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Abstract

We discuss the nature of the phenomenon of “large limits along
cubic averages” and obtain some rather general new results. We also
prove a general version of Furstenberg’s correspondence principle that
applies to uncountable amenable discrete groups and utilize this to
derive combinatorial corollaries of ergodic results involving large lim-
its.

0. Introduction

Let (X,B, µ, T ) be an invertible probability measure preserving system. The classical
Poincaré recurrence theorem (see [Po], Theorem I) states that for any A ∈ B with µ(A) > 0
there exists n ∈ N such that µ(A ∩ TnA) > 0. For mixing systems one has limn→∞ µ(A ∩
TnA) = µ(A)2, and it is natural to ask whether for any (X,B, µ, T ), any A ∈ B, and any
δ > 0 one can find n 6= 0 such that

µ(A ∩ TnA) ≥ µ(A)2 − δ,

and, if so, how “large” the set

Rδ(A) =
{
n ∈ Z : µ(A ∩ TnA) ≥ µ(A)2 − δ

}

can be. These questions were addressed in [Kh], where the following result, often quoted
as “Khintchine’s recurrence theorem”, was obtained.

Theorem 0.1. For any invertible probability measure preserving system (X,B, µ, T ), any
A ∈ B, and any δ > 0, the set Rδ(A) is syndetic.(1)

(We are taking the liberty to formulate Khintchine’s result for powers of a single measure
preserving transformation. Khintchine’s paper dealt with continuous measure preserving
flows.)

In [Kh], Theorem 0.1 was derived from the following stronger result. (Again, we
formulate it for Z- rather than for R-actions.)

Partially supported by NSF grants DMS-0901106 and DMS-1162073.
(1) A set S in a topological group G is said to be (left) syndetic if there exists a compact set

F ⊆ G such that G = FS. If G is a discrete group, F has to be finite.
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Theorem 0.2. For any invertible probability measure preserving system (X,B, µ, T ) and
any A ∈ B, one has

lim
N−M→∞

1

N −M

N−1∑

n=M

µ(A ∩ TnA) ≥ µ(A)2.

By iterating Khintchine’s theorem, one immediately observes that for any n ∈ Rδ(A)
there exists a syndetic set of m ∈ Z such that

µ
(
(A ∩ TnA) ∩ Tm(A ∩ TnA)

)
= µ(A ∩ TnA ∩ TmA ∩ Tn+mA) > µ(A)4 − 2δ. (0.1)

This leads to the natural question of whether, for any δ > 0, the set of pairs (n,m) satisfying
(0.1) is syndetic in Z

2. The affirmative answer follows from the following theorem.

Theorem 0.3. ([B1]) For any invertible probability measure preserving system (X,B, µ, T )
and any A ∈ B, one has

lim
N1−M1,N2−M2→∞

1

(N1 −M1)(N2 −M2)

∑

M1≤n<N1

M2≤m<N2

µ(A ∩ TnA ∩ TmA ∩ Tn+mA) ≥ µ(A)4.

Corollary 0.4. For any invertible probability measure preserving system (X,B, µ, T ), any
A ∈ B, and any δ > 0, the set

{
(n,m) ∈ Z

2 : µ(A ∩ TnA ∩ TmA ∩ Tn+mA) > µ(A)4 − δ
}

is syndetic.

Theorem 0.3 was extended in [HK1] and [HK2] to multiparameter expressions of the
form µ

(⋂
ε1,...,εk∈{0,1} T

ε1n1+...+εknkA
)
, n = (n1, . . . , nk) ∈ Z

k, which in turn implies, for
any δ > 0, the syndeticity of the set

{
n ∈ Z

k : µ
( ⋂

ε1,...,εk∈{0,1}

T ε1n1+...+εknkA
)
> µ(A)2

k

− δ
}
.

The proofs of these results in [HK1] and [HK2] utilize in a rather crucial way knowl-
edge about characteristic factors responsible for the limiting behavior of the expressions

1
(N1−M1)···(Nk−Mk)

∑
M1≤n1<N1...
Mk≤nk<Nk

∏
ε1,...,εk∈{0,1} T

ε1n1+...+εknkf (2), and it is of interest to

attempt to establish the results on large intersections in the situations where there is (so
far) no sufficient knowledge on the structure of the corresponding characteristic factors.
In particular, one would like to know if, given commuting invertible measure preserving

(2) A factor Y of X is characteristic if the limit, as Ni −Mi → ∞, of the expressions under

consideration depends not on f , but only on E(f |Y ) – the conditional expectation of f with

respect to Y (the orthogonal projection of f on L2(Y ) ⊆ L2(X)).
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transformations T1, . . . , Tk of a probability space (X,B, µ) and a set A ∈ B with µ(A) > 0,
the set

R
(k)
δ (A) =

{
(n1, . . . , nk) ∈ Z

k : µ
( ⋂

ε1,...,εk∈{0,1}

T ε1n1

1 . . . T εknk

k A
)
> µ(A)2

k

− δ
}

(0.2)

is syndetic.
The goal of this short paper is to show that the phenomenon of large limits along

cubic configurations has a very general scope and hinges on a simple “Fubini principle”
(Lemma 1.1 below), which, roughly, states that the limits of uniform multiparameter
Cesàro averages can be replaced by iterated limits of uniform Cesàro averages. In what
follows we will establish a general scheme that can be viewed as a machine for obtaining
various results on large limits of cubic averages. This machine has an input and an output.
The input consists of two convergence statements:
(i) a general multiparameter limiting theorem that stipulates the existence of certain uni-
form Cesàro limits (but does not require any description of these limits);
(ii) an ergodic limiting result pertaining to single or multiple recurrence that guarantees a
“large” uniform Cesàro limit. An example of such a result is given by Theorem 0.2. (We
will provide below a few more examples of various degrees of generality.)
Then the machine’s output is a theorem on large limits of cubic averages. An example of
such a theorem is Theorem 0.3, but, as we will see, significantly more general theorems
hold true as well.

To help the reader to get a feeling about the general results which we obtain in this
paper, let us give a sketch of the proof of the following fact, which is a rather special case
of Theorem 0.8 below.

Theorem 0.5. Let T1, . . . , Tk be invertible transformations of a probability measure space
(X,B, µ), which commute (or, more generally, generate a nilpotent group). Then for any
A ∈ B,

lim
N1−M1,...,Nk−Mk→∞

1

(N1 −M1) · · · (Nk −Mk)

∑

M1≤n1<N1...
Mk≤nk<Nk

µ
( ⋂

ε1,...,εk∈{0,1}

T ε1n1

1 · · ·T εknk

k A
)

≥ µ(A)2
k

,

and hence the set R
(k)
δ (A) defined in (0.2) is syndetic.

Proof sketch. The input statement of the form (i) that is needed for the proof is the
following fact (see [W], Theorem 5.1):

• For any A ∈ B, the limit

lim
N1−M1,...,Nk−Mk→∞

1

(N1 −M1) · · · (Nk −Mk)

∑

M1≤n1<N1...
Mk≤nk<Nk

µ
( ⋂

ε1,...,εk∈{0,1}

T ε1n1

1 · · ·T εknk

k A
)

exists.

3



The input statement of type (ii) is Theorem 0.2 above:

• For any A ∈ B, limN−M→∞
1

N−M

∑N−1
n=M µ(A ∩ TnA) ≥ µ(A)2.

Take k = 2. Replacing the uniform double Cesàro limit by the iterated uniform Cesàro
limits (this is an instance of the Fubini principle alluded to above), we have:

lim
N1−M1,N2−M2→∞

1

(N1 −M1)(N2 −M2)

∑

M1≤n<N1

M2≤m<N2

µ
(
A ∩ Tn1

1 A ∩ Tn2

2 A ∩ Tn1

1 Tn2

2 A
)

= lim
N1−M1→∞

1

N1 −M1

N1−1∑

n1=M1

lim
N2−M2→∞

1

N2 −M2

N2−1∑

n2=M2

µ
(
(A ∩ Tn1

1 A) ∩ Tn2

2 (A ∩ Tn1

1 A)
)

≥ lim
N1−M1→∞

1

N1 −M1

N1−1∑

n1=M1

µ(A ∩ Tn1

1 A)2 ≥
(

lim
N1−M1→∞

1

N1 −M1

N1−1∑

n1=M1

µ(A ∩ Tn1

1 A)
)2

≥ (µ(A)2)2.

Inductively repeating this argument for k = 3, 4, . . ., gives us the desired result.

In order to formulate our results in proper generality we have to introduce some
notation. For a (left) amenable group G with left Haar measure τ and a mapping g 7→ vg,
g ∈ G, from G to a Banach space V , let us write UC-limg∈G vg = v if for every left Følner
net (Φα)

(3) in G one has

lim
α→∞

1

τ(Φα)

∫

Φα

vg dτ(g) = v.

(If G is σ-compact (that is, is a countable union of compact sets), Følner nets can be
replaced by Følner sequences; see [P].)

In what follows, let (X,B, µ) be a probability measure space. We will prefer to deal
with functions from L2(X) instead of subsets of X; to obtain results about sets A ∈ B
one takes f = 1A. Notice also that to get a left action of a non-commutative group G on
L2(X) we have to assume that G acts on X from the right; of course, this does not affect
the results. (In Section 3 we pass back to a left action of G on X.) In Section 2 we will
prove the following:

Theorem 0.6. Let G1, . . . , Gk be locally compact amenable groups and, for each i =
1, . . . , k, let Ti,1, . . . , Ti,ri be (not necessarily homomorphic or continuous) mappings from
Gi to the set of measure preserving transformations of X. Assume that the following two
conditions are satisfied:
(i) for any collection fj1,...,jk , 1 ≤ j1 ≤ r1, . . ., 1 ≤ jk ≤ rk, of functions from L∞(X), the
limit

UC-lim
(g1,...,gk)∈G1×···×Gk

∫

X

∏

1≤j1≤r1...
1≤jk≤rk

(
T1,j1(g1) · · ·Tk,jk(gk)fj1,...,jk

)
dµ

(3) A left Følner net in a group G is a family (Φα)α∈A of compact non-null subsets of G,

indexed by a directed set A, such that limατ(Φα△(gΦα))/τ(Φα) = 0.
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exists;
(ii) for any non-negative function f ∈ L2(X) and any i ∈ {1, . . . , k},

UC-lim
gi∈Gi

∫

X

ri∏

ji=1

(
Ti,ji(gi)f

)
dµ ≥

(∫

X

f dµ
)ri

.

Then for any non-negative function f ∈ L∞(X),
(a)

UC-lim
(g1,...,gk)∈G1×···×Gk

∫

X

∏

1≤j1≤r1...
1≤jk≤rk

(
T1,j1(g1) · · ·Tk,jk(gk)f

)
dµ ≥

(∫

X

f dµ
)r1···rk

;

(b) for any δ > 0, the set

{
(g1, . . . , gk) ∈ G1×· · ·×Gk :

∫

X

∏

1≤j1≤r1...
1≤jk≤rk

(
T1,j1(g1) · · ·Tk,jk(gk)f

)
dµ >

(∫

X

f dµ
)r1···rk

−δ
}

is syndetic in G1 × · · · ×Gk.

In order to apply this result we only need to verify, in concrete situations, whether
conditions (i) and (ii) are satisfied. A very general theorem guaranteeing the fulfillment of
condition (i) is the following:

Theorem 0.7. ([Z]) Let G be a locally compact amenable group and let S1, . . . , Sk be
continuous polynomial mappings(4) from G to a nilpotent group of measure preserving
transformations of X. Then, for any f1, . . . , fl ∈ L∞(X), UC-limg∈G

∏l
i=1 Si(g)fi exists

in L2(X).

This theorem will allow us to obtain two kinds of applications. First, we will get a
general result (Theorem 0.8 below) on convergence and recurrence. One can then use a
variant of Furstenberg’s corresponcence principle for combinatorial actions (see [BF]) to
obtain some combinatorial applications. There is however a much more interesting vista
that Theorem 0.7 opens up. Namely, it applies, in particular, to discrete uncountable
amenable groups, which – via an appropriate generalization of Furstenberg’s correspon-
dence principle – will allow us to obtain somewhat unexpected combinatorial applications
(see Section 3).

As for condition (ii), it holds, for example, in the following situations:

(4) A mapping P from a group G to a (nilpotent) group H is said to be polynomial if there is

d ∈ N such that for any h1, . . . , hd ∈ G one has Dh1
· · ·Dhd

P = 1, where the “derivative” Dh is

defined by (DhP )(g) = P (g)−1P (gh).
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(1) Let T be a measure preserving action on X of a locally compact amenable group G.
For any f ∈ L2(X), by the classical von Neumann ergodic theorem, adapted to limits
along Følner nets, one has UC-limg∈G Tgf = Pf , where P is the orthogonal projection
onto the space

{
f ∈ L2(X) : Tgf = f for all g ∈ G

}
. For f ≥ 0 we have Pf ≥ 0 and∫

X
Pf dµ =

∫
X
f dµ. Hence,

UC-lim
g∈G

∫

X

f ·Tgf dµ =

∫

X

f ·Pf dµ =

∫

X

Pf ·Pf dµ = ‖Pf‖2 ≥
(∫

X

Pf dµ
)2

=
(∫

X

f dµ
)2

.

Thus, condition (ii) is satisfied for Ti,1 = Id and Ti,2 = T . This gives us the following
result:

Theorem 0.8. Let G1, . . . , Gk be locally compact amenable groups and let Ti, i = 1, . . . , k,
be (continuous) homomorphisms from Gi to a nilpotent group of measure preserving trans-
formations of X. Then for any non-negative function f ∈ L∞(X),
(a)

UC-lim
(g1,...,gk)∈G1×···×Gk

∫

X

∏

ε1,...,εk∈{0,1}

(
T1(g1)

ε1 · · ·Tk(gk)
εkf

)
dµ ≥

(∫

X

f dµ
)2k

;

(b) for any δ > 0, the set

{
(g1, . . . , gk) ∈ G1×· · ·×Gk :

∫

X

∏

ε1,...,εk∈{0,1}

(
T1(g1)

ε1 · · ·Tk(gk)
εkf

)
dµ >

(∫

X

f dµ
)2k

−δ
}

is syndetic in G1 × · · · ×Gk.

(2) Let F be a (discrete) field and let V be a finite dimensional vector space over F . We
call a mapping T from V to a group T polynomial if T = S ◦ P , where P is a polynomial
(in the usual sense) mapping from V to a finite dimensional vector space W over F and
S is a homomorphism from W to T . The following theorem, extending a result of Larick
([La]), can be found in [BLM]:

Theorem 0.9. Let V be a finite dimensional vector space and let U be a polynomial
unitary action of V on a Hilbert space H. Then for any f ∈ H, UC-limv∈V U(v)f exists
and is the orthogonal projection of f on the space of U(V )-invariant vectors.

(In [BLM], this theorem is stated and proved for the case where the base field F is count-
able, but it remains true, with the same proof, when F is uncountable.)

It follows that if T is a polynomial measure preserving action on X of a finite dimen-
sional vector space V , then for any non-negative f ∈ L2(X), UC-limv∈V

∫
X
f ·T (v)f dµ ≥(∫

X
f dµ

)2
. Based on this fact, Theorem 0.6 acquires the following form:
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Theorem 0.10. Let V1, . . . , Vk be finite dimensional vector spaces over a field F and let
Ti, i = 1, . . . , k, be polynomial mappings from Vi to a nilpotent group of measure preserving
transformations of X. Then for any non-negative function f ∈ L∞(X),
(a)

UC-lim
(v1,...,vk)∈V1⊕...⊕Vk

∫

X

∏

ε1,...,εk∈{0,1}

(
T1(v1)

ε1 · · ·Tk(vk)
εkf

)
dµ ≥

(∫

X

f dµ
)2k

;

(b) for any δ > 0, the set
{
(u1, . . . , uk) ∈ V1 ⊕ · · · ⊕ Vk :

∫

X

∏

ε1,...,εk∈{0,1}

(
T1(v1)

ε1 · · ·Tk(vk)
εkf

)
dµ >

(∫

X

f dµ
)2k

− δ
}

is syndetic in the (discrete) group V1 ⊕ · · · ⊕ Vk.

(3) Let us say that polynomials p1, . . . , pr are essentially linearly independent if the poly-
nomials p1 − p1(0), . . . , pr − pr(0) are linearly independent. The following theorem can be
found in [FK]:

Theorem 0.11. Let T be a totally ergodic measure preserving transformation of X and
let p1, . . . , pr be integer valued, essentially linearly independent polynomials of one or sev-
eral integer variables. Then for any f1, . . . , fr ∈ L∞(X), UC-limn∈Z

∏r

j=1 T
pj(n)fj =∏r

j=1

∫
X
fj dµ.

(In [FK], this theorem was stated and proved for the case of polynomials of one variable
only, but the same argument works in the case of polynomials of several variables as well.)

Via Theorem 0.6, this result implies the following:

Theorem 0.12. Let T1, . . . , Tk be totally ergodic measure preserving transformation of X
generating a nilpotent group, and let for each i = 1, . . . , k, pi,j , j = 1, . . . , rk, be essentially
linearly independent polynomials Z

di −→ Z. Then for any non-negative function f ∈
L∞(X),
(a)

UC-lim
(n1,...,nk)∈Zd1×···×Z

dk

∫

X

∏

1≤j1≤r1...
1≤jk≤rk

(
T

p1,j1
(n1)

1 · · ·T
pk,jk

(nk)

k f
)
dµ ≥

(∫

X

f dµ
)r1···rk

;

(b) for any δ > 0, the set
{
(n1, . . . , nk) ∈ Z

d1 × · · · × Z
dk :

∫

X

∏

1≤j1≤r1...
1≤jk≤rk

(
T

p1,j1
(n1)

1 · · ·T
pk,jk

(nk)

k f
)
dµ >

(∫

X

f dµ
)r1···rk

− δ
}

is syndetic in Z
d1+···+dk .
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(4) Theorem 0.11, stated for Z-actions, implies a similar result for R-actions (see [BLMo]).
Moreover, for R-flows, the total ergodicity is no longer an issue (R-flows are totally ergodic
if ergodic, and the ergodic decomposition allows us to give up the condition of ergodicity
as well). We therefore also get the following theorem:

Theorem 0.13. Let (T1)t∈R, . . . , (Tk)t∈R be flows of measure preserving transformations
of X generating a nilpotent group, and let, for each i = 1, . . . , k, pi,j , j = 1, . . . , rk,
be essentially linearly independent polynomials R

di −→ R. Then for any non-negative
function f ∈ L∞(X),
(a)

UC-lim
(t1,...,tk)∈Rd1×···×R

dk

∫

X

∏

1≤j1≤r1...
1≤jk≤rk

(
T

p1,j1
(t1)

1 · · ·T
pk,jk

(tk)

k f
)
dµ ≥

(∫

X

f dµ
)r1···rk

;

(b) for any δ > 0, the set

{
(t1, . . . , tk) ∈ R

d1 × · · · × R
dk :

∫

X

∏

1≤j1≤r1...
1≤jk≤rk

(
T

p1,j1
(t1)

1 · · ·T
pk,jk

(tk)

k f
)
dµ >

(∫

X

f dµ
)r1···rk

− δ
}

is syndetic in (the topological) group R
d1+···+dk .

The fundamental nature of cubic averages is also manifested by the fact that the mul-
tiple recurrence results, such as Theorem 0.8, lead to new sharp combinatorial applications
involving large sets in uncountable amenable groups. For example, one has the following
result (see Theorem 3.2 in Section 3 for a more general statement):

Theorem 0.14. Let d, k ∈ N and let m be an invariant mean(5) on the group R
d, con-

sidered as a discrete group. Then for any E ⊆ R
k with m(1E) > 0 and any δ > 0, the

set

Rδ =
{
(u1, . . . , uk) ∈ (Rd)k : m

( ⋂

ε1,...,εk∈{0,1}

(
E − (ε1u1 + · · ·+ εkuk)

))
> m(E)2

k

− δ
}

is syndetic in (the discrete) group (Rd)k (meaning that finitely many shifts of Rδ cover
(Rd)k).

(5) A left-invariant mean is a linear functional m on the space BC(G) of bounded continuous

real-valued functions on G such that m(1) = 1, m(f) ≥ 0 if f ≥ 0, and m(f(tx)) = m(f(x)) for

all f and all t ∈ G.
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In order to establish this result one needs a variant of Furstenberg’s correspondence
principle that holds for general, possibly uncountable, discrete amenable groups. (See
Theorem 3.1 in Section 3.)

The structure of the rest of the paper is as follows. In Section 1 we state and prove the
Fubini principle alluded to above. In Section 2 we prove Theorem 0.8 and obtain its corol-
laries. Section 3 is devoted to establishing a general form of Furstenberg’s correspondence
principle and utilizing it to derive some combinatorial applications.

1. The Fubini principle – double and repeated Cesàro limits

Lemma 1.1. Let G, H be amenable groups and let (h, g) 7→ vh,g, (h, g) ∈ H × G,
be a bounded continuous mapping from H × G to a Banach space V . Assume that
UC-lim(h,g)∈H×G vh,g exists and for every g ∈ G, UC-limh∈H vh,g exists; then

UC-lim
g∈G

UC-lim
h∈H

vh,g = UC-lim
(h,g)∈H×G

vh,g.

Proof. Let v = UC-lim(h,g)∈H×G vh,g, and for every g ∈ G, let vg = UC-limh∈H vh,g. Let
(Φα) be a Følner net in G and (Ψβ) be a Følner net in H. Then (Ψβ ×Φα) is a Følner net
in H ×G (where by (β1, α1) < (β2, α2) we mean β1 < β2 and α1 < α2). Let δ > 0. Let τ ,
τ ′ be left Haar measures on G and H respectively, and let τ ′′ = τ ′ × τ . Find β0, α0 such
that

1

τ ′′(Ψβ × Φα)

∫

Ψβ×Φα

vh,g dτ
′′(h, g)

δ
≈ v

whenever β > β0 and α > α0. It then follows that for any α > α0,

1

τ(Φα)

∫

Φα

vg dτ(g) =
1

τ(Φα)

∫

Φα

lim
β

1

τ(Ψβ)

(∫

Ψβ

vh,g dτ
′(h)

)
dτ(g)

= lim
β

1

τ ′′(Ψβ × Φα)

∫

Ψβ×Φα

vh,g dτ
′′(h, g)

δ
≈ v.

For σ-compact amenable groups one has a version of Lemma 1.1 that involves Følner
sequences instead of Følner nets. For such a group G and a mapping g 7→ vg, g ∈ G, from
G to a Banach space V , we have UC-limg∈G vg = v iff limN→∞

1
τ(Φn)

∫
Φn

vg dτ(g) = v for

every Følner sequence (Φn) in G.

Lemma 1.2. Let G, H be σ-compact amenable groups and let vh,g, (h, g) ∈ H ×G, be a
continuous mapping from H×G to a Banach space V . Assume that UC-lim(h,g)∈H×G vh,g
exists and for every h ∈ H, UC-limg∈G vh,g exists; then

UC-lim
h∈H

UC-lim
g∈G

vh,g = UC-lim
(h,g)∈H×G

vh,g.

Proof. Let v = UC-lim(h,g)∈H×G vh,g, and for every g ∈ G, let vg = UC-limh∈H xh,g. Let
(Φn) be any Følner sequence in G and (Ψm) be a Følner sequence in H. Let τ , τ ′ be
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left Haar measures on G and H respectively, and let τ ′′ = τ ′ × τ . Choose an increasing
sequence of integers (mn) such that for every n,

∥∥∥
1

τ ′(Ψmn
)

∫

Φmn

vh,g dτ
′(h)− vg

∥∥∥ <
1

n

for all g ∈ Φn. Then for any n,

∥∥∥
1

τ ′′(Ψmn
× Φn)

∫

Ψmn×Φn

vh,g dτ
′′(h, g)−

1

τ(Ψn)

∫

Φn

vg dτ(g)
∥∥∥ <

1

n
.

(Ψmn
× Φn) is a Følner sequence in H × G, so 1

τ ′′(Ψmn×Φn)

∫
Ψmn×Φn

vh,g dτ
′′(h, g) −→ v

as n −→ ∞. Thus, 1
τ(Φn)

∫
Φn

vg dτ(g) −→ v.

To deduce, from the largeness of uniform Cesàro limits, the syndeticity of the “sets of
large intersection” (part (b) of Theorem 0.6), we will need the following fact:

Lemma 1.3. Let G be a locally compact amenable group and let ag, g ∈ G, be a mapping
G −→ R with UC-limg∈G ag = a. Then for any δ > 0 the set R =

{
g ∈ G : ag > a− δ

}
is

syndetic in G.

Proof. Choose a Følner net (Φα) in G. If R is not syndetic, then there is a net (gα) in G
such that for any α, gαΦα ∩R = ∅. But (gαΦα) is also a Følner net in G, and for this net
we have lim supα→∞

1
|gαΦα|

∑
g∈Φα

ag ≤ a− δ, which contradicts UC-limg∈G ag = a.

2. Large cubic averages: a proof of Theorem 0.6

Proof of Theorem 0.6. Part (b) of the theorem follows from part (a) and Lemma 1.3,
so we only have to prove (a). Notice that, putting fj1,...,jk−1,1 = 1 and fj1,...,jk−1,jk =
fj1,...,jk−1

for jk ≥ 2 for all j1, . . . , jk−1, we have from (i) that the limit

UC-lim
(g1,...,gk−1)∈G1×···×Gk−1

∫

X

∏

1≤j1≤r1...
1≤jk−1≤rk−1

(
T1,j1(g1) · · ·Tk−1,jk−1

(gk−1)fj1,...,jk−1

)
dµ

exists for any collection fj1,...,jk−1
of functions from L∞(X).

Let f ∈ L∞(X), f ≥ 0. For any g1 ∈ G1, . . ., gk ∈ Gk, we can rewrite

∫

X

∏

1≤j1≤r1...
1≤jk≤rk

(
T1,j1(g1) · · ·Tk−1,jk−1

(gk−1)Tk,jk(gk)f
)
dµ

=

∫

X

∏

1≤j1≤r1...
1≤jk−1≤rk−1

(
T1,j1(g1) · · ·Tk−1,jk−1

(gk−1)
( rk∏

jk=1

(
Tk,jk(gk)f

)))
dµ.
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By assumption (i), the limit

UC-lim
(g1,...,gk)∈G1×···×Gk

∫

X

∏

1≤j1≤r1...
1≤jk≤rk

(
T1,j1(g1) · · ·Tk,jk(gk)f

)
dµ

exists, also for any gk ∈ Gk the limit

UC-lim
(g1,...,gk−1)∈G1×···×Gk−1

∫

X

∏

1≤j1≤r1...
1≤jk−1≤rk−1

(
T1,j1(g1) · · ·Tk−1,jk−1

(gk−1)
( rk∏

jk=1

(
Tk,jk(gk)f

)))
dµ

exists, and, by induction on k, is ≥
(∫

X

∏rk
jk=1

(
Tk,jk(gk)f

)
dµ

)r1···rk−1 . Thus Lemma 1.1
applies and, combined with Hölder’s inequality and assumption (ii), implies

UC-lim
(g1,...,gk)∈G1×···×Gk

∫

X

∏

1≤j1≤r1...
1≤jk≤rk

(
T1,j1(g1) · · ·Tk,jk(gk)f

)
dµ

UC-lim
(g1,...,gk−1)∈G1×···×Gk−1

∫

X

∏

1≤j1≤r1...
1≤jk−1≤rk−1

(
T1,j1(g1) · · ·Tk−1,jk−1

(gk−1)
( rk∏

jk=1

(
Tk,jk(gk)f

)))
dµ

≥ UC-lim
gk∈Gk

(∫

X

rk∏

jk=1

(
Tk,jk(gk)f

)
dµ

)r1···rk−1

≥
(
UC-lim
gk∈Gk

∫

X

rk∏

jk=1

(
Tk,jk(gk)f

)
dµ

)r1···rk−1

≥
(∫

X

f dµ
)r1···rk

.

3. Furstenberg’s correspondence principle for general amenable groups and
applications

When G is a countable amenable group, one can get combinatorial corollaries of The-
orem 0.6 by invoking a version of Furstenberg’s correspondence principle for amenable
groups (see [B3], Theorem 6.4.17). For general amenable locally compact groups, a vari-
ant of correspondence principle was obtained in [BF]. This variant allows us to obtain
combinatorial corollaries of multiple recurrence results for continuous actions and guaran-
tees existence of combinatorial patterns only in properly dilated large sets in topological
amenable groups (see the details in [BF], Section 1). Since some of the results obtained in
Theorem 0.6 hold true for actions of discrete uncountable groups, it is natural to inquire
whether there exists a properly general version of Furstenberg’s correspondence principle
which would guarantee the existence (and abundance) of “cubic” patterns in any large set
of, say, Rd, considered with the discrete topology. The goal of this section is to estab-
lish such a general principle and to derive some of its corollaries. To make the discussion
precise, one has, of course, to define first what is meant by a “large” set.
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If G is a countable amenable group, the standard way of defining the basic notion
of largness for a set E ⊆ G is to declare E to be large if it has positive upper density
d̄(Φn)(E) := lim supn→∞ |E ∩ Φn|/|Φn| with respect to some Følner sequence (Φn) in G.
It is not hard to show that d̄(Φn)(E) > 0 if and only if there exists an invariant mean on
the space B(G) of bounded real-valued functions on G such that m(1E) > 0. If G is an
uncountable discrete amenable group, one still has at ones disposal both approaches to
defining the notion of largeness. However, a word of caution is in order here. Namely, in
uncountable discrete groups one no longer has the luxury of working with Følner sequences
and has to switch to Følner nets in order to define the notion of upper dentisty and establish
its translation invariance (see [HS]). After that, in full analogy with the case of countable
amenable groups, one can show that a set E ⊆ G has positive upper density if and only if for
some invariant mean m on B(G) one has m(E) > 0. (When convenient, we will write m(E)
for m(1E).) We prefer to work with the invariant means from the outset. The following
version of Furstenberg’s correspondence principle has the more familiar correspondence
principle for countable amenable groups ([B3]) as a special case.

Theorem 3.1. Let G be a discrete amenable group. Let m be a left-invariant mean on
B(G). Let E ⊆ G, m(E) > 0. Then there exists a probability measure preserving system
(X,B, µ, (Tg)g∈G), where X is a compact space, B is the Borel σ-algebra on X, and (Tg)g∈G

is an action of G on X by homeomorphisms, and a set A ∈ B with µ(A) = m(E), such
that for any k ∈ N and any g1, . . . , gk ∈ G one has

m
(
E ∩ g−1

1 E ∩ . . . ∩ g−1
k E

)
= µ

(
A ∩ T−1

g1
A ∩ . . . ∩ T−1

gk
A
)
. (3.1)

Proof. The perspicacious reader has already guessed that we will set X to be βG, the
Stone-Čech compactification of G. Let µ be the unique probability measure on the Borel
σ-algebra of βG corresponding to m. The correspondence is implemented by the formula
m(f) =

∫
βG

f̂ dµ, where f ∈ B(G) and f̂ denotes the continuous extension of f to βG. For

any set E ⊆ G, let E be the closure if E ∈ βG. Sets of the form E, E ⊆ G, are closed and
open and form the basis of open sets in βG. For any g ∈ G, the map h 7→ gh, h ∈ G, has
a unique continuous extension to βG, which we will denote by Tg. The maps Tg, g ∈ G,
are µ-preserving homeomorphisms of βG. (The µ-invariance follows from the invariance
of the mean m.) Now, for any f0, f1, . . . , fk ∈ B(G) on has

m
( k∏

i=0

fi

)
=

∫

βG

k∏

i=0

f̂i dµ.

Applying this to f0 = 1E and fi = 1g−1

i
E , i = 1, . . . , k, we get (3.1).

The following combinatorial result immediately follows from Theorem 3.1 and Theo-
rem 0.8:

Theorem 3.2. Let G be a (discrete) nilpotent group and let m be an invariant mean on
B(G). If E ⊆ G satisfies m(E) > 0, then, for any k ∈ N and δ > 0, the set

{
(g1, . . . , gk) ∈ Gk : m

( ⋂

ε1,...,εk∈{0,1}

(gε11 · · · gεkk )−1E
)
> m(E)2

k

− δ
}

is syndetic in Gk (that is, finitely many translates of this set cover Gk).
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Theorem 0.10, in its turn, implies the following combinatorial fact:

Theorem 3.3. Let V1, . . . , Vk be finite dimensional vectors spaces over a (discrete) field
F , let P1, . . . , Pk be polynomial mappings from Vi to a finite dimensional vector space W
over F , let m be an invariant mean on B(W ), and let E ⊆ W satisfies m(E) > 0. Then
for any δ > 0, the set
{
(u1, . . . , uk) ∈ V1⊕· · ·⊕Vk : m

( ⋂

ε1,...,εk∈{0,1}

(
ε1P1(u1)+· · ·+εkPk(uk)

)
E
)
> m(E)2

k

−δ
}

is syndetic in the group V1 ⊕ · · · ⊕ Vk.

Remark. A more familiar form of Furstenberg’s correspondence principle deals with large
sets in countable groups (see, for example, [B2], [B3]), and in this case one can guaran-
tee that the resulting measure preserving system (X,B, µ, (Tg)g∈G) is regular, meaning
that X is a compact metric space and B is the Borel σ-algebra on X. The regularity of
(X,B, µ, (Tg)g∈G) plays an instrumental role in ergodic proofs of Szemerédi’s theorem and
its extensions (see [Fu1], [FuKa], [BL], [BM]). To quote from [Fu2], p.103: “For certain
of the constructions to be carried out it will be necessary to choose between equivalent
measure spaces, confining ones attention to regular spaces.”. The goal of the next propo-
sition is to show that when G is countable, one can replace the measure preserving system
(X,B, µ, (Tg)g∈G), appearing in the proof of Theorem 3.1, by a regular one.

Proposition 3.4. Let (Tg)g∈G be a measure preserving action of a countable group G on
a probability space (X,B, µ) and let A ∈ B. Then there exists a regular probabilty measure

preserving system (X̃, B̃, µ̃, (T̃g)g∈G) and a set Ã ∈ B such that, for any k ∈ N and any
g1, . . . , gk ∈ G, one has

µ̃
(
Ã ∩ T̃−1

g1
Ã ∩ · · · ∩ T̃−1

gk
Ã
)
= µ

(
A ∩ T−1

g1
A ∩ · · · ∩ T−1

gk
A
)
.

Proof. Let f = 1A and let A be the closure in L∞(X,B, µ) of the algebra generated by
the functions Tgf , g ∈ G, and their complex conjugates. A is a separable commutative

C∗-algebra, and so, by Gelfand’s theorem, there exists a compact metric space X̃ such that
A is isomorphic to C(X̃). Let f̃ ∈ C(X̃) be the image of f under this isomorphism. Since
f = 1A is an idempotent, f̃ is also an idempotent, and thus is of the form f̃ = 1

Ã
for some

(clopen) set Ã ∈ B̃, where B̃ is the Borel σ-algebra on X̃. The measure µ, interpreted as a

linear functional on A, gives rise to a positive linear functional on C(X̃), which, by Riesz’s

theorem, can be represented by a measure µ̃ on B̃. Clearly, µ̃(Ã) = µ(A).
The isometric operators induced on A by Tg, g ∈ G, give rise to isometries of

C(X̃), which, by a classical theorem of Banach, determine (or, rather, are determined)

by homomorphisms T̃g: X̃ −→ X̃, which in our case are also µ̃-preserving. Let g0 = e,
g1, . . . , gk ∈ G. It is clear that the functions Tgif = 1T−1

gi
A and their products correspond

to the functions 1
T̃

−1

gi
Ã
and the products thereof; hence,

µ̃
(
Ã∩T̃−1

g1
Ã∩· · ·∩T̃−1

gk
Ã
)
=

∫

X̃

k∏

i=0

1
T̃

−1

gi
Ã
dµ̃ =

∫

X

k∏

i=0

1T−1

gi
Adµ = µ

(
A∩T−1

g1
A∩· · ·∩T−1

gk
A
)
.
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