

Then, for any Fglner sequence (®y) in RY,

li dx =1L
Ninoo w(®y) Joy fx)dx
Proof. We will assume that L =0 and that sup|f|<1. Let ¢>0, and let Q
be a d-dimensional interval {x e R:0<x <c¢} with I(c) large enough so that
||(1/w(Q))fQ+y f(x)dx| <e¢e for any y € R?. Let (®y) be a Fglner sequence in R4,
For any y € Q, we have

1
dx — d
|, Fea ANf(x) ¥

! <’/ f(x)dx —l—‘/ f(x)dx
w(dy) (PN +\Dy SN\ (Dy+Y)

w(ONA(DN + y))
w(®y)

2>

IA

)

— 0
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as N —> oo. So, by Lemma 2.2,

m[g( <I)Nf(x—i-y)dx—ﬁlwf(x)a’x)aly—>0 as N —> oo.

But

W/Q oy f(X)dxdyzw(cDN) f(x)dx forall N,
whereas
1
(D) +y)dxdy| < f + ) d Hd
Hw(Q)w@DN)/Q sy O TIE yH = w@n) Jo, s J, T ] ax
1 1
w(@n) Jo, | w(Q) Jo_s VAGY) y‘ X
= : sdx=¢
w(Py)
for all N. Hence,
111\,m_5)1£ w(®y) Nf(x)dx <e. 0

Lemma 6.13 allows us to strengthen Theorems 6.2, 6.8, and 6.12.

THEOREM 6.14. Let f : RY — V be a bounded measurable function such that the limit

A, = lim Zf(t+n)

I(b—a)—> o0 w(b— =

exists for almost every t € [0, l]d. Then, for any Folner sequence (P y) in Rd,

f(x) dx:f A, dt.
Dy [O,I]d

lim
N—o0 w(Py)
THEOREM 6.15. Let f : RY —> V be a bounded measurable function such that for some
P-neighborhood P of 0 in R%, for almost every t € P, the limit

1
L= o m o ot—a w(b — a) Z f )

n>a

exists. Then L, = const = L almost everywhere on P and, for any Fglner sequence (P y)
inRY,

f(x)dx=1L

lim
N—o00 w(Py)
THEOREM 6.16. Let f:RY — V be a bounded measurable function satisfying, for
some L €V,

ess-lim lim sup ” - Z f(nt) — H =

t—0" [(h—a)—> o0 =

Then, for any Fglner sequence (®y) in R?,

lim
N—oo w(Dy)

f(x)dx=L
N



412 V. Bergelson et al

In the case where f is a real-valued function, we can get the following version of
Lemma 6.13.

LEMMA 6.17. For any bounded measurable function f:RY —> R, for any Foplner
sequence (®y) in RY,

lim inf d li f d
N @) Jp, S i =) w(b / ) dx
and
lim sup f(x)dx < limsup / f(x)dx.
N—00 w(®y) Dy l(b—a)—> 0 w(b -

Using Lemma 6.17, we may also strengthen Theorems 6.6 and 6.10.

THEOREM 6.18. For any bounded measurable function f :R? —> R and any Foplner
sequence (®y) in RY,

lim inf
N—oo w(dy)

fx) dxz/ lim inf Zf(t+n) dt
Sy

[0,1}4 l(b—a)—> 00 w(b — ey

and

lim sup
N—o0 w(q)N)

f(x) dx 5[ lim sup : Zf(t—i—n) dt.
N

(0,119 {(b—a)—> o0 w(b —a) —

THEOREM 6.19. For any bounded measurable function f :R? — R, anyc e R%, ¢ > 0,
and any Fglner sequence (®y) in RY,

1 c
lim inf dx > lim t)dt
&Iil[olo w(dy) Dy f(x) dx w(c) Jo 10— a)—)oo w(b ,; S ()
and
1 c
lim su f( )dx < / lim su f(nt) dt.
N_mf w(Py) w(c) Jo - u)—?OO w(b_ r;

7. Density of sets and convergence in density
We will now formulate some special cases of the theorems above. For a set S C N9, the
density of S is

D(S) = lim —— SN (0, b]
) olm (b) IS N( [,
if it exists; for a measurable set S C Ri, the density of S is
1
D(S m —w(SNJO, b]
8= o D) ( ),

if it exists. (As before, w stands for the standard Lebesgue measure on Rd.) The lower
density D(S) and the upper density D(S) of a set S € N? or S CR% are defined as the
lim inf and, respectively, the lim sup of the above expressions.

Taking f =1g in Theorems 3.5 and 3.3 and in Theorems 5.6 and 5.1, we get,
respectively, the following theorems.
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THEOREM 7.1. Let S be a measurable subset of R‘_{_ and, for each t € [0, l]d, let S; =
(neN?:t+neS). Then D(S) > f[o,l]d D(S;) dt and D(S) < f[o,l]d D(S;) dt. If D(S;)
exists for almost every t € [0, 114, then D(S) also exists and equals f[O,l]‘] D(S;) dt.

THEOREM 7.2. Let S be a measurable subset of Ri and, for each t € Ri, let S;={n¢e
N¢:nt € S). Then, for any c € RZ, ¢ > 0, one has D(S) > f[o’c] D(S;) dt and D(S) <
f[o,c] D(S,) dt. If D(S;) exists for almost every t in a P-neighborhood P of 0 in R, then
D(S(t)) = const = D for almost every t € P and D(S) = D.

The uniform (or Banach) density of a set S € N is

UD(S) = IS N (a, b]l,

im _
l(b—a)—>o00 w(b — a)

if it exists; for a measurable set S C Ri, the uniform density of S is

) 1
UD(S) = l(b_lal)m_)oo mw(S Nla, b)),
if it exists. (And, it follows from (an Ri-version of) Lemma 6.13 that for S € R?, if UD(S)
exists, then, for any Fglner sequence (®Pp) in Ri, limy— oo (1/|ONDw(S N dy) =
UD(S).) The lower uniform density UD(S) and the upper uniform density UD(S) of a set
SCNlorScC R’i are the lim inf and, respectively, the lim sup of the above expressions.
From Theorems 3.6, 3.4, 5.5, and 5.3 we get, respectively, the following theorems.

THEOREM 7.3. Let S be a measurable subset of Ri and, for each t € [0, 114, let S; =
(neN?:n+1eS). Then

UD(s) = /

UD(S;)dt and TUD(S) < /
(0,134

UD(S,) dt.
[0.134

If UD(S;) exists for almost every t € [0, 11, then UD(S) also exists and equals
f[o,l]d UD(S;) dt.

THEOREM 7.4. Let S be a measurable subset ()fIRﬂlr and, for each t € Ri, let S =1{n e
N :nt e S}. Then, for any c € Rd, ¢ > 0, one has

1 - 1 -

UD(S) = —— UD(S;)dt and UD(S) < —— UD(S) dt.
w(c) Jio,e] w(c) Jio,e

If UD(S;) exists for almost every t in a P-neighborhood P of 0 in RY, then UD(S;) =

const = D in P and UD(S) = D.

Of course, the ‘two-sided’ versions of Theorems 7.1-7.4, where one deals with
74 -sequences and functions on R? instead of N¢-sequences and functions on R% , are also
true.

We will now bring in two theorems that deal with limits in density instead of Cesaro
limits. We say that an N¢-sequence (v,) in V converges in density to L € V if, for any
e>0,theset S, ={n e N : llv, — L|| > €} has zero density, D(S;) = 0, and converges to
L in uniform density if, for any ¢ > 0, UD(S,;) = 0. We say that a (measurable) function
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f: Rf{_ —> V converges to L € V in density if, for any ¢ > 0, the set S, = {x € Rf{_ :
| f(x) — L|| > ¢} has zero density, D(S;) =0, and converges to L in uniform density
if, for any ¢ > 0, UD(S,;) = 0. Applying Theorems 7.1-7.4 to the real-valued function
|| f(x) — L||, we obtain the following theorem.

THEOREM 7.5. Let [ : Rf{_ —> V be a bounded measurable function such that for some
L €V, for almost every t € [0, l]d, the Nd-sequence fn+1t),ne N¢, converges to L in
density (respectively, in uniform density). Then f converges to L in density (respectively,
in uniform density).

THEOREM 7.6. Let f : Rf{ —> V be a bounded measurable function such that for some
L €V, for almost every t in a P-neighborhood of 0 in R%, the N%-sequence f (nt), n € N%,
converges to L in density (respectively, in uniform density). Then f converges to L in
density (respectively, in uniform density).

Of course, the two-sided versions of Theorems 7.5 and 7.6 also hold.

8. Applications

8.1.  Characteristic factors for multiple averages along polynomials. Let X be a
probability measure space; we will always assume that X is sufficiently regular so that
LY(X)is separable.

Let G be a group of measure-preserving transformations of X and let
gi(n),...,gm),ne 74, be (d-parameter) sequences of elements of G. A factor Z of
the system (X, G) is said to be characteristic for the averages (I/I\IJNDZnelIIN g1(n) f1 -

- - gr(n) fr, where (W) is a Fglner sequence in 74, if, for any fi, ..., fr € L¥(X),

Z (gr(m)fr----- grm) fr —g1mMEfIlZ)----- gr(mE(fr12)) =0

N—>oo |\If | nETy

in L'(X) (where E(f|Z) stands for the conditional expectation of f with respect
to Z). An analogous notion can be introduced for averages (1 /w(CIDN))fq)N gxfr-----
gr(x) fr dx, where g1, ..., g are functions RY — G and (dy) is a Fglner sequence
in RY,

Let T be an ergodic invertible measure-preserving transformation of X. The kth
Host—Kra—Ziegler factor Zy(T) of (X, T) is the minimal characteristic factor for the
averages (1/|"I'N|)Zne\y,v H(Z);ﬁog{o,.‘.,k} T" f,, where ns =) ;. ni, and (Wy) are
Fglner sequences in ZKt1. Z(T) is the maximal factor of (X, T) isomorphic to a
k-step pro-nilmanifold (an inverse limit of compact k-step nilmanifolds) on which T acts
as a translation. (See [HoK1, Z].) The factors Z;(T') turn out to be characteristic for any
system of polynomial powers of T':

THEOREM 8.1. [L3] For any system of polynomials p1, . . ., p, : Z¢ —> 7, there exists
k € N such that for any measure-preserving transformation of a probability measure space
X, Zy(T) is a characteristic factor for the averages (1/|®n|[)> TP
TP f,.

nedy
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It is easy to see (see, for example, [FK]) that if S is another ergodic transformation of
X commuting with 7', then, for all k, Zx(S) = Zx(T). Thus, if T is a family of pairwise-
commuting ergodic transformations of X, we may denote by Z;(T) the kth Host—Kra—
Ziegler factor of any (and so, of every) element of 7. This allows one to generalize
Theorem 8.1 in the following way.

THEOREM 8.2. [J] For any finite system of polynomials p; : 74 — 7€, i=1,...,r,
there exists k € N such that, given any totally ergodict discrete c-parameter commutative
group T™, m € Z°, of measure-preserving transformations T of a probability measure
space X, the factor Zy(T) is characteristic for the averages (1/|¥n|)Y_ TP f1-

. Tpr(n) fr, where (W) are Fglner sequences in 78,

ne\IIN

Now let T',t € R, be a continuous one-parameter group of measure-preserving
transformations of X and assume that it is ergodic on X. Then, for almost all (actually,
for all but countably many) ¢ € R, the transformation 7" is ergodic, so, for any k, Z; (T")
coincide for almost every ¢; we will denote this factor by Z; (7). We can now prove the
following fact (obtained in [P] for non-uniform averages).

THEOREM 8.3. For any system of polynomials py, ..., pr :RY — R, there exists k €
N such that for any continuous one-parameter group T',t € R, of measure-preserving
transformations of a probability measure space X, Zi(T) is a characteristic factor for the

averages (1/w(®n)) [, TP ... TP £, dx.
Proof. Given polynomials pi,..., pr on Rd, find monomials g;(x) =c;x%, A=
1,..., A, wherec; € R and «, are multi-indices, that are Q-linearly independent and such

that each of the polynomials p; is a sum of the monomials g, with integer coefficients,
Zi\ 1b, 2qxr, biy € Z. Then, for any x € R4, any n € 74, and any i, TPi(nx) —
H/\ 1 T, ”” , where T ; = T%*", and, since T’ is ergodic for almost every f € R,

the A- parameter group generated by the transformations 7y 3, A =1, ..., A, satisfies the
assumptions of Theorem 8.2 for almost every x € R?. Find k which, by Theorem 8.2,
corresponds to the polynomials b; ;n*,i=1,...,r, A=1,..., A, so that for almost
every x € R?,
lim (Tpl(nx)fl ,,,,, Tpr(nx)f
N—o0 |\I‘N| n;; 4
— TP EAIZI(T)) - - TPV E(f]1Zi(T))) =0

for any Fglner sequence (W) in Z¢. Then, by Theorem 6.15,

(Tpl(x)fl ,,,,, Tpr(x)fr

lim
N—00 w(@N)
— TPOEAIZU(T)) - - - TP E(f|1Zi(T))) dx = 0
for any Fglner sequence (®y) in R, which proves Theorem 8.3. o

T A group G of measure-preserving transformations of a measure space is fotally ergodic if every non-identical
element of G is totally ergodic.
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8.2.  Polynomial orbits on nilmanifolds. Let X be a topological space with a probability
Borel measure ;. We say that a d-parameter sequence g(n), n € Z, is well distributed
with respect to p if, for any h e C(X) and any Fglner sequence (Vy) in Vi
one has

1
lim —— h = hau.
Jim o > h(g(n) /X I

ne\IlN

We also say that a measurable function g(r), t € R?, in X is well distributed with respect
to u if, for any & € C(X) and any Fglner sequence (®y) in R4,

lim h(g(t)) dt:/ hdu.
N—o00 w(CI>N) Dy X
The following proposition is an immediate corollary of Theorem 6.14, applied to the
functions & o g, h € C(X).

PROPOSITION 8.4. Let X be a topological space and let g : R? — X be a function such
that for almost every t € [0, 11? the sequence g(n + 1), n € Z%, is well distributed in X
with respect to a probability Borel measure ;. Then g is well distributed with respect to
the measure L = f[o,l]d W dt.

From Theorem 6.15, we get the following proposition.

PROPOSITION 8.5. Let X be a compact Hausdorff space for which C(X) is separable and
let g : RY — X be a function such that for almost every t in a P-neighborhood P of 0
in R‘_{_ the sequence g(nt), n € 72, is well distributed in X with respect to a probability
Radon measure ;. Then p; = const = u for almost every t € P and g is well distributed
with respect to the measure [.

Proof. By Theorem 6.15, applied to the function % o g, for any h € C(X) we have u,(h) =
const = u(h) for almost every ¢ € P and limN_mo(l/w(CDN))fq)N h(g(t)) dt = u(h) for
any Fglner sequence (®y) in R4, Excluding those ¢ for which u,(h) # w(h) for all
functions & from a fixed countable subset of C(X), we obtain that p, = const = u for
almost every t € P and g is well distributed with respect to @. (The assumption that the
u; are Radon measures allows us to identify them with continuous linear functionals on
C(X).) a

We will apply these propositions in the following situation. Let X be a compact
nilmanifold, that is, a homogeneous space of a nilpotent Lie group G, and let g : RY — X
be a polynomial mapping, that is, g(t) = afl(t) .. .a,fk(t)a), t € R4, where ai, ..., ax €
G, pi, ..., px are polynomials R — R, and w € X. Let Y = {g(1), € R¥}. It follows
from a general result obtained in [Sh] that Y is a connected sub-nilmanifold of X (that
is, a closed subset of X of the form Hw, where H is a connected closed subgroup of G
and w € X), and g is uniformly distributed in Y in the following sense: for any 7 € C(Y),
limRHw(l/w(BR))fBR h(g(t)) dw(t) = [, h du, where w is the Lebesgue measure on
R?, Bg, R > 0, is the ball {t e RY |t| < R}, and p is the Haar measure on Y. We would
like to have a stronger result which states that g is not only uniformly distributed, but is
well distributed in Y. A discrete analogue of this fact, which we will presently formulate,
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was obtained in [L.2, L4], but before formulating it we need to introduce some terminology.
We call a finite disjoint union of connected subnilmanifolds of X a FU subnilmanifold. We
say that an element o’ of X is rational with respect to an element @ € X if @ = aw for
some a € G such that a”w = w for some m € N. We say that a subnilmanifold Y of X is
rational with respect to w if Y contains an element o’ rational with respect to w. (Then such
elements ' are dense in Y.) Finally, we say that a FU subnilmanifold of X is rational with
respect to w if all connected components of Y are subnilmanifolds rational with respect
to w.

PROPOSITION 8.6. (See [L.2, L4].) Let g be a d-parameter polynomial sequence in X,
that is, g(n) = af”(") - a,f"(n)a), where ay, ..., ar € G, pi,..., pr are polynomials
74 — R, and w € X. Then the closure Y = {g(n), n € Z¢} of g is a FU subnilmanifold of
X rational with respect to the point g(0). If Y is connected, then the sequence g(n), n € Z.%,

is well distributed in Y (with respect to the Haar measure on Y ).

We may now use Theorem 6.15 or Theorem 6.14 to deduce from Proposition 8.6 its
continuous analogue. We will also need the following fact.

PROPOSITION 8.7. [LS, Theorem 2.1] Let M be a set and let ¢ : RYx M —> X be a
mapping such that for every m € M, ¢(-, m) is a polynomial mapping R¢ — X, and
there exists w € X such that for each t € RY, the set Y, = ¢(t, M) is a FU subnilmanifold
of X rational with respect to w. Then there exists a FU subnilmanifold Y of X such that
Y; CY forallt e R and Y; =Y for almost every t € R%.

Now let g : RY — X be a polynomial mapping. By Proposition 8.6, the mapping
¢ :R? x 74 — X defined by ¢(t, n) = g(nt) satisfies the assumptions of Proposition 8.7
(with @ = g(0)); thus, there exists a FU subnilmanifold Y such that {g(nt), n € Z4} C Y,
for all + and =Y for almost every ¢ € RY. But then ¥ = {g(),teR9}, and so Y is a
connected subnilmanifold; by the second part of Proposition 8.6, the sequence g(nt),
n €74, is well distributed in Y for almost every t € R?. Applying Proposition 8.5, we
get the following theorem.

THEOREM 8.8. Let X be a compact nilmanifold and g : RY —> X be a polynomial
mapping. Then Y ={g(t), t € R4} is a connected subnilmanifold of X and g(t) is well
distributed in Y (with respect to the Haar measure in 'Y ).

Remark. If we were only interested in proving the well distribution of g in a
subnilmanifold Y, we could avoid the usage of Proposition 8.7; we need it to show that
g(t) e Y forall z.

8.3.  Convergence of multiple averages. Combining Theorems 8.3 and 8.8, we can now
get the following theorem.

THEOREM 8.9. Let T',t € R, be a continuous one-parameter group of measure-
preserving transformations of a probability measure space X and let pi, ..., pr be
polynomials R? — R. Then, for any fi, ..., fr € L°(X) and any Folner sequence
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(dy) in R, the limit

lim TP](X) ,,,,, Tpr(x) d
N—oo w(®y) U Jrdx

exists in L'-norm.

(In [P], a version of Theorem 8.9 was obtained for ‘standard’ Cesaro averages (that
is, for the case &y = ]_[le[O, binl, NeN, with by y — oo as N — oo for all i =
1,...,d). In[Au2], a multidimensional (that is, for 7 : RY —> R€ with ¢ > 1) version of
this result was obtained, again, for the standard Cesaro averages.)

Proof. We may assume that T is ergodic. Applying Theorem 8.3, we can then replace
(X, T) by a pro-nilmanifold Z;(T). Now, given the functions fi, ..., f, € L*°(X), we
can approximate them in L'-norm by functions that come from a factor ¥ of Z; (T') which
is a nilmanifold, and replace Z;(T') by Y and T by a nilrotation a on it. Next, we note that

it is enough to assume that fi, . .., f, are continuous functions on Y. Then an application
of Theorem 8.8 to the polynomial flow (a”'®y, ..., al” x)y) x € R, on the nilmanifold
Y” and the function fi(y;)----- frp)eC”n) proves that the limit
li P,y L pr(t) dt
N @) Ji@"y) Jr(@y)
exists for all y € Y, and so, in L' (Y). O

Another way to prove Theorem 8.9 is to deduce it, with the help of either Theorem 6.14
or Theorem 6.15, from the following discrete-time theorem.

THEOREM 8.10. [J] For any totally ergodic discrete c-parameter commutative group
T™, m € Z¢, of measure-preserving transformations of a probability measure space X,
any finite system of polynomials p; : 7¢ — 7€, i=1,...,r, any fi, ..., f, € L¥(X),
and any Fglner sequence (Wy) in Zd, the limit

Z Tpl(n)fl _____ Tp’(")fr
N—>oo |\I-’N| Ty
exists in L'-norm.

Applying Theorem 6.15, we obtain from Theorem 8.10 the following refinement of
Theorem 8.9.

THEOREM 8.11. Under the assumptions of Theorem 8.9,

lim TP £ TP £ g
N—>00 w(<I>N) fl f X
1
= lim — TP oo T Pr(nn)
N—00 |\IjN| nEZIJ:N fl fr

for almost every t € R? and any Fglner sequences (dy) in RY and (Vy) in Z°.

As for the actions of several commuting operators, the following ‘linear’ result has been
recently obtained.
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THEOREM 8.12. ([Aul]; see also [Hol]) Let Ti,...,T, be pairwise-commuting

measure-preserving transformations of a probability measure space X. Then, for any
f1, -« fr € L®(X), the limit

1 b

li - E TV eenne "

bfal—>m cob—a 1 fl r fr
n=a+1

exists in L'-norm.
Applying Theorem 6.15, we obtain the following theorem.

THEOREM 8.13. Let TI’, R Tr’, t €R, be pairwise-commuting continuous one-
parameter groups of measure-preserving transformations of a probability measure space
X. Then, for any f1, ..., fr € L°°(X), the limit

b
f T fi-- - T f, dx
a

Z T fi-eeee T" f, forae. teR.

b—a—oco b —a

8.4. The polynomial Szemerédi theorem. The ‘multiparameter multidimensional
polynomial ergodic Szemerédi theorem’ says the following.

THEOREM 8.14. (See [BM] or [BLM].) Let T™, m € Z¢, be a discrete c-parameter
commutative group of measure-preserving transformations of a probability measure space
(X, ), let pi 174 — 7€, i =1, ...,r, be a system of polynomials with p;(0) =0 for
all i, and let A C X, u(A) > 0. Then, for any Folner sequence (Vy) in 74,

> W@y N, N1 A)) > 0.

nevy

lim inf
N— 00 |‘~IJN|

Since the convergence of the averages

1
lim —— w(TPM (AN ... NTPrWA))
N—00 |\I/N| neZ\IJN

is unknown, we cannot apply Theorem 6.14 or Theorem 6.15 to get a continuous-time
version of Theorem 8.14; however, it can be obtained with the help of either Theorem 6.18
or Theorem 6.19.

THEOREM 8.15. Let T',t € RS, be a c-parameter commutative group of measure-
preserving transformations of a probability measure space (X, i), let p; : RY — R¢, i =
1,...,r, be a system of polynomials with p;(0) =0 for all i, and let A C X, u(A) > 0.
Then, for any Fglner sequence (®y) in R?,

lim inf w(TP DAy N. .. AT (A)) dx > 0.

N— o0 w(CDN) Dy
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A (d-parameter) polynomial sequence in a group G is a sequence of the form g(n) =
]_[IJ‘ 1 vp i , where v; are elements of G and p; are integer-valued polynomials on 74,
Theorem 8. 14 was extended in [LIL1] to the nilpotent setup as follows.

THEOREM 8.16. Let G be a nilpotent group of measure-preserving transformations of
a probability measure space (X, ), let g; /N G,i=1,...,r, be a system of d-
parameter polynomial sequences in G with g;(0) = 1¢ foralli, andlet A C X, u(A) > 0.
Then
1
lim inf Z 1((g1(M)(A) N ... N (g (n))(A)) > 0.

1(b— a)%oo w(b =

If G is a connected nilpotent Lie group, then, for any v € G, there exists a one-parameter
subgroup v’, t € R, of G such that vl = v; this allows one to define v’ for all 7 € R. Let
k Pj(x)
=1
where v are elements of G and p; are polynomials on R?. Applying one of Theorems 6.18
or 6.19, we get the following ‘continuous-time nilpotent polynomial Szemerédi theorem’.

us call a polynomial mapping g : R® —> G a mapping of the form g(x) = I

THEOREM 8.17. Let G be a nilpotent Lie group of measure-preserving transformations
of a probability measure space (X, ), let gi :RY — G,i=1,...,r, be a system of
polynomial mappings with g;(0) = 1 for all i, and let A C X, w(A) > 0. Then, for any
Folner sequence (CDN) inRY,

lim inf
N— 00 w( N)

/ p((g1(x)(A) N---N(gr(x))(A)) dx > 0.

8.5. Distribution of values of generalized polynomials. Another application of
Theorem 8.8 is a sharpening of the results from [BL] about the distribution of values
of bounded generalized polynomials. Recall that a generalized polynomial is a function
from R? or from Z¢ to R that is constructed from conventional polynomials by applying
the operations of addition, multiplication, and taking the integer part. We call a function
u:R?Y — R a generalized polynomial mapping if all components of u are generalized
polynomials. Under a piecewise polynomial surface S € R¢, we understand the image
S = 8(Q) of the cube Q = [0, 1]°, where S is a piecewise polynomial mapping, which
means that Q can partitioned into a finite union Q = U§=1 Q; of subsets so that for each
i, Q; is defined by a system of polynomial inequalities and )¢, is a polynomial mapping.
We endow S with the measure s = Six(w), the push-forward of the standard Lebesgue
measure w on Q. In [BL], the following theorem was proved.

THEOREM 8.18. [BL] Let u : Z¢ — R€ be a bounded generalized polynomial mapping.
Then the sequence u(n), n € Z¢ is well distributed with respect to us on a piecewise
polynomial surface S C RC.

(Note that it is not claimed in this theorem that u(n) € S for all n; it follows however
that the set {n : u(n) & S} has zero uniform density in Z¢.)
Applying Proposition 8.5, we may now obtain the R-version of Theorem 8.18.

THEOREM 8.19. Any bounded generalized polynomial mapping u : R —> RS is well
distributed on a piecewise polynomial surface S C R€.
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An application of the spectral theorem gives, as a corollary, the following proposition.

PROPOSITION 8.20. Let U',t € RS, be a continuous c-parameter group of unitary
operators on a Hilbert space H and let u:R? — R® be a generalized polynomial
mapping.  Then, for any veH and any Fglner sequence (dy) in RY, the limit
limN_wo(l/w((bN))fd)N U8Wy dx exists.

8.6. Ergodic theorems along functions from Hardy fields. We will now deal with a
situation where our ‘uniform Cesaro theorems’ are not applicable, but the ‘standard
Cesaro’ Theorem 4.1 is; namely, we will deal with multiple ergodic averages along (not
necessarily) polynomial functions of polynomial growth. Such averages for functions of
integer argument were considered in [BK, F1].

To state the results obtained in [BK], we first need to introduce some notation:

T is the set of real-valued C* functions g defined on intervals [a, 00), a € R, such that
a finite limy__, oo xgUTD (x) /g (x) exists for all j € N and there exist an integer i > 0
and o € (i, i + 1] such that lim,__, ; o xg’(x)/g(x) = and lim,__, 1, gtV (x) =0;

P is the set of real-valued C* functions g defined on intervals [a, 00),a € R
such that for some integer i >0 a finite non-zero lim,_, g(i“'l)(x) exists and
lim,_, oo x/ g0+ D (x) =0forall j e N;

G=TUP;

L is the Hardy field of logarithmico-exponential functions, that is, the minimal field of
real-valued functions defined on intervals [a, 00), a € R, that contains polynomials and is
closed under the operations of taking exponent and logarithm-of-modulus;

for o > 0, G(«) is the set of functions g € G with limy__, 1 o xg'(x)/g(x) =, T (@) is
the set of functions g € 7 with lim, —, 1 o0 xg'(x)/g(x) = «, and, for any G C G, G(a) =
GNGa);

a finite family G C G with gy — g» € G for all g, g» € G is said to have R-property
if, for any o > 0, any g1, g2 € (G(a) U (G(«) — G(«)))\{0}, any integer [ >0, and 8 €
(0, o) such that ggl), g2 € T(B), a finite non-zero limy_, g§[ﬁ]+1+l)(x)/gé[ﬁ]H)(x)
exists.

The following theorem was proved in [BK].

THEOREM 8.21. [BK] Let g1, ..., g- €G be such that g; — g; €G for all i # j, and
also either g1, . .., gr € L or the family {g1, . .., g} has the R-property. Then, for any
invertible weakly mixing transformation T of a probability measure space (X, u) and
any fi, ..., fr € L®(X), the sequence F, = T[g'(”)]fl ----- T[g"(")]fr, n €N, tends in
density in L'-norm to [[i_, [ f; dp.

The statement *F), tends in density in L'-norm’ means that

1Y
Ngnwﬁz

n=1

=0.
LX)

r
Tl oo ﬂmmﬂ—[Ifﬁdu
i=1

From this and Theorem 4.1 we get that, under the assumptions of Theorem 8.21,

1 b
lim —f dx =0,
b—o0 b Jy

LY(X)

,
‘ﬂMMﬁ ..... TMmUﬂu—II/ﬁdM
i=1
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that is, the function Fy = T[gl(x)]ﬁ ----- T[g'"(x)]fr, x € [0, o0) (whose range is in
L'(X)) tends in density in L'-norm to IT-; f fi diu. Hence, we obtain the following
theorem.

THEOREM 8.22. Let g1, ..., 8 €G be such that g; — g; € G for all i # j, and also
either g1, ..., g € L or the family {g1, ..., g} has the R-property. Then, for any
invertible weakly mixing transformation T of a probability measure space (X, ) and any
fis ..o, fr € L®(X), the function F = TI&1 M. Tler@l £ x €0, 00), tends in
density in L'-norm to [[i_, [ f; du.

Actually, one can eliminate the brackets appearing in the exponents in the expression

for F,. Indeed, put G, = T8 ™ f ... T8O f. x €0, 00),andlet L =[]i_, [ fi dp.
Assume that || f;|| <1 for all i. Fix any & >0 and, for each i =1, ..., r, choose
functions g; ; € L*°(X), j =1, ..., k, that form an -net in the (compact) set {(T'fi,te
[0, 1]} C L'(X). For any J=(ji,...,jr) €{l,...,k}, the function (Fy), =

T[g'(")]th e T[g’(x)]fr,j, tends in density to L and, for any x € [0, 00), there exists
J=(1,.-.,jr)e{l, ..., k} such that

||Tg;(x)fl. _ T[gi(X)]fi,j,' | = ”T{gi(x)}fi —fiill<e

for all i and, so, |Gy — (F)x|l < 2% ¢. This implies that

N— 0

. 1 &
lim sup v ; |Gy — L|| <2%e.

Since this holds for any positive €, we see that G also tends in density to L. So, we have
the following result.

THEOREM 8.23. Let g1, ..., 8 €G be such that g; — g; € G for all i # j, and also
either g1, ..., g € L or the family {g1, . . ., g-} has the R-property. Then, for any weakly
mixing continuous one-parameter group T', t € R, of measure-preserving transformations
of a probability measure space (X, ) and any fi, ..., f, € L®(X), the function G, =
T8 ... T8 £, x €0, 00), tends in density in L'-norm to [/_, [ fi du.

Another paper dealing with multiple-ergodic averages along non-polynomial functions
of polynomial growth is [F]. Let H denote the union of all Hardy fields of real-valued
functions.

THEOREM 8.24. [F] Let g € H satisfy limy_, o g(x)/x/ =0 for some jeN, and
assume that one of the following is true: limy_, o(g(x) —cp(x))/logx = oo for all
ceRand p € Z[x]; or limy_, 15 (g(x) — cp(x)) =d for some c,d € R and p € Z[x];
or (g(x) —x/m)/log x is bounded on [2, 00) for some m € Z. Then, for any invertible
measure-preserving transformation of a probability measure space X,

| N
lim Tl ¢ P2l £, 78]
ym ;:l fi f2 r

exists in L' (X) foranyr e Nand any fi, ..., fr € L®(X).
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THEOREM 8.25. [F] Let g1, . .., g € L be logarithmico-exponential functions satisfying
lim g (x)/x5t = lim  xktE g (x) =0
xX—>+00 XxX—>+00

for some integer ki >0 and &; > 0,i=1,...,r, and limy_, 1o gi(x)/g;j(x) =0 or co
for any i # j. Then, for any invertible ergodic measure-preserving transformation of a
probability measure space X,

1 N r
lim N Z T[gl(ﬂ)]fl ,,,,, T[gr(n)]fr — 1_[ / fidu
i=1 /X

N—00
n=1

in LY(X) forany fi, ..., f, € L¥(X).
From this and Theorem 4.1, we get the following theorem.

THEOREM 8.26. Let g € H satisfy lim,__, 1 g(x)/x? =0 for some j € N, and assume
that one of the following is true: limy_, 1 (g(x) —cp(x))/logx =00 for all ce R
and p € Z[x]; or limy_, 15 (g(x) —cp(x)) =d for some c,d € R and p € Z[x]; or
(g(x) —x/m)/log x is bounded on [2, c0) for some m € 7. Then, for any invertible
measure-preserving transformation of a probability measure space X,

b
lim % f T £ sl g T8 £ gy
0

b—>00
exists in Ll(X)for anyr € Nand any f1, ..., fr € L®(X).

THEOREM 8.27. Let g1, ..., g € L be logarithmico-exponential functions satisfying

lim  gi(x)/x"t = 1lim xkt%/g;(x)=0
xX—>+00 X —>—+00
for some integer ki >0 and &; >0, i=1,...,r, and limy_, 1o gi(x)/g;j(x) =0 or co
for any i # j. Then, for any invertible ergodic measure-preserving transformation of a
probability measure space X,

1 [t r
lim — / T[gl(x)]fl ,,,,, T[gr(x)]fr dx = l_[/ fidu

b—s00
in LY(X) forany fi, ..., f, € L¥(X).

8.7. Pointwise ergodic theorems. Here are two theorems of Bourgain dealing with
pointwise convergence.

THEOREM 8.28. [Bol] Let T be a measure-preserving transformation of a probability
measure space X. Then, for any fi, f» € L>(X), the sequence (I/N)Zfl\]:l T" f1 -
T2" f5, N € N, converges almost everywhere.

THEOREM 8.29. [Bo2] Let Ti, ..., T, be commuting invertible measure-preserving
transformations of a probability measure space X. Then, for any f e L*(X) and
any polynomials pi, ..., pr: 7 —> Z, the sequence (l/N)Z:qu:l(]_[f:l Tip"(n))f, N e
N, converges almost everywhere.
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We now have the following theorem.

THEOREM 8.30. Let T',t € R, be a continuous action of the semigroup [0, 00) by

measure-preserving transformations on a probability measure space X. Then, for any
fi. fr e L*(X), limb_mo(l/b)f(;’ T' fi - T? f> dt exists almost everywhere.

Proof. By Theorem 8.28, for every r€R, the sequence (1/N)Z,]Zv=1 ™ f1(w) -
Y f2(@), N € N, converges for almost every w € X; let S; C X be the set of points @
for which this is not so. Then {(¢, ) : w € S;} is a null-subset of R x X; thus, for almost
every w € X, the limit 1imN_>oo(1/N)Z,11V=1 T" fi(w) - T?" f>(w) exists for almost
every t € R. By (the scalar version of) Theorem 4.1, the limit limp— o (1/b) fob T fi(w) -
T? f,(w) dt exists for almost every w € X. o

In the same way, from Theorem 8.29 we get the following theorem.

THEOREM 8.31. Let T',t € RS, be a continuous c-parameter group of measure-
preserving transformations of a probability measure space X. Then, for any f € L*(X)
and any polynomial p : R — R, limb_wo(l/b)fob TPO f dt exists almost everywhere.

Here are two more pointwise theorems, established by Assani.

THEOREM 8.32. [A] Let T be a weakly mixing measure-preserving transformation of
a probability measure space X, let (P, S) be the Pinsker factor of (X, T), and assume

that the spectrum of S is singular. Then, for any fi, ..., fr € L°°(X), the sequence
(1/N)2:,1:]:l T"f1----- T™f,, N €N, converges to [|i_, [ fi di almost everywhere
on X.

THEOREM 8.33. [A] Let T be a weakly mixing measure-preserving transformation of a
probability measure space X, let (P, S) be the Pinsker factor of (X, T), and let L C L%(P)
be the space of functions on P whose spectral measure under the action of S is absolutely
continuous with respect to the Lebesgue measure. For any function f € L*>(X), let f
denote the projection of E(f|P) to L. Then, for any f1, f2, f3 € L*(X),

1 1 Y . . .
lim —§ T"f, - T fo - T ——§ T"fi - T?" fo - T
(N 2 N ) f3 N L il ) /3

N—00

= 0 almost everywhere.

Let 7', r € R, be a continuous action of R by measure-preserving transformations on
a measure space X. Then, with the help of either Theorem 3.1 or Theorem 4.1, repeating
(the first two phrases from) the proof of Theorem 8.30, and taking into account that (i)
if T is weakly mixing, then T’ is weakly mixing for all # # 0; (ii) the Pinsker algebra
of T is the Pinsker algebra of T' for all ¢ # 0; and (iii) if the spectrum of T is singular
(respectively, absolutely continuous), then the spectrum of T is singular (respectively,
absolutely continuous) for all ¢ # 0, we obtain the following theorem.

THEOREM 8.34. Let T be a continuous action of R on a probability measure space X
by weakly mixing measure-preserving transformations, let (P, S) be the Pinsker factor of



From discrete- to continuous-time ergodic theorems 425

(X, T), and assume that the spectrum of S is singular. Then, for any fi, ..., fr € L®(X),
one has
1 [t A
lim - f T'fy----- T" f, dt = 1_[ / fi dp almost everywhere.
b—co b Jo i=1

THEOREM 8.35. Let T be a continuous action of R on a probability measure space X
by weakly mixing measure-preserving transformations, let (P, S) be the Pinsker factor
of (X, T), and let L € L*(P) be the space of functions on P whose spectral measure
under the action of S is absolutely continuous with respect to the Lebesgue measure.
For any function f € L*(X), let f denote the projection of E(f|P) to L. Then, for any
f1, fa. f3 € L2(X),

1 b 1 b ~ ~ N
lim (Z/ T’f1~T2’f2~T2tf3dt—l—)/ T’fl-Tz’fz-T3’f3dt>
0 0

b—>00

= 0 almost everywhere.

Acknowledgements. We thank the referee for many useful comments and corrections.
The first two authors are partially supported by NSF grant DMS-0901106.

REFERENCES

[A] I. Assani. Multiple recurrence and almost sure convergence for weakly mixing dynamical systems.
Israel J. Math. 163 (1998), 111-124.

[Aul] T. Austin. On the norm convergence of nonconventional ergodic averages. Ergod. Th. & Dynam. Sys.
30(2) (2010), 321-338.

[Au2] T. Austin. Norm convergence of continuous-time polynomial multiple ergodic averages. Ergod. Th.
& Dynam. Sys. to appear.

[BK] V. Bergelson and I. Héland. Knutson weak mixing implies weak mixing of higher orders along
tempered functions. Ergod. Th. & Dynam. Sys. 29 (2009), 1375-1416.

[BL] V. Bergelson and A. Leibman. Distribution of values of bounded generalized polynomials. Acta Math.

198 (2007), 155-230.

[BLM] V.Bergelson, A. Leibman and R. McCutcheon. Polynomial Szemeredi theorem for countable modules
over integral domains and finite fields. J. Anal. Math. 95 (2005), 243-296.

[BM] V. Bergelson and R. McCutcheon. An ergodic IP polynomial Szemeredi theorem. Mem. Amer. Math.
Soc. 146 (2000), viii+106pp.

[BiKo] G. D. Birkhoff and B. O. Koopman. Recent contributions to the ergodic theory. Proc. Natl. Acad. Sci.
USA 18 (1932), 279-282.

[Bol] J. Bourgain. Double recurrence and almost sure convergence. J. Reine Angew. Math. 404 (1990),
140-161.

[Bo2] J. Bourgain. On the maximal ergodic theorem for certain subsets of the integers. Israel J. Math. 61(1)
(1988), 39-72.

[F] N. Frantzikinakis. Multiple recurrence and convergence for Hardy sequences of polynomial growth.
J. Anal. Math. 112 (2010), 79-135.

[FK] N. Frantzikinakis and B. Kra. Convergence of multiple ergodic averages for some commuting
transformations. Ergod. Th. & Dynam. Sys. 25(3) (2005), 799-809.

[H] E. Hopf. Ergodentheorie. Springer, Berlin, 1937.

[Hol] B. Host. Ergodic seminorms for commuting transformations and applications. Studia Math. 195

(2009), 31-49.
[HoK1] B. Host and B. Kra. Non-conventional ergodic averages and nilmanifolds. Ann. of Math. (2) 161(1)
(2005), 397-488.



426

[HoK2]
J1

[Ko]
[L1]
[L2]
[L3]
[L4]
[L5]
[vN]
[P]

[Sh]

[Z]

V. Bergelson et al

B. Host and B. Kra. Convergence of polynomial ergodic averages. Israel J. Math. 149 (2005), 1-19.

M. Johnson. Convergence of polynomial ergodic averages of several variables for some commuting
transformations. Illinois J. Math. 53(3) (2009), 865-882.

A. N. Kolmogorov. A simplified proof of the Birkhoff—Khinchin ergodic theorem. Uspekhi Mat. Nauk
5(1938), 52-56.

A. Leibman. Multiple recurrence theorem for measure preserving actions of a nilpotent group. Geom.
Funct. Anal. 8 (1998), 853-931.

A. Leibman. Pointwise convergence of ergodic averages for polynomial actions of 74 by translations
on a nilmanifold. Ergod. Th. & Dynam. Sys. 25 (2005), 215-225.

A. Leibman. Convergence of multiple ergodic averages along polynomials of several variables. Israel
J. Math. 146 (2005), 303-322.

A. Leibman. Rational sub-nilmanifolds of a compact nilmanifold. Ergod. Th. & Dynam. Sys. 26
(2006), 787-798.

A. Leibman. Orbits on a nilmanifold under the action of a polynomial sequence of translations. Ergod.
Th. & Dynam. Sys. 27 (2007), 1239-1252.

J. von Neumann. Physical applications of the ergodic hypothesis. Proc. Natl. Acad. Sci. USA 18(3)
(1932), 263-266.

A. Potts. Multiple ergodic averages for flows and an application. [llinois J. Math. to appear.
arXiv:0910.3687.

N. Shah. Limit distributions of polynomial trajectories on homogeneous spaces. Duke Math. J. 75(3)
(1994), 711-732.

T. Ziegler. Universal characteristic factors and Furstenberg averages. J. Amer. Math. Soc. 20(1) (2007),
53-97.



