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Abstract

A generalized polynomial is a real-valued function which is obtained from
conventional polynomials by the use of the operations of addition, multiplica-
tion, and taking the integer part; a generalized polynomial mapping is a vector-
valued mapping whose coordinates are generalized polynomials. We show that

any bounded generalized polynomial mapping u: Z% — R! has a representation
u(n) = f(p(n)x), n € Z%, where f is a piecewise polynomial function on a compact
nilmanifold X, x € X, and ¢ is an ergodic Z%-action by translations on X. This
fact is used to show that the sequence u(n), n € Zd, is well distributed on a piece-

wise polynomial surface & C R! (with respect to the Borel measure on S that is
the image of the Lebesgue measure under the piecewise polynomial function defin-
ing S). As corollaries we also obtain a von Neumann-type ergodic theorem along
generalized polynomials and a result on diophantine approximations extending the
work of van der Corput and of Furstenberg-Weiss.
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0. Introduction and formulation of main results

0.1. The main object of study in this paper is the class GP of generalized polynomials,
namely the class of functions which is generated by starting with conventional polynomi-
als of one or several variables and applying in arbitrary order the operations of taking the
integer part (sometimes called bracket function, or floor function), addition, and multipli-
cation. We will denote the integer part of a number a € R or, more generally, of a vector
a € R!, by [a], and the fractional part of a, a — [a], by (a). Accordingly, given a real or
a vector-valued function f, the functions [f] and (f) are defined by [f](z) = [f(x)] and
(ry=r-1rl

The following description presents the class GP in a more formal way. For a fixed
d € N let GP( denote the ring of polynomial mappings from either Z¢ or R¢ to R, and let
GP = J,~, GP,, where, for n > 1,

GP,, =GP,,_1 U {U-I-w Cv,w E GPn_l} U {vw Cv,w E GPn_l} U {[v] tv € GPn_l}.

Finally, let us call vector-valued generalized polynomials u = (uq,...,u;): Z¢ — R,
or R® — R, with uq,...,u; € GP, generalized polynomial mappings, or GP mappings.

In this paper we will mainly deal with GP mappings of integer vector argument, that
is, with GP mappings Z¢ — R’

0.2. Examples. If p; are ordinary polynomials of one or several variables, then [pi1], p1[p2],
p1+p2(psl, H[pl]pZ +ps][palps + pg] + pr[ps]? are generalized polynomials. Note that if one
identifies R/Z with [0, 1), there there is no distinction between (p) and pmod1, so that
expressions like [p1]?(pa[ps] + p4)?(mod 5) are generalized polynomials as well.

0.3. Clearly, generalized polynomials form an algebra, and the composition of two gener-
alized polynomial mappings is a generalized polynomial mapping.

0.4. Generalized polynomials of a special type are featured in the following classical result
due to H. Weyl ([We]).

Theorem. Given a (conventional) polynomial p(n) = Zf:o a;n® such that at least one
among the coefficients ay, . ..,ay is irrational, the sequence of values {{p(n))}nen of the
generalized polynomial (p) is uniformly distributed on [0,1]. In particular, for any € > 0
there exists n € N such that (p(n)) < e.

0.5. The following examples demonstrate various distribution phenomena which one en-
counters when dealing with bounded generalized polynomials u:Z — R:

Examples. Let a and b be rationally independent irrational numbers.

(1) The values of the generalized polynomial u(n) = (an)? are dense but not uniformly

distributed on [0, 1]. They are, however, uniformly distributed on [0, 1] with respect to the

dx
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(2) The sequence {—v/2n[v2n]), n € N, is dense and uniformly distributed on [0, 1] with

respect to the measure which is equal to Q\d/”;—x on [O, %} and to 2\/2% on [%, 1}. (See
subsection 3.6 below.) On the other hand, one can show that the sequence (—v/2n[v/2n]),
n € N, is uniformly distributed on [0, 1] with respect to the standard Lebesgue measure.

(This fact is a special case of Proposition 5.3 in [Ha2].)

(3) The sequence (an)(bn), n € N, is uniformly distributed on [0, 1] with respect to
the measure —logxdx. (This follows from the fact that the vector-valued sequence
({an), (bn)) is uniformly distributed in the square [0,1]%.)

(4) The sequence 2(an) + 1[2(an)], n € N, is uniformly distributed on [0, 2] U [2,1] with

respect to the (normalized) Lebesgue measure.

(5) For the sequence u(n) = [2(an)]{bn), n € N, the set Z = {n € N : u(n) = 0} has
density 1/2, and the sequence of the nonzero values of u, {u(n), n¢gZz }, is uniformly
distributed on the interval [0, 1] with respect to the standard Lebesgue measure.

(6) The sequence u(n) = [(n+1)a] —[na]—[a], n € N, takes on only the values 0 and 1, with
frequency 1—(a) and (a) respectively; in other words, u(n) is uniformly distributed on [0, 1]
with respect to the measure (1 — (a))dp + (a)d1. (The generalized polynomial u(n), often
called nowadays Beatty sequence, appears already in the work of astronomer J. Bernoulli II1
(see [Mar]), and is found, under different names, in a variety of mathematical contexts,
from symbolic dynamics to theory of mathematical games.)

0.6. The examples above indicate that a generalized polynomial can have quite intricate
distributional properties. Given a bounded generalized polynomial u, one would like at
least to know whether the sequence {u(n)},cz has some regular behavior. In particular,
one would like to know the answer to the following recalcitrant question posed in [BHa:

Question. Is it true that A}im % ij:l e2™u(n) egists for any generalized polynomial u?

A general result which we obtain in this paper (Theorem B below) not only implies that
the answer to this question is positive, but also gives a description of the measure which,
so to say, governs the law of distribution of the sequence of the values of a generalized
polynomial.

0.7. A more general version of Theorem 0.4, also obtained in [We|, deals with vector-valued
generalized polynomials of the special form p mod1 = (p; mod1,...,pymod1):Z — T! =
R!/Z!, where p = (pl, . ,pl):Z — R! is a polynomial mapping.

Theorem. (Cf. [We], Theorem 18) Let p:Z — R! be a polynomial mapping and let
p = pmod1:Z — T be the corresponding generalized polynomial obtained by reduction
modulo 1. There exist (disjoint, parallel, and isomorphic) subtori Si,..., Sy in T' such

that the sequence {p(n)}nen is uniformly distributed on S = Ule Si.

0.8. When S consists of several components, that is, when k > 2, we say that a sequence
is uniformly distributed on S if it is uniformly distributed on the components S; of S
with respect to the Haar measures pg,, or more precisely, is uniformly distributed on

S with respect to a measure pg = Zle aips,, with a1,...,ar € (0,1). Here is an
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example. Let a be an irrational number, and consider the sequence p(n) = (%n2 mod 1,
namod 1, n?a mod 1), n € N, in T?. Let Sy, S; be the two-dimensional tori defined by
So = {0} x T? and S; = {3} x T2 The sequence {H(n)},en visits the tori Sp,S; in
the following order: Sy, 51, 51, S0, 51,51, . . ., and is uniformly distributed on Sy U S with
respect to the probability measure ug = % s, + % is, where pg, denotes the normalized
Lebesgue measure on S;, i = 0, 1.

0.9. A frequently cited special case of the above theorem concerns the situation where the
components of p, the polynomials pq,...,p;, are rationally independent. In this case the
sequence {p(n)}nen is uniformly distributed on T!. From our perspective, the case when
p; are rationally dependent is more significant since it contains in embryonic form certain
elements of a general theorem pertaining to arbitrary generalized polynomials.

0.10. Identifying the torus T! with the unit cube K = [0,1)! (and not distinguishing
between pmod 1 and (p)) allows one to view the subtori appearing in the formulation of
Theorem 0.7 above as sections of K by a finite system of parallel planes. One can now
rephrase Theorem 0.7 by saying that the sequence {(p(n))}nen is uniformly distributed
on a bounded piecewise linear surface in R!. The main goal of this paper is to obtain
a version of this fact for general GP mappings. But first we want to bring a couple
of examples demonstrating some peculiarities of distribution of vector-valued generalized
polynomials.

Examples. Let a and b be rationally independent irrational numbers.

(1) The values of the GP mapping u(n) = ({an}), ((an))z), n € Z, are dense on the parabola
segment S = {(:)3,:}02), x € [0, 1]} in R? and uniformly distributed on S with respect to
the measure dzx.

(2) The values of u(n) = ({an), [2¢bn)](2(an)? — 1) — (an)® + 1), n € Z, are dense and
uniformly distributed with respect to the measure dx on the union of two intersecting
parabola segments {(z,2?), = € [0,1]} and {(z,1 —2?), z € [0,1]}.

0.11. While the examples in 0.5 and 0.10 indicate that too direct a generalization of Weyl’s
theorem cannot be hoped for, it turns out that the values of any bounded generalized
polynomial u: Z¢ — R! are uniformly distributed, in a manner to be made precise, on a
piecewise polynomial surface (see subsection 0.24 below). We will now discuss the ideas
behind the proof of this fact. Let us return for a moment to Theorem 0.4. There are
essentially two known approaches to the proof of this theorem. The original approach of
Weyl in [We] can be described as follows. First, Weyl establishes the equivalence of the
following conditions for a sequence {ay }nen in [0, 1]:

(i) {an} is uniformly distributed on [0, 1], that is, for any interval [b,c] C [0, 1] one has
L. <N:a,€|b — b;

N #{n— a 6[76]}1\[?006 )

(i) for any Riemann integrable function h on [0, 1] one has + Zﬁ;l h(an) e fol hdx;
(iii) For any m € Z\ {0}, + Z,{Ll e2miman (),

N—oo

To prove the uniform distribution of the sequence {{p(n))},en, Weyl uses the fact that
if for any m € N the sequence {a,4+m — @y }nen is uniformly distributed modulo 1, then
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the sequence {a,}nen is also uniformly distributed modulo 1. Since after finitely many
applications of the difference operator D,,,p(n) = p(n +m) — p(n) the situation is reduced
to the case of linear polynomials, for which the condition (iii) above is easily verified, the
result follows. (The difference trick described above is usually called van der Corput’s
difference theorem in honor of van der Corput, who efficiently applied it in his work. See

vdC].)

0.12. A different approach to the proof of Theorem 0.4, which might be called dynamical,
deals with a special class of affine maps of a torus. This approach was introduced by
Furstenberg in [F1] and [F2] (see also [H] and [C] for a similar treatment), and can be
described as follows. Let p(n) = ag + ain + aan?. ..+ apn® = by + byn + by (Z) +...+
bi(}) € Rln]. Consider the following affine transformation, called a skew product, of the
k-dimensional torus T* = Rk /Z*:

T(y1,y2s--- k) = (y1 + bk, Y2 + Y1+ be—1, - - Yk + Yr—1 + b1). (0.1)

Let y = (0,...,0,b9) € T¥; one can check by induction on n that (T"y)x = p(n)(mod 1),
n € Z. One can now use the known properties of the dynamical system (T*,T) in order
to characterize the behavior of the sequence {(p(n))}nez. In particular, if ay, is irrational
the system (T*,T) is uniquely ergodic (with the unique T-invariant measure being the
Lebesgue measure on T¥), which implies (the one-dimensional version of) Weyl’s theorem.

0.13. Let us now return to generalized polynomials. While various modifications of the
technique based on the van der Corput difference theorem allow one to treat successfully
some special classes of generalized polynomials which are uniformly distributed with re-
spect to the Lebesgue measure (see [Hal], [Ha2|, [Ha3]), it seems not to be applicable
in the situations where the distribution law is not known in advance or is complicated.
On the other hand, the dynamical approach has much greater range of applicability. In-
deed, if a sequence {a,}nen in [0, 1] is generated by a uniquely ergodic dynamical system
(X, T, 1) (where X is a compact metric space, T is a homeomorphism X — X, and p is a
unique 7-invariant measure on X ) in the sense that for some Riemann integrable function
f: X — R and a point x € X one has a,, = f(T"z), then, as a consequence of unique
ergodicity, one will have for any function h € C(R)
' = ‘ = :
y AT 2 e = i z;wh(f(T z)) 0.2)

o n:: [ @) du= [ nav

where v = f.(u). Note that, due to the unique ergodicity of T, formula (0.2) holds

for the uniform Cesaro averages 5 Zg:_]\b h(ay) (rather than for the more traditional

averages + 2712121 h(ay)); this means that the sequence {a, }nez is well distributed (rather
than uniformly distributed) with respect to the measure v on [0, 1]. (See [F'3] and [Wa] for
discussion of basic properties of unique ergodicity, and [KN] for more information on well
distribution.) The phenomenon of well distribution of sequences generated by a uniquely
ergodic measure preserving systems takes place for actions of any amenable group; in this
paper we will mainly deal with Z?-actions.



0.14. The following example shows how a generalized polynomial can be generated by a
uniquely ergodic dynamical system. Let u(n) = (an[bn]), n € Z, where a,b € R; we are
going to obtain the generalized polynomial u “dynamically”. Let G be the group of 4 x 4

lai2a1,3a1,4
upper triangular matrices with unit diagonal, G = { 8 (1) e Zii , Qi € ]R}, and let
00 0 1

0 0 1 m3 4

00 0 1
group G naturally acts by left translations, g(¢'T') = (g¢')T, g,¢" € G. The elements of
lxi 221,321,
0 1 wasaas
0 0 1 z34

1my 2my 3my 4
I' = {(0 L m2’3m2’4>, m;,; € Z}. Then X = G/T" is a compact manifold, on which the

X can be identified with matrices x = where z; ; € [0,1); we will call z; ;,

00 0 1
1 <i < j <4, the coordinates of x. Note that while the coordinate functions x; ; are not
continuous on X, the set of points of discontinuity of each of these functions has measure

0 and therefore, each z; ; is Riemann integrable.
1—-a 10 1 —ann O

Let g = <8 (1)(1);71;) € @G; one checks that ¢g" = <8 5 ?:&), n € Z. Define a

0 001 0 0 01

1000
transformation 7" of X by Tax = gz, x € X. Let z = (8(1)(1)8)F € X; in order to write

0001
the sequence T™x “in coordinates” on X, we have to find, for each n € 7Z, a matrix

1 —[—an]— 0
~n € I' such that g™+, has all its entries in [0,1). Multiplying g™ by (8 (1) (1) __[ng;]]>
o 0 0 1

0 1{abn)

1 {(—an)0 &,
we get (8 10 (bn) ), where &, = an[bn] — nlabn]. Finally, multiplying this matrix
0 0 0 1

100 —[¢] 1 (—an) 0{anfbn])
by <§ é g § ) we obtain 8 (1) (1) <<;l?2» . Thus, the (1,4)-coordinate (T™x)q 4 of
o 1

the point 7"z is just (an[bn]), anc(l) we have obtained u dynamically as u(n) = (1)1 4,
n € Z. (X,T) is not a uniquely ergodic system, and the sequence {T"x},cz is not dense
in X; let Y = {T"x}, ., C X. One can show that Y is a submanifold of X, and that
the action of 7" on Y is uniquely ergodic. (This can be shown directly, but also follows
from the general theory, see [Le] or [L2].) Thus, u is generated by the uniquely ergodic
system (Y, T'|,,). This implies that the sequence {u(n)}nez is well distributed with respect
to a certain Borel measure v on [0,1]. (Namely, v = (21 4)«(py), where py is the unique
T-invariant measure on Y'.)

o

0.15. In the example above, the group G of upper triangular matrices with unit diagonal
is a nilpotent Lie group, I' is a uniform subgroup of G, and X is, therefore, a compact
nilmanifold. Tt turns out that the class of dynamical systems which are generated by
translations on nilmanifolds provides the adequate framework for the study of generalized
polynomials. In this paper the term nilmanifold will stand for a compact homogeneous
space X = G/I" where G is a nilpotent, not necessarily connected, Lie group and T is a
discrete subgroup of GG. The group G acts on X by left translations, or, as we will often
say, by nilrotations. We will use the term nilsystem to denote any dynamical system of
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the form (X, H) where X = G/T" is a (compact) nilmanifold and H is a subgroup of G
acting on X by nilrotations.

0.16. Let us note that the skew product transformation (0.1) of the torus T*, which

was utilized in subsection 0.12 to generate the generalized polynomial (p) = <<b0 + b1z +

b (326) +...+bk (i) >>, can also be viewed as a nilrotation. Indeed, let G be the group of upper
lai2a1,3...a1 k41

1 a2 3...a2 k41

triangular matrices with unit diagonal 0O . witha; ;€ Zfor1<i<j<k

1 ak,;c+1
1
and a; 1 € Rfor 1 <1i <k, and let I" be the subgroup of G’ consisting of the matrices with

integer entries. Then G is a nilpotent (non-connected) Lie group with X = G/T' ~ T*,
110 0 ... by
110 ...bp_s

and the system defined on X by the nilrotation by the element g = O . eG
1 by
1

is isomorphic to the dynamical system on T* defined by formula (0.1).

0.17. Nilsystems have some remarkable properties which will be relied upon in this paper.
First, they are known to be distal, see [AGH], [K1], [K2]. (An action of a group G on a
compact metric space is said to be distal if for any distinct points z and y of this space
inf e dist(gx, gy) is positive.) If a group of homeomorphisms of a compact space X acts
distally, then X is a disjoint union of minimal sets, which are orbit closures of points of
X. While not every distal minimal system is uniquely ergodic, the minimal components
of nilsystems are (see [Le| or [L2]).

0.18. We are now going to formulate a theorem that establishes a connection between
bounded generalized polynomials and nilsystems. But first we need to introduce the notion
of a piecewise polynomial function on a nilmanifold. Given a connected nilmanifold X,
one can define a bijective coordinate mapping 7: X — [0,1)* (see the formal definition in
subsection 1.5 below). While the mapping 7 is not continuous, its inverse 7! is. (This is
clear in the case X = T*, where 7: T¥ — [0, 1)* is the standard coordinate mapping, and
is analogous in the general case.) Let us say that a mapping h: B — R! from a set B C R*
is piecewise polynomial if there is a partition B = £1 U...U L, and polynomial mappings
Pi,...,P:RF — R! such that each L; is defined by a system of polynomial inequalities
and h‘ﬂj =P;,j=1,...,r. We say that a mapping f: X — R! is piecewise polynomial
if the mapping for~1:[0,1)* — R! is piecewise polynomial. This definition does not
depend on the choice of a coordinate system on X (see [L4]). We say that a mapping of a
non-connected nilmanifold X is piecewise polynomial if it is piecewise polynomial on every
connected component of X. A piecewise polynomial mapping may be discontinuous, but
it is clearly Riemann integrable. (A function on a compact metric space X equipped with

a finite measure is Riemann integrable iff it is bounded and continuous almost everywhere
in X.)

0.19. Theorem A. (i) For any nilmanifold X, any action @ of Z% by nilrotations on
X, any piecewise polynomial mapping f: X — R!, and any point x € X, the mapping
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u(n) = f(e(n)x), n € Z%, is a GP mapping.

(ii) For any bounded GP mapping u:Z* — R! there exists a nilmanifold X, an ergodic
action ¢ of 7 by nilrotations on X, a piecewise polynomial mapping f: X — R, and a
point * € X such that u(n) = f(p(n)x), n € Z4.

In other words, any mapping that is generated by a nilsystem and a piecewise polynomial
mapping is a (bounded) GP mapping, and any bounded GP mapping is generated by an
ergodic nilsystem and a piecewise polynomial mapping.

0.20. Remarks. (1) It is important to emphasize that the piecewise polynomial mapping
f appearing in the formulation of Theorem A may be discontinuous, and that this (rather
mild) discontinuity of f is inevitable: not every bounded generalized polynomial is of the
form w(n) = f(T™x) where T is a nilrotation, x € X, and f € C(X). Moreover, not
every bounded generalized polynomial can be represented as u(n) = f(T™x) where T is a
(continuous) distal transformation of a compact metric space X, x € X, and f € C(X).
Indeed, all points in a distal system are recurrent (see, for example, [F3|, p. 160), and
thus the sequence f(7"z) with f € C(X) cannot have nonrecurrent values, whereas some
generalized polynomials may (see examples in subsection 3.4). The same argument shows
that not every bounded generalized polynomial is representable as f(7"z) where T is
a continuous uniquely ergodic transformation of a compact space X, f € C(X), and
the unique T-invariant measure p on X is such that supp(u) = X.! (It is not hard to
show that under these conditions the system (X,7T') is minimal; see, for example, [Wa],
Theorem 6.17.) Finally, not all bounded generalized polynomials without isolated values
are representable as f(T™x) where T is distal and f is continuous; the simplest example
of such a polynomial is u(n) = ([an]b) (see [Hal]).

(2) Also, not all bounded generalized polynomials can be obtained by using a skew product
transformation of a torus (like in the example discussed in 0.12 above), and a Riemann
integrable (not necessarily continuous) function thereon. Indeed, consider the generalized
polynomial u(n) = {an[bn]), where a and b are rationally independent irrational numbers.
Let X be a torus with the standard measure p and let 7' be an ergodic skew product
transformation of X. Assume that there exist a Riemann integrable function f on X and a
point € X such that u(n) = f(T"z), n € Z, and let f = 2™/, Then f(T"z) = e2mianlnl
n € Z. One can show that for any character y on X one has y(T"z) = e*™P(™) where p is
a polynomial. Using the method described in subsection 3.6 below one can check that for
any ordinary polynomial p the sequence <<cm[bn] — p(n)>>, n € N, is uniformly distributed
on [0,1]. Hence, limy_ o + 22;1 e2milanfbn]=p(n)) — (. Since T is uniquely ergodic (this
follows from Proposition 3.10 in [F3]), the sequence T™(x) is uniformly distributed on X,
and so

N
F o= o . 1 2mian[bn] ,—2mwip(n)
[ Fxn= E%ONZfT Ty du = Jim i ) emerirle sty <o

1 On the other hand, it follows from Theorem 4.2.2 in [Hal] that every bounded generalized
polynomial can be obtained with the help of a uniquely ergodic system if the condition supp(u) =
X is dropped.



Hence, f is orthogonal to all characters on X, which contradicts the completeness of the
system of characters on X.

0.21. In order to formulate corollaries of Theorem A we need to introduce some terminol-

ogy. A Folner sequence in Z% is a sequence {®x}35_, of finite subsets of Z¢ such that, for
|(‘PN-|FR)|A‘I>N\
PN

any n € Z<, — 0 as N — oo. (A standard example of a Fglner sequence

is provided by a sequence of (not necessarily nested) cubes of increasing size in Z%.) We

will say that a set E C Z¢ has density a and write D(E) = « if Nlim B0y |

G = for

every Folner sequence {®n}SS_; in Z% When saying that a statement holds for almost
all elements of Z? we mean that this statement holds for all elements of Z? but a subset
of zero density.

0.22. Let w be a mapping of Z¢ to a compact metric space X endowed with a finite
nonzero Borel measure p. We will say that the (multiparameter) sequence {w(n)},ezae s
well distributed on X with respect to p if for any open set U C X with u(0U) = 0 one has
D(w=Y(U)) = u(U)/u(X). When this is the case, for any Riemann integrable function f on
X and any Fglner sequence {®y}3%_; in Z¢ one has ngnoo ﬁ Yoncay fw(n) = [ fdu.

0.23. Let a set £ C R®, with nonempty interior, be defined by a system of polynomial in-
equalities, and let P be a polynomial mapping R®* — R!. We will call S = P(L) a (param-
eterized) polynomial surface in R!. Let A be the Lebesgue measure on R*; we will denote by
s the normalized measure P, (\) on S, which is defined by ps(A) = AM(P~H(A) N L) /(L)
for Borel sets A in R!. A piecewise polynomial surface S is a finite (not necessarily dis-
joint) union of polynomial surfaces, S = U?Zl S;, endowed with a measure pgs of the form

k
ps = Y 1 aifts, for some aq, ..., a5 > 0.

0.24. We are now in position to formulate a corollary of Theorem A pertaining to well
distribution of bounded generalized polynomials. In order to keep the technicalities to the
minimum, we give here a somewhat simplified version of a more comprehensive theorem
to be found in subsection 3.1 below.

Theorem B. Let u: Z¢ — R! be a bounded GP mapping. There exists a bounded piecewise
polynomial surface S such that u(n) € S for almost alln € Z* and the sequence {u(n)}, czq
is well distributed on S with respect to us.

0.25. In particular, we have

Corollary. Let u:Z? — R! be a bounded GP mapping. For any f € C(R') and any
Folner sequence {® N }S_, in Z4, ngnoo @ Y onewy f(u(n)) exists and is equal to [ f dus.
0.26. The following special case of Corollary 0.25 gives the affirmative answer to the
question formulated in 0.6:

Corollary. For any generalized polynomial w:Z?* — R and any Folner sequence

00 : d : 1 2miu(n) ;
{®PN}R, in 2%, Nh_rgo Ezal Y oncay © exists.
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Note that the generalized polynomial u is not assumed to be bounded, but this does not
matter in view of the identity e27(") = g2mi{u(n))

0.27. From Corollary 0.26 one can deduce, with the help of the spectral theorem, the
following two generalizations of the classical von Neumann’s ergodic theorem. (For proofs
see subsections 4.1 and 4.2 below.)

Corollary. Let Uf,... UL, t € R, be commuting unitary flows on a Hilbert space H and
let uy, ..., ug be generalized polynomials Z — R. For any Folner sequence {® N }S_; in

74 the sequence ﬁ > Uul(n) Uu’“( ") s convergent in the strong operator topology.

ned
0.28. Corollary. Let Uy,...,U; be commuting unitary operators on a Hilbert space and
let uy, ..., ux be generalized polynomials Z — Z. For any Folner sequence {®N}5_, in

Ufl(@. . U,z”“(n) is convergent in the strong operator topology.

d 1
Z* the sequence 15— Y oncoy

0.29. We will now formulate one more corollary of Theorem B, which deals with the
existence of invariant means (also called Banach limits) on the algebra B of bounded
generalized polynomials Z¢ — R. It follows from Theorem B that for any v € B the
number L(u) = A}gnoo F‘I’l—NI Y necay f(u(n)) does not depend on the choice of a Fglner

sequence {®x}. This fact implies that all Banach limits agree on u (see [Lo] or [Su].)
Consequently, we have the following result.

Proposition. There exists a unique invariant mean on the algebra B of bounded gen-
eralized polynomials Z* — R. In other words, there exists a unique linear functional
L:B8 — R having the following properties:

(i) for any m € Z2, L(u,,) = L(u), where u,,(n) = u(n +m), n € Z%;

(i) L(u) > 0 if u > 0;

(iii) L(1) = 1.

Let us also remark that the analogous fact holds for the algebra generated by functions
of the form fou, where u is a bounded generalized polynomial Z¢ — R! and f € C(R').

0.30. While Theorem B utilizes the unique ergodicity of (ergodic) nilrotations, the fact
that nilrotations are also distal provides additional information about the character of
distribution of GP mappings on piecewise polynomials surfaces. Given an infinite sequence

= {ni1,n9,...} (of not necessarily distinct elements) in Z4, let FS(E) denote the set of
ﬁmte sums of distinct elements of E: FS(E) = {3} ,cpn; : F CN, 0 < |F| < oo}. Sets of
the form FS(F) are called in ergodic theory IP sets and are intrinsically connected with
recurrence properties of distal systems (see [F3] and [B]). A set P C Z? is called an IP* set
if it has a nontrivial intersection with any IP set in Z?. One can show that any IP* set
P is syndetic, that is, has the property that the union of finitely many shifts of P covers
Z¢. In fact, the property of IP*-ness is quite a bit stronger than that of syndeticity. For
instance, while the intersection of two syndetic sets may be empty, the intersection of any
finite family of IP* sets is again an IP* set. (See [F3], Lemma 9.5.) A set () is called IP7 if
it is a “shifted” IP* set, that is, is of the form n + P where P is an IP* set. While IP? sets
do not have the filter property (the intersection of two IP? sets may be empty), they still
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have some “regularity” properties and form a smaller class than that of general syndetic
sets. (See [B] for examples of syndetic sets which are not IP*.) The relevance of IP* and
IP? sets to the distal systems is revealed by the following theorem:

Theorem. (Cf. [B], Theorems 3.8, 3.9.) Let ¢ be a Z%-action by homeomorphisms of a
compact metric space X. The action ¢ is distal iff for any x € X and any open neigh-
borhood W of = the set {n : ¢(n)x € W} is an IP* set. If the system (X, ) is minimal
(that is, the orbit {¢p(n)x},cze of every point x € X is dense in X ), then the action of ¢
is distal iff for any x € X and any open W C X the set {n: p(n)z € W} is IP%.

0.31. Let u be a bounded GP mapping and let S be the piecewise polynomial surface
on which the values of u are well distributed. It follows from Theorem B that for any
nonempty open set W C S the set u=1(W) = {n € 7% :u(n) € W} is syndetic. From the
distality of nilsystems we will deduce the following enhancement of this fact:

Theorem C. For any nonempty open set W C S, u=t(W) is an IP set.

0.32. Let us say that a value u(n) € R! of u is IP*-recurrent if for any neighborhood W
of u(n) the set u=*(W) is an IP* set, and is IP% -recurrent if for any neighborhood W of
u(n) the set w1 (W) is an IP% set. It now follows from Theorems B and C that almost
all values of u are IP? -recurrent. (Or, more precisely, u(n) is an IP7 -recurrent value of u
for almost all n € Z2.)

0.33. For a given polynomial mapping u, Theorem C gives no information about whether
a concrete value of u is recurrent. This gap is partly filled by the following theorem.

Theorem D. Let u be a GP mapping Z¢ — R such that all polynomials occurring in
the representation of u have zero constant term, and let & = u(mod 1) viewed as a mapping
to the torus T' = R!/Z!, that is, let @ be the composition of u with the natural projection
Rl — T, Then 0 € T is an IP*-recurrent value of @. (In other words, for any & > 0 the
set {n € Z%: ||lu(n)| < e}, where ||z|| is the distance from x € R' to Z', is an IP* set.)

(The expression “polynomials occurring in the representation of u” refers to the polyno-
mials occurring in the representation of the coordinates of u; for example, polynomials
occurring in the representation of u = ([2[p1] + p2lps, [p4][ps], 3[p6][p7]) are pi,...,pr,2,3.
Below we will use the term “polynomials involved in u”; see a formal definition in 2.9.)

0.34. We will now briefly discuss an interesting Diophantine application of Theorem D.
The following theorem was obtained in [vdC]:

Theorem. Let u;: ZT 1 — R, i=1,...,k, be polynomials without constant term. For
any § > 0, the set of n € Z< for which there exist m1, ..., my € Z such that
‘ul(n) — ml‘ <9, ‘uz(n,ml) — mg‘ <90, ..., ‘uk(n,ml, ceey M) — mk‘ <dé (0.3)

is syndetic in Z°.

Furstenberg and Weiss proved in [FW] that the set of n € Z¢ for which the system
(0.3) has a solution is IP*. This fact was further enhanced and generalized in [BHaM]. We
will derive from Theorem D yet another generalization of Furstenberg-Weiss’ theorem:
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Theorem. Let u;: Z"~1 — R, i = 1,...,k, be generalized polynomials such that all
ordinary polynomials occurring in the representation of u; have zero constant term. For
any § > 0, the set of n € Z% for which there exist my,...,my € 7 satisfying (0.3) is an
IP* set.

0.35. In conclusion, we would like to say a few words about bounded generalized poly-
nomials of continuous argument. We do believe that all the results above extend to this
case. We, however, cannot prove this here because of the absence in the literature of the
continuous version of Theorem 2.3, which is an essential ingredient in our proofs. A version
of Theorem 2.3 where the well distribution is replaced by the uniform distribution follows
from the results in [Shl]; this allows one to obtain a continuous version of Theorem B,
which we will presently formulate. For a measurable set E C R¢ let us write Dp(E) = « if
TlLrgO MENB,)/AB,) = a, where ) is the Lebesgue measure in R? and B, C R is the ball

of radius r centered at 0. If w: R? — X is a mapping to a topological space X equipped
with a nonzero finite Borel measure u, let us say that w is ball-uniformly distributed on X
if for any open set U in X with p(0U) = 0 one has Dg(w™ 1 (U)) = u(U)/u(X).

Theorem B.. Let u:R? — R! be a bounded GP mapping. There exists a bounded
piecewise polynomial surface S such that u is ball-uniformly distributed on S with respect

to ps.

0.36. The goal of this subsection is to help the reader to navigate through this — sometimes
quite entangled — paper. In the course of proving Theorem A and in order to derive
its corollaries we will formulate various modifications of Theorems A, B, B., etc. The
following diagram describes logical connections between the major theorems and indicates
the subsections where they appear:

A(0.19) = B(0.24)

T T
A*(1.7) B*(3.1)
T T

A**(10.4) — AT*(L.14) = A™(1.17) = B**(2.12) = C(0.31)

LN

D(0.33)  B.(0.35) — Br(4.11)

where “P — ()” means that () is a special case of P and “P = )7 means that Q is
derivable from P.

Here is a brief description of the structure of the paper.

In Section 1 we introduce coordinates on a nilmanifold and present another version
of Theorem A, Theorem A*, which says that any GP mapping is generated with the
help of a coordinate mapping of a connected nilmanifold and a sequence of polynomial
transformations thereof. We then formulate an extension of Theorem A*, Theorem A**,
which (i) deals with families of functions more general than that of generalized polynomials,
and (ii) ties the complexity of a GP mapping with the nilpotency class of the nilsystem
that generates it. The (long and difficult) proof of Theorem A** is self-contained, and
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we postpone it until the last sections of the paper, first focusing on applications of this
theorem.

In Section 2 we describe how subnilmanifolds look in coordinates on a nilmanifold,
and use this information to derive from Theorem A a technical version of Theorem B,
Theorem B**. Theorem B** is used in Section 3 to obtain Theorem B*, a refinement
of Theorem B that contains some additional information about the distribution of the
values of a bounded GP mapping u on a piecewise polynomial surface S. In particular,
it connects the degrees and the coefficients of the polynomials that define S with the
complexity of u and, respectively, with the constant terms of the polynomials occurring in
the representation of u. We then discuss exceptional values of GP mappings, and provide
an instructive example of computation of the distribution of the values of a generalized
polynomial.

In Section 4 we derive the rest of the results formulated in the introduction; in par-
ticular, we prove Theorems C and D.

Sections 5—10 are devoted to the proof of Theorem A**; in this proof we use the nilpo-
tent group of upper triangular matrices with unit diagonal. In Sections 5 and 6 we reduce
the problem to an algebraic one, namely, to proving that any generalized polynomial can
be produced by applying special algebraic operations to entries of an appropriately chosen
upper triangular matrix. (The general algebraic version of Theorem A, Theorem A*** is
formulated in Section 10.)

In Sections 7-9 we deal with elementary generalized polynomials (the generalized
polynomials produced from the conventional polynomials by using only multiplication and
the bracket operation (and no addition or subtraction)). The structure of an elementary
generalized polynomial can be described by a tree (an oriented cycle-free graph), and we use
arather cumbersome induction over the set of trees to show that any elementary generalized
polynomial can be “read off”, modulo “smaller” elementary generalized polynomials, from
an upper triangular matrix.

In Section 10 we conclude the proof of Theorem A***  passing from elementary to
arbitrary generalized polynomials.

Acknowledgments. We thank H. Furstenberg and the anonymous referee for useful
comments and suggestions.

1. Coordinates on a nilmanifold and a reformulation of Theorem A

1.1. Let G be a nilpotent Lie group of nilpotency class D and let I" be a discrete uniform
subgroup of G. The compact homogeneous space X = G/I' is called a nilmanifold of
nilpotency class D. We will assume that G is connected and simply-connected, which will
suffice for our goals.

1.2. We will list here some facts about connected simply-connected nilpotent Lie groups;
for more details see [Mal].

For any g € G there exists a unique one-parameter subgroup {g‘};cr in G such that
gl =g. Let G =G DGy D ... 2 Gp D Gpi1 = {1¢} be the lower central series of
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G; then, for each j, G;/G,41 is a finite dimensional R-vector space. G has a Malcev basis
compatible with T, that is, an ordered set {eq, ..., e} C I' such that, for a certain sequence
1=k <...<kp of positive integers, the (images of) the elements Chyy -+ Chjy,—1 fOrm
a basis in G;/Gjy1 for every j = 1,...,D. If {e1,...,e,} is a Malcev basis in G, every
element g € G is uniquely representable in the form g = ey* ...e}* where the coordinates
ai,...,a are real numbers, with g € I' iff aq,...,a; € Z.

For every i € {1,...,k} let D; € N be such that e; € Gp, \ Gp, +1.

1.3. In the coordinates (aq, . . ., ax) the multiplication in G is given by polynomial formulas:
ifg=el"...ef"...e;* and h = e ...e?i...ezk, then
gh = eflll-i-bl o e?i‘i‘bi‘i‘pi(alwnyaiflvbl7---7bi71) N ‘eZk+bk+pk(a1,~~~7ak—1ab1,~~~7bk—1) (1.1)
and
gt _ eitlt o e?it"“h’(al:---,ai—l,t) o GZkt+Qk(a1,«««7ak—17t)’ te R, (12)
where, for each i = 2, ..., k, p; is a polynomial in 2(7— 1) variables with rational coefficients

which takes integer values on Z2(~1) and ¢, is a polynomial in i variables with rational
coefficients which takes integer values on Z!. (See [Mal].)

1.4. For each i = 2,...,k one has degp;,degq; < D;. Moreover, degpi(afl,...,akD’“,
bt .. .,ka’“) < D;. It follows that if Sq,..., Sk, R1,..., R are polynomials with deg.S;,
deg R; < D; for all : = 1,...,k, then degpi(Sl,...,Sk,Rl,...,Rk) < Dj,i=1,...,k.
(See [L1]; in the terminology of [L1] the multiplication in G is a continuous polynomial
mapping of le-degree < (1,2,...,D).)

1.5. The coordinate mapping 7:G — R*, g = e{'..el* — (a1,...,ax), is a diffeomor-
phism satisfying 7(I') = Z*. “The cube” @ = 771([0,1)*) C G is the fundamental domain
for X, which means that for any g € G there exists a unique v € I such that 7(gv) € [0, 1)*.
Indeed, put 79 = 1¢g, and if «;_y € I is such that gy, 1 = ef%..efi’lle??..ezk with
Z1,...,Ti—1 €[0,1), put v; = ’yi_lei_[bi]. Then gv; = g’yi_le;[b"] =ejt. .efi’llefieg_ﬁ? ek
with z; = b; — [b;] € [0,1). For v = ~, we therefore have gy = ef'..e* with
T1,...,xk €[0,1).

For g € G we define x(g) = gy € Q and 7(g9) = 7(x(9)) = (z1,...,2%) € [0,1)F.
The mapping 7: G — [0,1)* factors to a one-to-one mapping X — [0,1)*, which is a
diffeomorphism on 77*((0,1)") but is discontinuous at the points of 77 ([0,1)* \ (0,1)%).
7 transfers (the completion of) the Haar measure on X to the Lebesgue measure on [0, 1)%.
For 1 < i < k let 7; be the i-th coordinate of 7. We will refer to 7 = (7y,...,7%) as to a
coordinate mapping of X or a coordinate system on X.

1.6. Let us note the following fact:

Lemma. Any piecewise polynomial mapping h: B — R! of a bounded subset B C R¥ is
the restriction on B of a GP mapping w: RF — R,
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Proof. Recall that a mapping h: B — R! is said to be piecewise polynomial if B is
partitioned, B = £, U ...U L,, so that for each j = 1,...,r, the set L; is defined by a
system of polynomial inequalities,

Ej = {t €B ij’l(t), <oy Djimy (t) > 0, qj‘71<t), e Qim; (t) > 0},

and Pj = h|, is a polynomial mapping. Let M be such that |p;;(¢)],[g;:(t)| < M for all

1, ¢>0

O7C§Oand

j, ¢ and all t € B. For any number ¢ with |¢| < M one has —[—c/M] = {

>
1+ [c/M] = {(1)’ 2 - 8 Thus, if we define a GP mapping w as

w = i(ﬁ(—[_pj,i/M])) (ﬁ(l + [Qj,i/M]))Pj

then, fort € B, w(t) = P; ifft€ £;,. g

It follows that the composition of a bounded GP mapping with a piecewise polynomial
mapping is a GP mapping.

1.7. We will now formulate a modification of Theorem A, which, on one hand, is more
natural, and on the other hand, will be easier for us to prove. The idea is to obtain a
generalized polynomial as a coordinate function along the orbit of a point of a nilmanifold
under a polynomial action of Z% instead of a conventional action.

A polynomial mapping w:Z* — G to a nilpotent Lie group is a mapping of the form
w(n> — 91191(”) ‘gfr(n)
Theorem A*. A mapping u:Z% — [0,1)! is a GP mapping iff there exist a connected
nilmanifold X = G/T equipped with a coordinate system T = (71,...,Tk), a polynomial
mapping w: Z¢ — G, and indices i1, ...,i; € {1,...,k} such that u = (s, ..., Ti, )ow.

,n € Z% where g1,...,9r € G and p1,...,p, are polynomials.

1.8. We will now explain how Theorem A can be derived of Theorem A*. To prove (i),
assume that u(n) = f(e(n)z), n € Z%, where f:Y — R! is a piecewise polynomial
mapping of a nilmanifold Y = H/A, ¢ is a homomorphism Z¢ — H, and z € Y.
Let m: H — Y be the natural projection and let ¢ € H be such that 7(g) = z; then
the mapping w:Z? — H, w(n) = ¢(n)g, n € Z%, is polynomial. The function f is
the composition f = hor where 7 is a coordinate function on Y and h is a piecewise
polynomial function on R*. By (the if part of) Theorem A*, v(n) = 7(¢(n)x) = 7(w(n))
is a GP mapping. Thus, by Lemma 1.6, u = hov is a GP mapping.

To prove (ii), assume that a GP mapping wu is represented in the form u(n) =
(Tiy, -+, 7)) (w(n)), n € Z4, as in Theorem A*. Let m:G — X be the natural projec-
tion. It is shown in [L3] that one can find another connected nilmanifold X = G/T" with
a continuous mapping 77:)? — X, a homomorphism ¢:Z% — é, and a point T € X
such that w(w(n)) = n(p(n)z) for all n € Z2. Tt is also shown in [L3] (and, as well,
follows from the results in [Le| or [Sh2]) that the closure Y = ¢(Z%)Z of the orbit of
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Z under the action of ¢ is a (not necessarily connected) subnilmanifold of X. Hence,
u(n) = (1i,, ..., 7,)(n(p(n)3)), n € Z%. Moreover, the action ¢ is ergodic on Y, the map-
ping (7i,,...,7i,)on is piecewise polynomial on X, and hence f = (Tiys- - .,Til>o’l7|y is a
piecewise polynomial mapping from Y (see [L4]).

1.9. As a matter of fact, we need an extension of Theorem A* that is applicable to various
classes of polynomial mappings to G: continuous polynomial flows, polynomial mappings
with zero constant term, etc. We will therefore consider a more general situation. Let A
be a ring of real-valued functions on a set Z. We will call any mapping w: Z — G of the
form w(z) = gf‘l(z.). g2 e Z with gr,...,9, € Gand ay,...,a, € A an A-mapping.
If {e1,...,ex} is a Malcev basis in G, then, since the multiplication in G is polynomial,
any A-mapping w: Z — G can be written in terms of this basis: w(z) = e?ll(z?. .eZ;“(Z),
z € Z, with of,...,a) € A. We will denote the set of A-mappings to G by G(A).

When A is the ring of polynomials Z¢ — R, the A-mappings to a nilpotent Lie group

G are just polynomial mappings.
1.10. For D € N we define

MNp(A) = {ﬁ: Z —[0,1) : there exist a nilmanifold X = G/T" of nilpotency class < D
equipped with a coordinate system (71,...,7%), w € G(A),

and i € {1,...,k} such that g = Tiow}.

1.11. Let A be a ring of real-valued functions on a set Z. We will call the minimal algebra
of real-valued functions on Z which contains A and is closed under the operation of taking
the integer part the bracket extension of A, and denote it by B(A). More precisely,
v e B(A)if

veA,

or v = v1 + vy where vy, vy € B(A),

or v = v1vg where vy, vy € B(A),

or v = +[w] where w € B(A).2
We define B°(A) = {u € B(A) : Ran(u) € [0,1)} = {u—[u] : u € B(A)}.

1.12. The complexity, cmp(v) of v € B(A) is defined by

cmp(v) =1 if v € A;

cmp(v) = max{cmp(vy),cmp(ve)} if v = vy + vg;

cmp(v) = emp(vy) + cmp(vy) if v = vyvg;

cmp(v) = cmp(w) if v = t{w).
(Note that cmp(v) is not uniquely defined and depends on the representation of v in terms
of elements of A. This will not affect our arguments, since we will deal with concrete rep-
resentations of generalized polynomial rather than with polynomials themselves. We refer
the reader to Section 6, where a formalism for dealing with representations of generalized
polynomials is introduced.)

2 Here is the clarification of how this definition should be understood. Put Bo(A) = A;
then put Bi(A) = Br_1(A) U {vl + vy, V1,09 € Bk_l(A)} U {vlvg, v1,v2 € Br_1(A } U
{£[v], vE€By_1(A)} for k =1,2,..., and finally, let B(A) = U;—, Br(A).
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Examples. If p; € A, then
cmp(pr) = 1, emp([p1]) = 1, cmp(p1[p2]) = 2, cmp(p1[p2] + ps) = 2, cmp(p1[p2[ps]]) = 3,
cmp (p1[p2][ps]) = 3, cmp(p1[p2[ps] + pa] + pslps]) = 3, comp(p1[p2[ps] + pallps] + ps) = 4.

When v = (vy,...,v;) is a GP mapping, we define cmp(v) = max{cmp(v;)}._;.
1.13. From the definition of complexity we immediately have:

Lemma. Letp be a polynomial in k variables, let nq,...,nx € N, let degp(aj?l, cee ajzk)
n, and let vy, ..., vx € B(A) satisfycmp(v;) <n;, i =1,...,k. Then cmp(p(vl, e ,vk))
n.

IA

1.14. For D € N we define B (A) = {v € B(A) : cmp(v) < D} and BY(A) = Bp(A)N
BO(A). 3

Theorem Aj*. For any ring A of real-valued functions and any D € N, Mp(A) = B(A).

The inclusion B (A) C Np(A) of this theorem will be proved in Sections 5 — 10.

1.15. Proof of the inclusion 915 (A) C B (A). Let X = G/T be a nilmanifold of nilpo-

tency class < D with a coordinate system (71,...,7x), and let w € G(A); we need to show
that T,ow € Bp(A) for all i = 1,..., k. Let {e1,...,ex} be the Malcev basis in G which
induces the coordinates 71,...,7, on X. Define 09g: Z — G, 09 = 1. Assume that

oi_1: 2 — I is already defined so that

w(z)oi_1(z) = eﬁl(z) . .efi__ll(z)e@i(z) . .ef’“(z), z € Z, (1.3)

(2

with & (2),...,&-1(2) € [0,1), z € Z. Define 6;: Z — T by 04(2) = oy_1(2)e; ),
z € Z. Then

w(2)05(2) = w(2)os_1(2)e; P = 53 .efi__f(z)efi(z)efﬁl(z) . .ei’“(’z), ze Z, (14)

with & (2) = Bi(2) — [Bi(2)] € [0,1), z € Z.

Now put x(w) = wog. Then Ran(x(w)) € Q = 771([0, 1)), so that Tjow = Fiox(w)
and we have T;ow = Tox(w) =&;, i =1,...,k. We have to show that &,...,& € BY(A).

Assume by induction on 4 that in the formula (1.3), &,...,& 1,084, ..., 8k € B(A),
and, in the notation of subsection 1.2, cmp(§;) < Dj, j =1,...,7—1, and cmp(f;) < Dj,
j = t,....k. Then & = B; — [3;] € B°(A), and ecmp(§;) = cmp(3;) < D; < D, so
& € B%(A). By 1.3, the functions (41, ..., in formula (1.4) are given by polynomial
expressions in &1,...,&-1, 8, ..., Bk and [5;], hence (j11,...,(x € B(A), and by 1.4 and
Lemma 1.13, cmp((;) < Dj, j=i+1,...,k. g

3 Let us clarify this definition as well: Bp(A) consists of the elements of B(A) that have a
representation with cmp < D.
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1.16. Let us now consider vector-valued functions. For a ring A of real-valued functions
on a set Z and D,l € N let us define

N (A) = {ﬁ: Z —[0,1)" : there exist a nilmanifold X = G/T of nilpotency class D
equipped with a coordinate system (7,...,7%), w € G(A),
and iq,...,4 € {1,...,k} such that § = (Til,...,nl)ow}.

Lemma. (= (1,...,3) € N, (A) iff 3; € Np(A) forallj=1,...,1

Proof. If 3 = (B1,...,0) € N, (A) then Bi,...,3 € Np(A) by definition. Assume that
for each j = 1,...,0 one has §; € Mp(A), that is, assume that there exist a nilmanifold
X; = G;/T; of nilpotency class < D with a coordinate system (7;,1,...,7j,), w; € G(A),
and i; € {1,...,k;} such that 8; = 7;,0w;. Define G =Gy x ... x G, ' =T x ... x I,
X=G/I'=X; x...xX;,and w = (wy,...,w;): Z — G. Then X is a nilmanifold of
nilpotency class < D, w € G(A), (T1.1,--.,7Tk,) is a coordinate system on X, and we have

ﬁ:(ﬂla'--aﬁl):(Tl,ila'--aTl,il)ow~ [

1.17. In light of Lemma 1.16, Theorem A7* implies its multidimensional extension:

Theorem A**. For any ring A of real-valued functions and any D, € N, M, (A) =
(B (A))".

2. Coordinate representation of a subnilmanifold and primitive GP mappings

2.1. We preserve notation of 1. Let m: G — X be the natural projection, w(g) = gI" € X.
Any closed (not necessarily connected) subgroup of G is a simply-connected nilpotent Lie
group. A subnilmanifold of X is a closed subset Y of X of the form Y = 7n(bH) = br(H),
where H is a connected closed subgroup of G and b € G. Thus, Y is a translate of
m(H) = H/(I' " H) and hence, has a natural structure of a nilmanifold.

An element g € G is said to be rational if g" € I' for some n € N. Given a coordi-
nate system (71,...,7;) on G, the coordinates of a rational element g of G are rational,
71(9), ..., Tk(g) € Q. (See [L4].) We will say that a subnilmanifold Y of X is rational if it
is of the form Y = m(gH) with rational g € G.

2.2. We want to remind the reader some of the terminology introduced in Introduction.
(i) We say that a set E C Z? has density a and write D(E) = « if Nlim [EO®y |

oo 1PN

= o for

every Fglner sequence {®y1}3_; in Z<.

(ii) Let E C Z¢ with D(E) > 0 and let w be a mapping from E to a topological space X
endowed with a finite (nonzero) Borel measure p. We say that the sequence {w(2)}.cp is
well distributed on X (with respect to u) if for any open set U C X with pu(0U) = 0 one

has D(w™(U))/D(E) = u(U)/u(X).

2.3. The following theorem is proved in [L3] and [L4]:
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Theorem. Let w:Z? — G be a polynomial mapping. There exists a subgroup Z of
finite index m in Z%, with cosets Z1(= Z), Za, ..., Zm, such that for eachi=1,...,m the
sequence {m(w(z))}.ez, is well distributed on a subnilmanifold Y; of X with respect to the
Haar measure on Y;. If w(0) = 1¢, the subnilmanifolds Y1, ...,Y,, are all rational.

2.4. In light of Theorem A* and Theorem 2.3, in order to describe the distribution of the
values of a bounded generalized polynomial we have to determine how a subnilmanifold
Y of X looks in coordinates on X. It is shown in [L4] that if Y is a subnilmanifold of X
and T is a coordinate mapping of X, then, up to a subset of Y of zero measure, 7(Y) is a
piecewise polynomial surface. This clearly implies Theorem B. However, if we want to get
information about the degree and the coefficients of the polynomials defining this surface
we need to study 7(Y) more carefully.

2.5. Let {e1,...,ex} € ' be a Malcev basis in G and 7: G — R* be the corresponding
coordinate mapping. Let H be a closed connected subgroup of G such that ' H is uniform
in H, and let {c1,...,¢s} € HNT be a Malcev basis in H. We have a diffeomorphism
nH — R & c¥s — (y1,...,ys) with n(T' N H) = Z°.
One has H = {c{"..c¥%*}y,.... y.er, and by formulas (1.1) and (1.2),
_ [ .51(W1ys) Sk(y1,--Ys)
H— {611 ! ...ekk ! }y1,~~~,yS€R’

where, by 1.3, 51, ..., Sk are polynomials on R®. By 1.4, degS; < D;, + =1,...,k. Since
e1,...,es € I', the polynomials Sy,...,S; take on integer values on Z° and hence have
rational coefficients. In the commutative diagram

Idy
—

il 17

Rsﬁ Rk
the immersion Ry = 7o) 1:R® — RF is (S1,...,S), and so, is a polynomial map-
ping with rational coefficients. In other words, H appears in coordinates on G as an
s-dimensional rational polynomial surface of degree < D.

2.6.Let g€ G, g= el{. . .ezk; the coset gH can be written as

_ b be | S1(y1,-Ys) Sk(Y1,--1Ys)
gH = {el'...e}* - €] ...ep }yl,...,yseR

— R (y 7"-7y5) R (y 7“‘7y$)
== {ell ! ...€kk ! }yl’...’yS€R7
where, by 1.3 and 1.4, Rq,..., Ry are polynomials with degR; < D;, 1 = 1,...,k, and
coefficients in the ring R generated by Q and bq,...,b;. In the commutative diagram
H2Y @
il 7
RS % Rk
the immersion Ry = 7o(g-71) = (R, ..., Rg): R® x Z" — RF is therefore a polynomial
mapping of degree < D with coefficients from R.
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2.7. Now let Y be the subnilmanifold 7(¢gH) C X. Let : Y — [0,1)® be the coordinate
system on Y which corresponds to ulr, and let 7: X — [0,1)* be the coordinate system
on X corresponding to 7. In the commutative diagram

Y C X
nl Ir
[0,1)° %% [0, 1)

1

the immersion Ry = 7on™" is the composition of Ry = 9E|[0 1)e :10,1)* — R* and of

“the projection” & = Tomo7 11 RF — [0, 1)*:

G5 X
?l ) lT
RY 7 [0, 1)"

Let Q = 771([0,1)%) C G, then G is represented as the disjoint union U, er @ For
v € ' let C, = 7(Q7), then R” is the disjoint union U,er Cy- Let M,:RF — R* be
defined by M, (x) = %(%_1( )7Y); by (1.1), the mapping M, is polynomial with rational
coefficients. Then C., = M, (]0,1)¥), and Tle, = My-1|q -

Let 71,...,75 € I be such that Ry ([0,1)%) C Ujvzl C,, and let £; = 7%;1(0%,), j =
1,...,N. Then [0,1)*® is the disjoint union Ujvzl L;. Let j € {1,...,N}. The restriction
of Ry on L; is Rj = M,-1oRy| £, which is a polynomial mapping with coefficients from
R, and L; is defined by L; = Rj_l([O, 1)*) N [0,1)%. Since the coordinates Ry, ..., Ry of
Ry satisfy degR; < D;, i =1,...,k, by 1.4 we have deg’R; < D.

2.8. We arrive at the following result:

Proposition. Let Y = n(gH) be a connected subnilmanifold of a connected nilmanifold
X of nilpotency class D and let 7: X — [0,1)* and n:Y — [0,1)* be coordinate systems
on X and Y. The mapping Ry = Ton 1:[0,1)° — [0,1)* is piecewise polynomial in

the following sense: there are one-to-one polynomial mappings Ri,..., Rn:R® — RF of
degree < D such that the sets E = 72_1([0 D*)N[0,1)%, j=1,..., N, partition the cube
[0,1)%, and for each j = 1,..., N one has Ry|£ =TR;. The coeﬁiczents of Ri,...,Rn

are contained in the ring R genemted by Q and the coordinates of g.

2.9. We now return to generalized polynomials. Let u be (a fixed representation of) a
generalized polynomial; the conventional polynomials occurring in the representation of
u will be called polynomials involved in u. More precisely, the set I(u) of polynomials

involved in w is
u} (the set whose only element is u) if w is an ordinary polynomial;

I(uy) U I(ug) if u appears in the given representation as uj + ug or ujus;

I(v) if u = +[v].
In view of the constructive definition in 0.1, I(u) is defined for any representation of any
generalized polynomial.
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Example. The polynomials involved in p; [pg + [pg]p4] are pi1, p2, p3 and py.

When u = (uy,...,u;) is a GP mapping, the set of polynomials involved in u is
I(u) = I(uy) U...UI(w).

2.10. Let u: Z¢ — R! be a bounded GP mapping; we will assume that Ran(u) C [0,1)".
Let D = cmp(u) and let A be the ring of real-valued functions on Z¢ generated by the
polynomials involved in u, so that u € (B2(A))". By Theorem A**, u € MY (A). This
means that there exist a nilmanifold X = G/I" of nilpotency class < D with m: G — X
being the natural projection, a coordinate system 7 = (71,...,7%): X — [0,1)* w €
G(A), and nq,...,n; € {1,...,k} such that u = (7,,...,Tn, )Jomow. Let p(x1,...,2%) =
(Tnyye-nyTn,), then u = poTomow:

w:2 2G5 X 5 00,1)F 25 00,1)n

Since w is a polynomial mapping, by Theorem 2.3 there exist a subgroup Z with cosets
Zi(= 2),2s,..., 2y, in Z* and connected subnilmanifolds Y3, ...,Y,, of X such that for
each i = 1,...,m the sequence {m(w(2))}.cz, is well distributed on Y;.

Fix i € {1,...,m}, and let n;: Y; — [0,1)® be a coordinate system on Y;. Then by
115, v; = miomrow|z 1 Z; — [0,1)% is a GP mapping of complexity < D, and we have

—1
U‘Z = poTol), ~oV; = po'R,yioUii

TOow

Uz Z —Y, C X
o\ b

0,1)* 2% [0,1)*
e

[0,1)%.

Since the coordinate mapping n; maps the Haar measure on Y; to the Lebesgue mea-
sure A on [0,1)® and is continuous on an open subset of Y; of full measure, {v;(z)}.cz,
is well distributed on [0, 1)® with respect to A. By Proposition 2.8 there exist a partition
[0,1)% = U;V:l L; ; and polynomial mappings R; 1, ..., R; n;: R® — R¥ of degree < D such
that Ry, |, =Ri;and Li; = R ([0,1)")N[0,1)%,j =1,...,N;. Forj € {1,...,N;} let
Z ;= vi_l(ﬁi,j) C Z; and let P; ; = poR; ;; then P; ; is a polynomial mapping R® — R
of degree < D and u

Z, = Pi’jovi Zi,j:

. 'p.’.
; ZZI'J L 1,5 # [0, 1>l

u|Zi,

The coefficients of the polynomials R; ; (and thus, of P; ;) belong to a certain ring of
real numbers which we will now describe. Let 7: G — R* be the coordinate mapping of
G corresponding to the coordinate system 7 on X, and let Fow(2) = (a1 (2), ..., ax(2)),
z € 7%, where o, ...,qy are polynomials from A. Then 7(w(0)) = (a1(0),...,ax(0)),
and a1(0),...,ar(0) belong to the ring § generated by Q and the constant terms of the
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polynomials involved in u. Define w'(z) = w(0) 'w(z), so that w'(0) = 1. By Theo-

rem 2.3, the components Y{,...,Y,, of {m(w'(2)): 2 € Z?} are rational subnilmanifolds

of X, that is, Y/ = m(g;H;) where g; have rational coordinates. Thus the components

Yi,..., Yy of {m(w(2)) : z € Z¢} have form Y; = w(0)Y; = 7 (w(0)g;H;), i =1,...,m. By
Proposition 2.8, the coefficients of R; ;, i =1,...,m, j = 1,...,N;, are contained in the
ring generated by Q, the coordinates of g;, and the coordinates 1 (0), ..., ax(0) of 7(w(0)),
and so, are contained in §.

2.11. Let us say that a GP mapping v: Z — R®, where Z is a subgroup of Z<, is prim-
itive if v is representable as a composition v = nomow where w: Z — H is a polynomial
mapping to a nilpotent Lie group H, m: H — Y is the projection mapping to a connected
nilmanifold Y = H/I" such that 7(w(Z)) is dense in Y, and n: Y — [0,1)% is a coordi-
nate system on Y. If v is primitive, by Theorem 2.3 the sequence {m(w(z))}.cz is well
distributed in Y with respect to the Haar measure, and thus the sequence {v(z)},cz is
well distributed on [0, 1)® with respect to the Lebesgue measure.

Example. If a, b are rationally independent irrational numbers, the GP mapping v(n) =

lajsa
({an), (bn),{ — an[bn])), n € Z, is primitive. Indeed, let H = {(0 11222), Qij <
00 1
1mi2my 3

R}, A = {(0 1 mz,s), m;; € Z}, Y be the connected nilmanifold H/A with “the

00 1
" . lx12x1,3 lz1271,3 .
natural” coordinate system n( 0 1 a3 ) = (21,2,21,3,%2,3) where (0 1 z23 | is the
00 1 00 1

representation of x € X with all ; ; € [0,1), and define the polynomial mapping w:Z —
H by w(n) = (é?b%), n € Z. Then one can show that 7m(w(Z)) is dense in Y, and we

have v = Nomow.

2.12. We can now summarize the content of subsection 2.10 thusly:

Theorem B**. Let u: Z% — R be a bounded GP mapping and let § be the ring generated
by the constant terms of the polynomials involved in u. There exist a subgroup Z of finite
index m in Z¢ with cosets Z,(= 2Z),Za, ..., Zm, an integer s € N, primitive GP mappings
vi: Z; — [0,1)%, i = 1,...,m, of complexity < cmp(u), partitions [0,1)° = Ujv;l L,
i=1,...,m, where each L; ; is defined by polynomial inequalities of degree < cmp(u) with
coefficients from §, and polynomial mappings P; j: R® — RL,i=1,....,m,j=1,...,N;,
of degree < cmp(u) with coefficients from §, such that for Z; ; = vi_l(ﬁi,j) one has u| ;. =
Pi,jovi,izl,...,m,jzl,...,Ni. y

3. Proof of Theorem B and exceptional values of GP mappings

3.1. Let us recall that a polynomial surface S in R! is the image under a polynomial
mapping P:R* — R! of a subset £ of R* defined in R* by a system of polynomial
inequalities 0 < R; < 1, j = 1,...,k, and having nonempty interior. The degree of S is
the maximum of the degrees of P and of R, j = 1,...,k; the coefficients of S are those of
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P and of Rj, j =1,..., k. The measure us on S is the normalized image of the Lebesgue
measure A|, under P, defined by pus(A) = MP~YHA) N L)/NL) for Borel sets A C R
Theorem B** implies the following, more precise version of Theorem B:

Theorem B*. Let u:Z¢ — R! be a bounded GP mapping. There exist bounded poly-
nomial surfaces Si,...,Sx C RY of degree < cmp(u) and a partition Z¢ = Z, U UZ 1 B
such that D(Z.) = 0 and such that for every i € {1,...,k}, D(E;) > 0 and the sequence
{u(2)}rep, is well distributed on S; with respect to us,. The coefficients of Si,...,Sk
belong to the ring generated over Q by the constant terms of the polynomials involved in u.

When the set Z, in the assertion of Theorem B is fixed, we will call the values of u at the
points of Z, exceptional, and the other values of u regular. The theorem then says that the
regular values of any GP mapping u lie and are well distributed on a piecewise polynomial
surface (whereas the exceptional values, which do not affect the distributional behavior of
u, are out of our control).

Proof. We keep the notation of subsection 2.12. Fix ¢ € {1,...,m}. For each j €
{1,...,N;} the set £; ; C [0,1)® is defined by a collection of polynomial inequalities, and
thus elther the interior L9, of L;; is nonempty, A(L;;) > 0 and {vi(2)}.cz, ; is well
distributed on £; ; with respect to the Lebesgue measure, or [, ; 1s empty, A(L; ;) = 0and

Z; j has zero density in Z;. Let us assume that £2,, .. s 7é 0 and L ,q,..., LY, = 0,
and define Z; ., = Z;,,41U...UZ; n,. Then ZZ,* U U;’:l Z; ; is a partition of Z;, the
set Z; . has zero density in Z; and for each j = 1,...,r; the sequence {u(2)}.cz, ; is well

distributed, with respect to us, ;, on the polynomial surface S;; = P; ;(L; ;) of degree
< cmp(u). Finally, we put Z, =" Zi«. m

3.2. Remark. The values of u are well distributed on the piecewise polynomial surface

S = Uz . i Uz oo Pij(Lij); as well, we can take S = [Ji=1,....m Pi;(LS,)-

7‘I LT 7j=1,. 1”Z

We then see that in Theorem B, one may assume that S = f(V') where V is a dense open

subset of a nilmanifold Y and f is a piecewise polynomial mapping ¥ — R/, continuous
on V.

3.3. Corollary of the proof. In the notation of Theorem B*, the set Z, is contained in
the set W = w=1(0) of zeroes of a generalized polynomial w: Z¢ — R, with D(W) = 0.

Proof. Note that, in the proof of Theorem B* in 3.1, for any i € {1,...,m} and j > r;
the set £; ; is contained in the set of zeroes of a nonzero polynomial S;; on R®. Put
S; = HN S; ; and define a generalized polynomial w by Wy = Siov;, 1 =1,...,m.

J=ri+1 i
For each i, since S; is a nonzero polynomial and {v;(2)}.cz, is well distributed on [0, 1)°

with respect to the Lebesgue measure, w| Z__l(O) has zero density in Z;. g

3.4. Here are some examples of generalized polynomials with exceptional values.

Examples. (1) Let a be an irrational number and let u(n) = [1 — (an)]. Then u(n) =0
for all n # 0 and «(0) = 1 is an exceptional value of w.

(2) Let a € R be such that the set S, = {n € N: 0 < (an) < +} is infinite. (For
instance, a = ) 7, 272" =1 works since, as it is easy to check, 22"~ € S, for all n € N.)
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Let b be any irrational number. Define u(n) = ([1 — ([{(an)n]b)]an), n € N. Then
u(n) = {an) < L forn € S, and u(n) = 0 for n ¢ S,. The regular values u(n), n € N\ S,,
of u are all equal to 0 whereas the exceptional values u(n), n € S,, form a sequence
converging to 0.

(3) In the notation of the preceding example, let now u(n) = ([1— ([(an)n]b)]cn), c € R.
One can show that, varying the parameter ¢, one may achieve any a priori given distribution
(with respect to any apriori chosen Fglner sequence) of the sequence of exceptional values
u(n), n € S,, in [0, 1].

3.5. A converse of Theorem B also holds, namely, for any piecewise polynomial surface in
R! whose domain is a cube, or a finite union of cubes, there exists a GP mapping whose
values are well distributed on this surface. Indeed, assume that a piecewise polynomial
surface S is defined by a piecewise polynomial function h: Q — R!, where Q C R? is a
cube, or a finite union of cubes. Choose a GP mapping v: Z — (@ such that the values of
v are well distributed on @ with respect to the Lebesgue measure. (Say, if @ = [0, 1]®, we
can take v(n) = ({ain),...,{asn)), n € Z, where ay,...,a, are rationally independent
irrational numbers.) Define u = hov; by Lemma 1.6, u is a GP mapping, and the values
of u are well distributed on S.

3.6. Let us demonstrate the calculation of the distribution of the values of a generalized

polynomial by carrying it out on one simple example. Let a be an irrational number;

consider the generalized polynomial u(n) = <1 2n? an[an]>>, n € Z. We are going to
generate u by a nilsystem.
lab

The group G = { <8 (1) f)’ a,b,ce R} of 3x 3 upper triangular matrices with unit diago-

1mk

nal is a connected simply-connected nilpotent Lie group, and I' = {<8 (1) i ), m,k,l € Z} is
a discrete uniform subgroup of G; let X = G/I" and m: G — X be the natural projection.

110 101 100 . .
Let e1 0 = (8(1)(1)>’ e1,3 = (8(1)(1)> and eg 3 = (8(1)%)’ then {ez 3,€1 2,613} is a Malcev basis

b
in G such that 65’36(11726?’3 = 8%? , a,b,c € R. Thus, in the Malcev basis {e2 3,€1,2,€1,3}
. . lab ~ .
the coordinates of a matrix A = (8%5 € G are 7(A) = (¢, a,b). The fundamental domain
lab la
inGisQ = 0?9, a,b,c €10,1) ¢, and for a matrix A = (86%) € G the corresponding

matrix x(A) € Q with 7(A) = 7(x(4)) is

1ab\ /100 1— a]o —[b—alc]] 1 {a) {(b—alc])
x(A)=1(o01¢ 0 1—[c] 0 0 =lo 1 () |
001 1 0 1 0 0 1

an Oé’I’L

1
For the polynomial sequence w(n) = <0 an ) in G we will therefore have 73(w(n)) =
0

(2a?n? — anfan]) = u(n), n € Z.
a 1q?
Consider the subgroup H = {((1) 12 ), a e ]R} of G; we have w(n) € H for alln € Z.
00 1
I' N H is uniform in H, thus Y = n(H) is a 1-dimensional subnilmanifold of X. Define
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1

1 aila?
the coordinate mapping 77: H — R by ﬁ((o 12 )) = %a, so that (' N H) = Z. The
00 1
mapping Ry = 7ofj 1: R — R3 has form Ry (y) = (2y, 2y, 2y?). Let 77 Y — [O 1) be the
coordinate mapping corresponding to 7, then the sequence v(n) = n(w = <<20m>>

is well distributed on [0, 1) with respect to the Lebesgue measure, and S0, 7r( (n)) is well
distributed on Y with respect to the Haar measure on Y.
Let C = [0,1)3. Then Ry ([0,5)) C C. Define Ry = RH|[0 1y = (2y, 2y, 2y?). For
)

110
v = (011) one has
001

It

Cy=M,(C)={(c,a,b):1<c<2,1<a<2 a—1<b<a},

la 1
=
S(c,a,b) =T ole {0

O

(011)) = (c+1La+ 1,b+a),

and so

and RH([%, 1)) C C,. Define Ry = MTloRth 1y Rao(y) = 2y —1,2y—1,2y% -2y +1).
29

Let P;, P2 be the 3-rd coordinates of R and of R, respectively, P;(y) = 2y? and Pa(y) =

292 — 2y + 1.

We have arrived at the following: the interval [0,1) is partitioned into the pieces
Ly =[0,5) and Lo = [3,1), a mapping P:[0,1) — [0,1) is defined by P|, = P; and

P|z, = P2, that is Ply) = 2% y € [0’ %) and we have u(n) = 77(<<lom>>)
= ’ ’ 2 —2y+ 1,y € [5,1) 2 ’
n € Z. The sequence {%an}n ez 18 well distributed on [0, 1) with respect to the Lebesgue

measure dy; hence, u(n), n € Z, is well distributed on [0, 1) with respect to the measure

e [0,1)
242z—1" 2=/

4. Proofs of Theorems C, D, B., and of other results from Introduction

4.1. The following theorem (cf. Corollary 0.25 of Introduction) clearly follows from Theo-
rem B*:

Theorem. Let w:Z¢% — R! be a bounded GP mapping. For any f € C(RY)
and any Folner sequence {®n1}3_, in Z¢, A}i_{noom}—N'ZnE@N f(u(n)) exists and equals

YL (D(E:) [5, fdps,).

4.2. Corollary. (Corollary 0.26 of Introduction) For any generalized polynomial u: Z¢ —
R and any Folner sequence {®x}35_, in Z°, ngnoo @ Y oncoy e2™Un) egists.

4.3. The proofs of the following two propositions (Corollaries 0.27 and 0.28 of Introduction)
are similar; we confine ourselves to the proof of the first of them:
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Proposition. LetUf,..., U}, t € R, be commuting unitary flows on a Hilbert space H and
let ui, ..., u be generalized polynomials Z¢ — R. For any Folner sequence {®N}R, in

7 the sequence ﬁ > U;”(T.L). . U;;““(n) 1s convergent in the strong operator topology.

ned

Proof. An application of the spectral theorem reduces the problem to the case where 'H =

L*(Q) for some measure space €2 and (Ulg)(z) = ™ i@ig(z), g € L*(Q), j =1,...,k,

x € Q, where f; are measurable real-valued functions on 2. Then, for any g € L?(2) and

x €,

k k .

wj(n i (n) £z 2we )y o uji(n)fi(x Tiug (n

(T173 ™) @) = (T e ) gla) = 7 2wsma™s B g ) — e2niverg ),

j=1 j=1

where u,(n) = 2521 fi(@)uj(n), n € Z% By Corollary 4.2, the sequence
@ Y oncoy e?m=(n) g (1) converges pointwise on 2, and thus in H = L?(Q). g

4.4. Proposition. Let Uy,...,U; be commuting unitary operators on a Hilbert space and
let ui, ..., u be generalized polynomials Z¢ — 7. For any Folner sequence {PN}F_ in

74 the sequence ﬁ > U{”(T.L). . U;;““(n) s convergent in the strong operator topology.

ned

4.5. The following proposition can be viewed as a “measure preserving’ version of the
“unitary” result contained in Proposition 4.3.

Proposition. Let G be a connected nilpotent Lie group, let X = G /T be a nilmanifold with
m:G — X being the natural projection, let A be the algebra of generalized polynomials

on Z4, and let w € G(A), that is, w(z) = gi“(z.). .gf’"(z), 2z €7 with g1,...,9, € G and
U1, ..., u, being generalized polynomials. Then ngnoo @ Yrcay f(m(w(2))) exists for any
f € C(X) and any Folner sequence {®n}35_, in Z°.

Proof. Let 7: X — [0, 1)* be a coordinate system. By Theorem A**, 4 = Tomow € B(A)*,
and in the case under consideration B(A) = A. So, u:Z¢ — [0,1) is a GP mapping.

Let f € C(X); since 7~ ! is continuous, f = for~! is a continuous function on [0, 1)*.
By Theorem 4.1, ]\}Enoo @ Yocay f(m(w(2)) = A}Enoo ﬁ > scay f(u(z)) exists for any

Fglner sequence {®n )., in Z4. g

4.6. We now move the discussion to the recurrence properties of generalized polynomials,
dealt with in Theorems C and D of Introduction. Given a mapping u from Z? to a
topological space X, we will say that a point x € X is an IP*-limit of u if for any
neighborhood W of z the set w=!(W) is IP*, and that « € X is an IP% -limit of w if for
any neighborhood W of x the set u~!(W) is IP% . The following fact is proved in [L3]:

Proposition. Let X = G/T be a nilmanifold, m: G — X be the natural projection, and
w: Z4 — G be a polynomial mapping. Then m(w(0)) is an IP*-limit of the mapping mow.

4.7. Corollary. If Y = mow(Z4), then every point of Y is an IP% -limit of mow.
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Proof. For any 2/ € Z% the point 7(w(z')) is an IP*-limit of the mapping mow’ where
w'(z) = w(z + 2’), and thus for every open set W C Y the set (mow) ' (W) is an IP% set.

4.8. Theorem C. Let uw:Z% — R be a bounded GP mapping and let S be the piecewise
polynomial surface on which the values of u are well distributed. Then for every open set
W CS, u=H (W) is an IP% set. In other words, every point of S is an IP7y -limit of u, and
in particular, every regular value of u is IP% -recurrent.

Proof. By Theorem A, u is representable in the form u = fomow where w:Z% — G
is a polynomial mapping to a nilpotent Lie group G, m: G — X is the projection to a
nilmanifold X = G/T, and f: X — R! is a piecewise polynomial mapping. Let ¥ =
mow(Z%); then Y has a dense open subset V' such that f is continuous on V and § = f(V).
(See Remark 3.2.) If W is an open subset of S then U = f~1(W) NV is a nonempty open
subset of Y'; by Corollary 4.7, (mew) ! (U) is an IP% set, and so u™ (W) is an IP% set. g

4.9. Theorem D. Let u be a GP mapping Z¢ — R such that all polynomials involved in
u have zero constant term, and let u be the composition of u and of the natural projection
R' — T'. Then 0 € T" is an IP*-limit of .

Proof. Let u: Z¢ — R! be a GP mapping such that all polynomials involved in « have
zero constant term. Let A be the ring generated by these polynomials, then all polynomials
from A vanish at 0. Define v = u — [u], then Ran(v) C [0, 1)".

Utilizing Theorem A**, we can find a nilmanifold X = G/T" with the natural projection
7:G — X, a coordinate system 7: X — [0,1)*, a mapping w € G(A), and indices
i1,...,0 € {1,...,k} such that v = (7y,,...,7,)omow. Since w € G(A), w(0) = 15. Let
o=7(1lg), then mow(0) = o.

Let o be the natural insertion [0,1)¥ — T* = R*/ZF, that is, the restriction on
[0,1)% of the natural projection R¥ — T*. Then oor: X — T* maps o to 0 € T* and
is continuous at o. Indeed, if a sequence {x;}32; in X converges to o, then a limit point
of {7(x;)}52; may only be a vertex of the cube [0, 1]*, and all the vertices of [0, 1]* are
mapped by o to 0 € T*.

The mapping @ = u(mod 1) = v(mod 1): Z¢ — T’ is the composition of goTomow and
of the projection p: T — T, p(y1, ..., yr) = Wir»- - Yi,):

w:77 =% @5 x S 0,1) L 1 21l

By Proposition 4.6, o is an IP*-limit of mow. Hence, 0 € T* is an IP*-limit of goTomow and
0 € T! is an IP*-limit of 4. n

4.10. Theorem. (Theorem 0.34 of Introduction) Let u;: Z¥H 1 — R, i = 1,...,k, be
generalized polynomials such that all ordinary polynomials involved in u; have zero constant
term. Then for any 6 > 0, the set of n € Z2 for which there exist my, ..., my € Z satisfying

‘ul(n) — ml‘ < 0, ‘uz(n,ml) — mg‘ <0, ..., ‘uk(n,ml, ceyMp—1) — mk‘ <46 (4.1)
is an IP* set.
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Proof. Put [u]' = [u] and [u]™! = —[~u]. Define

vi(n) = w1 (n), n€Z¢,
v5t(n) = ua(n, [v1(n)]), n e 7%, e € {-1,1},

v3"? (n) = ug (n, [v1(n)], [v3! (n)]ez), n ez e, e € {~1,1},
v () = ug (n, [v1 ()], [v3" (n)], . ..,[vzli'i"ekfz(")]ek*), nelZ e,... e € {~11}

By Theorem 0.33, for any 6 > 0 the set of n € Z¢ for which dist (v;"""“ " (n) mod1,0) < &
foralli=1,...,kand €1,...,¢; € {—1,1} is an IP* set. For any such n we now construct
a solution of (4.1) in the following way.

5 5
We have either (u;(n)) = 0 or (ui(n)) ~ 1; in the first case we put €, = 1, in the
second case we put € = —1. Define my = [uq(n)]®; then, in both cases, |ui(n) —m| < 4.

5 5
We now have v§'(n) = uz(n,m) and either (uz(n,m1)) = 0 or (uz(n,mi)) ~ 1; in
the first case we put €2 = 1, in the second case we put €3 = —1. Define mg = [u2(n, m1)]*;
then, in both cases, |uz(n, my) — ma| < 0.

5
Next, we have v5"*(n) = wua(n,my,me) and either (us(n,mi,mq2)) ~ 0 or
5
(usz(n,mi,ms)) = 1; in the first case we put €3 = 1, in the second case we put €3 = —1.

Define ms = [u2(n, m1, m2)]|; then, in both cases, |usg(n, mi, ms) —mg| < 6. And so on,
inductively. g

4.11. The following is a refinement of Theorem B.:

Theorem B?. Let u:RY — R! be a bounded GP mapping. There exist bounded poly-
nomial surfaces Si,...,Sk C R! of degree < emp(u) and a partition R = Z, U Ule E;
such that Dp(Z.) = 0 and for every i € {1,...,k}, Dp(E;) > 0 and u|y is ball-uniformly
distributed on S; with respect to ps,. The coefficients of Si,...,Sk belong to the ring
generated over Q by the constant terms of the polynomials involved in u.

To prove this theorem one just has, in the proof of Theorem B*, to switch from Z¢
to R? and to substitute Theorem 2.3 by the following theorem, which is a special case of
results in [Shl].

Theorem. Let X = G/T" be a nilmanifold, 7: G — X be the natural projection, and let
w:RY — G be a polynomial mapping. There exists a connected subnilmanifold Y of X
such that 7T(W|Rd) is ball-uniformly distributed on Y with respect to the Haar measure on

5. Legal orders and reduction formulas

We now proceed to the algebraic part of the paper, which will lead us to the proof of
Theorem A7*.
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5.1. We remind the reader that A stands for a ring of real-valued functions on a set Z;
B(A) is a bracket extension of A, that is, the minimal ring of functions containing .4 and
closed under the operation of taking brackets; B°(A) C B(A) consists of functions with
range in [0,1); and D(A) is the set of functions which can be generated by a nilsystem,
that is, functions of the form 7ow where w is an A-mapping from Z to a nilpotent Lie
group G and 7 is a coordinate on the nilmanifold X = G/T.

5.2. It was shown in subsection 1.15 that 91(A) C B°(A). To establish the inclusion
PB°(A) C N(A), stated in Theorem A}*, we will use the group of upper triangular matrices

lai2 ... a1 4
with unit diagonal. For d € N let My = {( ! az:’d>, ai; € R}. M, is a connected
0"
11’1,1,2 cee M1 4

simply-connected nilpotent Lie group, and I'y = { ( Lo n2~’d>, ngj € Z} is a discrete

0
uniform subgroup of Mj. '

We will refer to elements of My as to upper triangular matrices. Dealing with matrices
from M, we will often ignore their diagonal and subdiagonal entries and therefore assume
that their entries are indexed by the pairs (i,7) with 1 <i < j <d.

5.3. Let A be a ring of real-valued functions on a set Z. The set of A-mappings Z — My

log,2 a4
is then the set Mg(A) = {( ! a?'d>, 45 € .A} of upper-triangular matrices with

entries from A. Let B(A) be the bracklet extension of A; for any matrix P € My(A) there
exists a unique matrix x(P) € My(*B(A)) which is equal to P modulo I'; and takes values
in the fundamental domain of My. Our goal is to show that for any u € B(.A) there exist
d € N, a Malcev basis in My, and a matrix P € M,(.A) such that the (1, d)-coordinate of
the matrix x(P) in this basis is equal to u — [u].

5.4. For 1 <i < j <d, let Ej;; be the upper triangular matrix whose only nonzero entry
is 1 at the (4, j)-th position:

5.5. At first glance it seems that with respect to the Malcev basis {E; ;}1<i<j<a the

1(11,2 cee Q1.4

1 ... A2 4

coordinates of a matrix ( : ) € M, are its entries a; ;, and that the corresponding

1
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fundamental domain for M;/I'g is the set of matrices with all a; ; € [0,1). However, this
is not true, or, more precisely, is only true for a specific ordering of the Malcev basis
{E; j}1<i<j<d. Indeed, if an ordering is such that for some 1 < k < n <[ < d the element

Ej ,, of the basis precedes the element E, ;, then the (k,!)-entry of the product [] E 4
1<2<]<d

computed with respect to this ordering contains, in addition to aj,;, a summand of the
form ay nan,,;. Therefore, the coordinates of a matrix in the Malcev basis {E; ;j}1<i<j<a
are equal to its entries only if the elements of the basis are ordered as follows:

(Ba-1,4, Ba—2,a-1, Ba-2,4, Ea-3,4-2, .-, E2.4, E12,...,F1,4).

Denote the corresponding order by <, that is, let (i,7) < (k,1) if ¢ > k, or if i = k and

lay 2 ai1,d
j < l. Then the product [] E “J computed with respect to < equals ( ! az:’d)
1<2<]<d co
1

5.6. The set of elements of B(.A) which can be obtained with the help of the Malcev basis
{E; j}1<i<j<a in Mg ordered by the order < defined in 5.5, is restricted to nested elements,
that is, the elements of B (.A) whose representation does not contain products of brackets.
Here is a rigorous definition: an element u € B(.A) is nested if either u € A, or u = £[v]
where v is nested, or a[v] where v is nested and a € A, or u = uj + ug where uy, ug are
nested. (Example: for a; € A, o [aalas] + aulas + ag]] + arlas] is nested and aq[as][os)

is not.)
10(1)2 e X1 4

Given a matrix P = ( ! azz’d> € My(A), the matrix x(P) (that was introduced

1
in subsection 5.3) is computed in the following way: for 1 < k < [ < d, if integer-
valued functions m; ; € B(A) have already been defined for all (4,j) < (k,1), we put

Pey=P- (H(m){(k’l) E:r;”) (where the product is computed with respect to <), §kl be
the (¢, j)-entry of Py ;, and my,; = —[f,ljll] Then x(P) = (H(”) Emz 7).

By induction on (k,[) assume that §H = oy ; for all j < k and that 55’} are nested
for all 5 > k. Then

_p Y Lif l
(Pk lE )ij 5 J j 7£ k,l k7 sp -
’ 5 +§ = gi,j - O‘i,k[fkl] 1f] - l7

which is equal to «; ; if 7 <k, and which is nested if j > k.
This gives us the following proposition:

Proposition. For P € M4(A) all entries of x(P) are nested elements of B°(A).

The converse is also true: any nested element of B°(A) is obtainable as an entry of x(P)
for a suitable P. We omit the proof.
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5.7. For a matrix P € M, we will now compute the coordinates of y(P) with respect to
the Malcev basis {E "M<icj<ds € € {—1,1}, taken in an arbitrary order <. Actually,

< cannot be completely arbitrary, since the elements E; ij taken in accordance with the
order < must form a Malcev basis in My in the sense of 1.2. We will say that a linear
order < on the set {(7,j)}1<i<j<a is legal if (4,5) = (k,l) whenever (simultaneously) i > k
and 5 <.

Let < be a legal order on {(7,))}1<i<j<q and let ¢, ; € {—1,1}, 1 <i < j < d. Let

lai2 ... a1 4
Pe My P= ( ! az:’d>; we will call a; ; the (i,j)-entry of P. P is representable in
1
the form P =[] Ee’ 5T j € Z, where the product is computed in accordance with the
1<z<3<d

order <; we will call z; ; the (i, j)-coordinate of P. (Note that though the integers z; ; in
the formula for P may take negative values, the signs ¢; ; are not superfluous: the bases
{E;;} and {Ee’ 7} are different, and may produce different generalized polynomials.)

5.8. We start with finding recurrence formulas connecting the entries a; ; and the coordi-
nates z; ; of P. For indices (k,1) < (7,7) let 0 "'be the (i,)-entry of [] Efis ™ and let
(r,8)=<(k,l)
Hm = 9;:5 Then
le 2 en,je n,j + Z ai,nen,ja
(n )= (k1) (n,5)=(k,1)
(n,5)=<(i,n) (n,4)>(i,n)
bij =07 = 3 0000+ 3 ainbnj,

(n,)=(in) (n.d)> (i.n)
and z,j = €i,j(ai; — 0i;)-
5.9. Now let x(P) be the matrix in the fundamental domain of M, corresponding to P,
that is, x(P) = P( []E;,”) with all m;; € Z so that x(P) = [] E;’*"’ with all

1<i<j<d 1<i<j<d
x;; € [0,1). We will compute the coordinates x; ; of x(P). For an index (k,[) let

Poi=P( 1 EMY),

(4,5) = (k1)
then
Poo=( T1ES™)ES( TLES)
(4,5) =< (k,1) (4,5)>(k, l)
for some & ; and v”, and one has my; = —eg [€x,1€k,1] and xp; = €51 (Epg + Miy) =

€1,18k,1 — [€r,18k,1)- N
For (i,7) = (k,1) let @f; be the (i, j)-entry of Py and ¢; ; = ;4. For (i,5) < (k,1)
the (i, j)-entry of Py is ¢; j +m; j, thus

(pfj = Qi + 2 ('01 mn:] + Z ((pz n T+ m; n)mn,]
(n,5)=<(k,0) (n,5)=(k,1)
(n,3)=<(i,m) (n,3)=(i,m)
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and

$ij = Qg+ Z 901 mn,y + Z (901n+mzn)mn,g
(n.g)=(in) (n,4)>(i,n)

For (i,7) »= (k,1) let wkl be the (i, j)-entry of [[ Ey5’*™° and v, ; = zp”, then & ; =
(1,9)=<(k,1)
(¢ij — ¥ij). For (i,7) < (k,l) the (4,7)-entry of [] Ers*™"° is @i j + my j, thus

(r,s)=<(k,0)
U= Y e+ Y (Pim + Min)en jTn
(n,3)=(k,1) (n,5)=(k,1)
(n,5)=<(i,n) (n,7)>=(i,n)

and

bij = S U eniTng+ 3 (Pim + Min)enjTn,j-
(n,7)=<(1, n) (n,7)>=(i,n)

For (k,1) < (i,7) we define 52’; = gpfj - @ij”jl and compute

k,l
£i,]_a27]+ Z @ann]—f— Z (szn‘i‘mzn)mn] Z wznGRanJ
(n,3)=<(k,1) (n,3)=<(k,1) (n,5)=(k,1)
(n,j)-<(i,n) (naj)>(i’n) (n’j)'<(i7n)
= 2 (Pim +min)en;Tn,;
(n,3)=(k,1)
(n,3)>(i,n)

=ai;+ Y (—eienjlenbngl — Vil (Eny — €enjleni€nl))

(n,j)-<(k:,l)
(n,7)=(i,n)

+ 3 (@in — €inlein&inl) (—€njlenj&ni] — (Enj — €n.jlen,iénjl))
(n,g)=(k,1)
(n:j)>(i n)

= Q45 — Z gz n €n,j [En ]gnd] Z ¢Z;§§n,] - Z Spi,nén,j
(n,5) < (k,1) (n,5)=(k,1) (n,3)=<(k,1)
(n,5)=<(i,n) (n,3)=<(i,m) (n,5)=(i,n)

+ > €inl€inéinlénj-
(n,j)-<(k:,l)
(n,j)=(i,m)

In particular,

ij = Qij— > £Zn6naj €n,jén.il — 2 wz#&n,j — > vinénjt+ X €inl€in&inlén,;

(n,5)=<(i,n) (n,5)=(i,mn) (n,3)>(i,n) (n,3)>(in)

and z; j = € ;8i; — [€i,58i5]-
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6. Bracket algebra

6.1. Once the above formulas have been obtained, we find ourselves in a purely algebraic
context. The nature of entries of our matrices is no longer important to us, and we may
assume that they are elements of an arbitrary commutative ring A. Moreover, we prefer
to use the abstract algebraic language because we are going to deal with neither numbers
nor functions, but with abstract expressions built from the elements of A by applying
the operations of addition, multiplication and taking brackets. We will now introduce the
necessary algebraic formalism.

6.2. Given a set S, we denote by X[S] the free commutative ring generated by the
set {[u], u € S}, that is, the commutative ring of formal finite sums of the form
22:1 Fui] ... [Wim,] with I >0, m; € N, and u; ; € S, where the cancellation of equal
summands appearing with opposite signs is allowed.

For commutative rings R and @ let R * ) be the commutative ring freely generated
by R and @, that is, R*xQ = R® Q ® (R ® Q) with multiplication defined by r¢ =r ® ¢,
ri(reg) = (rr)®q, q(r®q) =re(qq), and (1M ®q)(req) = (rr)®@(qq) for r,r1 € R,
q,q1 € Q. We will write rq for r ® q.

6.3. Let A be a commutative ring. We are going to construct an algebra B, which we will
call the bracket algebra over A. We put By = X[ A]; if By, is already defined, let B? = $[By]
and By, = By * Bp.* Let B® = (J;2, B and B = |J;2, By; a mapping [-]: B — BP
is naturally defined. Let I be the ideal in B generated by the sets {[v] —v:vE Bb} and
{lut+v]—[u —v:ueB, ve Bb}; we define B = B/I and B8P = B?/(I N BP). The
mapping [-]: B — BP is well defined, identical on B and satisfies [u + v] = [u] + v for
any u € B, v € BP. The elements of B will be called bracket expressions over A.

6.4. As an abelian group, B is generated by the expressions of the form afvy] ... [v,,] where
ac€e A, m>0,v1,...,u, € B, and of the form [vq]...[v,,] where m > 1, vy,..., v, € B.
We will call such expressions monomials. The monomials of the form [v1]...[v,,] span

BP: let Bt be the subgroup of B spanned by the monomials of the form afvi]. .. [v,,] with
a € A. Then B = Bt ¢ BP, and Bt is an ideal in B.

6.5. For u € B we define t(u) € Bt and b(u) € BP so that u = t(u) + b(u). From the
definition of Bt and B we clearly have:

Lemma. For ui,us € B one has

t(u1 + u2> = t(ul) + t(UQ>, b(u1 + U2> = b(ul) + b(UQ),

t(u1u2) = t(ul) t(UQ) —+ t(ul) b(UQ) + b(ul) t(UQ), b(u1u2) = b(ul) b(UQ),
t([u1]) = 0 and b([u1]) = [6(u1)] + b(u1).

4 Note that elements of Y[Bg], as defined in subsection 6.2, have no integer coefficients,
so that no confusion of elements of BE with elements of A ® BE may occur even if 4 contains
integers. For example, an expression of the form, say, 2[v] should not be interpreted as [v] + [v],
but only as 2 ® [v].

33



6.6. We will say that an expression

l

k
> aivial i) + > Euia] . i), witha; € Aand u g0 €8, (6.1)
=1 =1

representing an element of 9B is reduced if (i) all v; ;, u; ; belong to B* and are represented

in the reduced form; (ii) the monomials v; = [v;1]...[Vim,], for i = 1,...,k, are all
different, so that no combining of like terms is possible; and (iii) equal monomials u; =
[wi] ... [win,], for i = 1,...,1, have identical signs, so that no cancellation is possible.

Every expression u € B is uniquely representable in the reduced form.® When we are
free to choose an expression representing an element of B we will assume that this is the
reduced representation of the element.

6.7. For u € B we define [u]! = [u] and [u] ™! = —[~u].

6.8. We will now transfer the formulas obtained in 5.9 to the “abstract” environment we
introduced. For d € N let My(A) be the group of upper triangular matrices with entries
from A. We will call an upper triangular matrix € = (& j)1<i<j<a With € ; € {—1,1},
1<i<j<d, a sign matriz.

1a1,2 cee Q1.4
G. t . P . 1 azyd M A . t 3 _ A . . d
iven a matrix P = A € My(A), a sign matrix € = (&, j)1<i<j<d, and a
1

legal order < (see 5.7) on the set {(, j) }1<i<j<a, we define ¢; ;,1; ;,&; ; and @ﬁj, fj, 55’; €

® Here is how the reduction can be done. First, one reduces the expressions for all the
elements v; j and u; ; of ‘B appearing in (6.1) (which can be done by induction on the length of the
expressions), and takes their fBb—parts out of the brackets. Next, if a monomial [Ui,l] ... [Ui,mi]
appears in (6.1) more than once, the corresponding summands should be combined by adding
coefficients. Finally, if a monomial [u; 1] ... [u; ;]| appears in (6.1) twice with opposite signs, the
corresponding summands should be canceled.
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B for (i,7) < (k,l) inductively by

()01,] = al,] Z gpz [gn,]]enj - Z (Qpi,n - [gi,n]ei’n)[gn,j]en’j

(n,5)=(k,0) (n,J)=(k,1)
(n,7)=(i,m) (n,5)=(i,n)
Pi,j = sz:; = Q4,45 — Z 901 [gn,j]enj - Z (Spl,n - [Si,n]ei’n)[gn,j]en’j
(n,5)=<(i,n) (n,3)>(i,n)
k.l €n,j €i,n €n,j
Vii = > i (fnd (Ens]7) + 0 (@in — [in] ™) (bny — [Eng]l™)
(n,g) < (k1) (n,7)=(k,1)
(n,j)=(i,n) (n,3)>(i,n)
vig == 3 ¢ H(&ng = Engl™) + 3 (@in — (&)™) (Gng — [Ens]™7)
(n.d)=(in) (m.g)=(in) (6.2)
&l =il il =a;— S &) = X P
(n,5) =< (k1) (n,g) =< (k1)
(n23)<(im) (n.3)<(im) |
+ 2 [Ginl & — Y0 Pinn
(n,J)=(k,1) (n,7)=(k,1)
(n,5)=(i,m) (n,3)>(i,n)
£ij = Pij — Vi =aij— 2 &6 1 — 3 W&
(n,3)=(4, n) (n,5)=<(i,n) ‘
+ 22 L&l ng — D2 Pinén-
(n,5)=(i,n) (n,3)>(i,n)

When it is not clear from the context for What matrix P, sign matrix € and/or order
< we are computing the elements <p”,w”,£ we will write gpfjl (P, e, <),¢f”jl(P, €, <),
Si’j (Pye,<).

Notice that in formulas (6.2) the elements &, ; are computed in terms of &, ; with
i <r < s < j. Therefore, when computing ; ; we may restrict ourselves to the submatrix
of P indexed by {(7,$)}i<r<s<;j. We will say that the (r,s)-entry does not affect the

(i,j)-entry if r < i or s > j.

2]7

6.9. Our goal is to prove the following:

Proposition. For any u € B there evist d € N, P € My(A), a sign matriz ¢ =
(€ij)1<i<j<d, and a legal order < on the set {(i,7)}i1<i<j<a such that t(§17d(P, €, —<)) = u.

Let us remark that this proposition does not yet imply Theorem A7* because it says
nothing about the nilpotency class of the group needed to obtain an element u € Bt. We
will later formulate and prove a stronger statement, Theorem A*** in 10.4, from which
Theorem A7* will follow.

7. Elementary bracket expressions and ordering of trees and bushes

7.1. We will say that a bracket expression p € B is elementary if it is constructible from
elements of A without using the addition or subtraction. More precisely, p is elementary
if either p = a[p1]...[pm] where a € A, m > 0, and p1,...,p, € B are elementary, or
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p=[p1]...[pm] where m > 1 and py,...,pm € B are elementary.® We will denote the set
of elementary elements of 8 by €.

Example. p;[p2[ps]][p4] is elementary, pi[p2 + p3] and p;[p2] — p3 are not.

7.2. Elements of & can be described by oriented graphs labeled by elements of A. The
following examples illustrate what we mean:

Examples. as
pr=a: g  py=aiag]: ﬁi p3 = a1[az]|as] ZCLQ\{:% P = a1lazlas]] : %zbi
ps = ax [a2 az][aa][as [GG]H : Zi q= [al[a2][a3H [a4[a5 [GG]H la7] 3a2m %Zi eaz

(While we do not base our proofs on this graphic representation of elements of &, the
reader may find it useful for the visualization of the exposition.)

7.3. We will now subdivide & into two subsets, & = &t U &P, where ¢P = ¢ N BP and
¢t = ¢ N B Elements of ¢ have the form p = alp1]...[pn] with a € A, m > 0,
and pi1,...,pm € €, and will be referred to as trees, with the root a and the branches
P1y---9yPm-

Elements of &P have the form p = [p1]...[pn] with m > 1 and p1,...,pn € €, and
will be referred to as bushes, with the branches pi, ..., Ppm.

In the examples 7.2, p1,...,ps are trees and ¢ is a bush.

7.4. In the proof of Proposition 6.9 we will use a cumbersome induction based on the
structure of the trees representing elements of €. We will now introduce some parameters
of trees and bushes, that is, of elements of €&.

(i) The complezity cmp(p) of p € € is the number of its vertices, that is,
cmp(p) =1if p € A;

cmp(p) = 1+ cmp(py) + ... + cmp(py,) for p = alp1]. .. [pm] € € with a € A and
P1,--yPm € th’
cmp(p) = cmp(p1) + ... + cmp(py,) for p = [p1] ... [pm] € E° with p1, ..., pm € €.

(ii) The height hgt(p) of p € € is
hgt(p) =0if p € A;

hgt(p) = 1 + max{hgt(p;)}™, if p = a[p1]...[pm] € €E* with a € A and
P1y---yPm S th’
hgt(p) = max{hgt(p;)}™, if p = [p1]...[pm] € P with p1, ..., p, € €.

6 Here is how this definition should be understood: we put Eg = A, then E;, = Ei_; U
{a'[pl] [pm]a m 2 07 ac A7 pP1,---,Pm S Ek‘—l}u{[p ] [pm]a m 2 17 pP1,---yPm S Ek‘—l}
for k =1,2,..., and finally, € = [J;2 Ej; then € is the set of elementary elements of B.
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(iii) The number of branches brn(p) for p € P is defined by
brn(p) =0if p € A,
brn(p) = m if p=alp1]...[pm] € €* with a € A and py,...,pn, € €Y
brn(p) = m if p= [p1]...[pm] € EP with p1,...,p, € €5

a4q as
Cbz"i%as
Examples. p; = a1[as] [ag [a4][a5]] : ay cmp(p1) = 5, hgt(p1) = 2, brn(py) = 2.

p> = ar[aslaslallas]]] [aslar]l : g cmp(pa) =T, hgt(pa) = 3, brn(ps) = 2.

p3 = aifaz][as][ad] : \V cmp(p3) = 4, hgt(ps) = 1, brn(pz) = 3.
q1 = [a1]az]as]] : %al eay, cmp(q1) =4, hgt(q1) =2, brn(q1) = 2.

a2
g2 = [a1]as][as]] [aslas]] : \f t cmp(qz) = 5, hgt(g2) = 1, brn(gz) = 2.
7.5. The following can be checked directly:

Lemma. (a) For p € €', cmp([p]) = cmp(p), hgt([p]) = hgt(p), and brn([p]) = 1.

(b) For p,q € &P orp € ¢, ¢ € ¢P, ecmp(pg) = cmp(p) + cmp(q). For p,q € €,
cmp(pg) = cmp(p) + cmp(q) — 1.

(c) For p,q € €* or p,q € €, hgt(pg) = max{hgt(p),hgt(q)}. For p € €', ¢ € €,
hgt(pg) = max{hgt(p), 1 + hgt(q)}.

(d) For p,q € €, brn(pq) = brn(p) + brn(q).

7.6. We now introduce an order on the set of trees ¢t and, independently, on the set of
bushes &P; trees will not be comparable with bushes. Strictly speaking, this will be linear
orders on the set of non-labeled trees and bushes; for elements p,q € &t or € &P having
the same graph structure we will assume p < ¢ and ¢ < p.

For p,q € ¢t or p,q € ¢P we will write p < ¢, or p = o(q), if

cmp(p) < cmp(q),
or cmp(p) = cmp(q) and hgt(p) > het(q),
or cmp(p) = cmp(q) and hgt(p) = hgt(g) and brn(p) > brn(q).

If cmp(p) = cmp(q), hgt(p) = hgt(q), and brn(p) = brn(q) = m, write p = a[p1]. .. [pm]
or p = [p1]...[pm), with a € A and py,...,pm € €, so that p; > ... > py,, and write
q=">b[q1]...[gm] or ¢ =[q1]...[qm], withb e Aand q1,...,q, € € sothat ¢ > ... > qp.
Then p < q if there is ¢ such that p; < ¢1,...,pi—1 < ¢—1 and p; < ¢;; in this case we will
say that the list of branches of p is smaller than the list of branches of q.
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7.7. We will now obtain several technical lemmas describing the properties of the intro-
duced orders on &t and &P,

Lemma. (a) For q € €*, [o(q)] = o([q]).

(b) For q,r € € with hgt(q) > hgt(r), o(q)r = o(qr).

(c) For g € € and r € €%, qo([r]) = o(q[r]).

(d) Forqe € andr € (’Et with hgt(q) > hgt(r), o(q)o([r]) = o(q]r]).

Proof. (a) Let p = o(q), that is, p € €* with p < q. We have cmp([¢q]) = cmp(q),
cmp([p]) = cmp(p), het([q]) = hgt(q), and het([p]) = hgt(p), so if cmp(p) < cmp(q) or
cmp(p) = cmp(q), hgt(p) > hgt(q), then [p] < [¢g]. We also have brn([g]) = brn([p]) = 1, so
if both cmp(p) = cmp(q) and hgt(p) = hgt(q), then [p] < [q] iff p < q.

(b) Let p = o(q). (That is, if ¢ € &* then p € ¢* and p < ¢; if ¢ € P then p € ¢P
and p < ¢q.) If cmp(p) < cmp(q) then cmp(pr) < cmp(gr). If cmp(p) = cmp(q) and
hgt(p) > hgt(g), then cmp(pr) = cmp(gr) and hgt(pr) = hgt(p) > hgt(q) = hgt(qr).
If cmp(p) = cmp(q), hgt(p) = hgt(g), and brn(p) > brn(g) then cmp(pr) = cmp(qr),
hgt(pr) = hgt(p) = hgt(q) = hgt(gr), and brn(pr) = brn(p) + brn(r) > brn(q) + brn(r) =
brn(gr). In all these cases pr < gr. If cmp(p) = cmp(q), hgt(p) = hgt(q), and brn(p) =
brn(q) then cmp(pr) = cmp(gr), hgt(pr) = hgt(gr), and brn(pr) = brn(gr), and we pass
to the branches of pr and gr. Since the list of branches of p is smaller than the list of
branches of ¢, the list of branches of pr is smaller than the list of branches of ¢r, and so,
pr < qr.

(c) Let p € €P and p < [r]. If cmp(p) < cmp([r]) then cmp(gp) < cmp(g[r]) and gp < ¢[r].
Assume that cmp(p) = cmp([r]), then cmp(gp) = cmp(g[r]). In this case hgt(p) > hgt([r]),
so hgt(gp) > hgt(g[r]). We have brn(q[r]) = brn(q) + 1 < brn(q) + brn(p) = brn(gp). If
brn(p) > 1 then brn(g[r]) < brn(gp) and ¢p < ¢[r]. Otherwise p = [s] with s < r, and the
list of branches of gp = ¢[s] is smaller than the list of branches of ¢[r].

(d) By (c) and (b), o(g)o([r]) = o(o(q)[r]) = o(o(q[r])) = o(q[r]). m

7.8. Lemma. If q,r € €%, st € &P r £ 0, hgt(q) > hgt(r), and cmp(gst) < cmp(q[r]),
then qst < g[r], o(gs)t < g[r], [gs]t < [q[r]] and o([gs])t < [g[r]].

Proof. Let p € €', p < ¢gs. Then cmp(pt) < cmp(g[r]); assume that cmp(pt) = cmp(q[r]).
If hgt(p) > hgt(q), then hgt(pt) > hgt(q) = hgt(qg[r]), and pt < g[r]. Let hgt(p) = hgt(q).
Then it must be brn(p) > brn(gs) = brn(q) + brn(s), and so, brn(pt) > brn(gq) + brn(s) +
brn(t) > brn(q) + 1 = brn(g[r]). So, pt < q[r].

Next, cmp((gs]t) < emp((g[r]]), het((gs]t) > hgt(q) = het((glr]]), and brm([gs]t) > 2 >
1 = ben((glr]]), so (5]t < [gfr]]. By Lemma 7.7(c), of{gs))t = o([as}t) < lalr]]- m
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7.9. Lemma. Ifq,7,t€ €t sc &P r£0, hgt(q) > hgt(r), and cmp([gs]t) < ecmp(q[r]),
then [gs|t < q[r] and o([gs])t < q[r].

Proof. hgt([gs]t) > hgt(q) + 1 > hgt(q) = hgt(q[r]), so [gs]t < ¢[r]. By Lemma 7.7(c),
o([gs])t = o([gs]t) < qlr]. m

7.10. Lemma. Ifq,r,t € €' ac A, r#0, hgt(q) > hgt(r), and cmp([q]t) < cmp(a[q[r]]),
then [g]t < alglr]] and o([q])t < alglr].

Proof. We have hgt([q]t) > hgt(q) + 1 = hgt(alg[r]]). If cmp(t) > 1 then brn(¢) >
so brn([¢]t) > 2 > 1 = brn(alg[r]] and so, [q]t < a[g[r]]. If cmp(t) = 1 then cmp([g]t)
cmp(q)+1 < emp(q)+emp(r)+1 = cmp(alq[r]]), and again [¢]t < alg[r]]. By Lemma 7.7(

o(lg))t = o([¢]t) < alglr]]. m

1
o),

7.11. Lemma. Ifq,r,t€ € sec &P aec A r#0, hgt(q) > hgt(r), cmp(s) < ecmp(r),
and cmp([gs]t) < cmp(alglr]]), then [gslt < alalr]] and o([qs])t < alglr]].

Proof. We have hgt([gs]t) > hgt(q) + 1 = hgt(a[g[r]]). If cmp(¢) > 1 then brn(t) > 1,

so brn([gs]t) > 2 > 1 = brn(a[q[r]] and [gs]t < a[g[r]]. If cmp(t) = 1 then cmp([gs]t) =
cmp(q) + cmp(s) + 1 < emp(q) + cmp(r) + 1 < cmp(alq[r]]), and again [gs]t < alg[r]]. By
Lemma 7.7(c), o([gs])t = o([gs]t) < alg[r]]. m

8. Components of bracket expressions

8.1. We start the proof of Proposition 6.9 by treating first its simplified version. This
simplification is achieved by dealing, instead of elements of B, with a new sort of bracket
expressions. Such “new” expressions are obtained from the “old” bracket expressions
by treating the bracket mapping [-] as an additive function, that is, by assuming that
[u+v] = [u]+[v]. This will be done by corresponding to every element u of B an unordered
list c(u) of “components of u”, which we will write as a formal sum, c(u) = p; + ... + pk
with p1,...,pr € €.

8.2. Let G be the set of formal sums of the form ¢ = p; +. ..+ pr with p1,...,pr € €; the
order of summands in ¢ is not essential, but no combining of like terms is allowed. For two
elementsc=p;+...+prandci =q¢1 +...+q of &, thesumc+cy =p1 +... +pm +
qg1+ ...+ ¢q € 6 and the product ccy =pigg+...+p1qg+ - -+ +---+pmq €6
are naturally defined. We also define [c] = [p1] + ... + [pm]-

8.3. Now let u € B; we define c(u) € S in the following way:
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if u=a€ A, weput c(u) = a;
ifug Aand u= Zle a;lvi1] ... [Vim,] + 22:1 +u;q] ... [Win,], with a; € A and
w; j,v;; € B, is the reduced representation of u, we define

l

Z aife(vin)] - [e(im )] + Y _le(ui)] - [e(uin,)].

=1

When c(u) =p1 + ...+ pk, we call py,...,pp € € the components of u.

Examples. (1) Let u = a1 [az + as[ad][as]] + as[ar + as] — [ao] [a10 + a11[a12]], with a; € A.
To compute c(u) we simply “open brackets”, and ignore the “—" before the b-part of u:

c(u) = a1lag] + a1 [aslad][as]] + aslaz] + aglas] + [ag)[aro] + [ag][ai1[ar2]]. (8.1)

Warning: though the right hand side of (8.1) looks like “a bracket expression”, that is, an
element of B, it is just a notation for an unordered list of elements of ! In what follows,
it will be always clear from the context what interpretation of a bracket-like expression is
intended.

(2) For u = [ay +az(as]] — [a1 —azlas]] with a; € A, c(u) = [a1]+ [az[as]] + [a1] + [—az[as]].
8.4. We will write ct(u) for the “tree part” and cP(u) for the “bush part” of c(u), that is,
ct(u) = c(t(u)) and cP(u) = c(b(u)).

Example. In the example (1) above,

ct(u) = aifaz] + a1 [ag [a4][a5H + aglar] + aglag] and cP(u) = [ag][a10] + [ag][a11]a12]].
8.5. From Lemma 6.5 one deduces the following:

Lemma. For any U1, U2, u € B,

c®(ur + us) = c*(ur) +c*(u ) Cb(ul +ug) = (ur) + P (uz),

Ct(uluz)zct(ul) ct(ug) +ct(u )C (u2) + cP(u1) c (U2)7 Cb(uluz) c®(u1) cP(ua),
ct([u]) =0 and, if ct(u) =p1+ ...+ pm, c([u]) = cP([u]) = [p1] + [m] +cP(u).

8.6. Given ¢ = p1 + ... + p, € 6, we define cmp(c) = max{cmp(p;)}*,, hgt(c) =
min{hgt(p;)}, and brn(c) = min{brn(p;)}",.

For u € B we put cmp(u) = cmp(c(u)). (This agrees with the definition of cmp given
in 1.12.)

8.7. Let P € My(A), ¢ = (€;)1<icj<a be a sign matrix, < be a legal order on

{(4,5) hi<i<j<a, and let @ﬁ’;,wﬁ}l,fﬁj € B be defined by formulas (6.2). The following

lemma can be easily proved by induction on j — i.

Lemma. For any 1 < i < j<dandl < k <1 < d with (k1) < (i,j) one has
k,l k.l

emp(}';), cmp (¥}, emp(&y) < j — i

88. Givenc=p1+...+pnp € Gandc; = ¢ +...+q € 6, we will write ¢ < ¢y if

max{p;}7*; < max{q;};_, and ¢ < ¢; if max{p;}}, < max{g;}\_,. If ¢ < p (that is,
Ply---sPm < Pp), we will also write ¢y = o(p).
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9. Tree growing and induction over elementary bracket expressions

9.1. If (J1,<1),...,(Jk, <k) are linearly ordered sets, then ((Jl,—<1),...,(Jk,—<k)) will
stand for the linear order < on J; U ... U J, which coincides with <; on each J; and
satisfies J; < J; whenever ¢ < j. If J; is a one-element set, J; = {m;}, we will write in this
definition m; instead of (J;, <;) that is, < = ((J1,<1), ..., ™4, ..., (&, <k)).

9.2. Given a tree p € €* we will now construct a matrix P, € My(A), d = cmp(p) + 1,
and a legal order <, on {(%,J)}1<i<j<d such that p appears as “the principal part” of
€1,4(Pp, <p) (see Proposition 9.4 below for the exact formulation). Our computations will
not be affected by the choice of the signs ¢; j, and we will take ¢; ; = 1 for all 7, j.

If cmp(p) = 1, that is, p = a € A, we define P, = (19).

Now let p € €* with cmp(p) > 1 and assume that for all ¢ € €* with cmp(q) < cmp(p)
a matrix P, and an order <, on the set of entries of P, have been constructed. Let d =
cmp(p)+1 and m = brn(p). Represent p = a[p1]...[pnm] so that a € A and py,...,p, € €
satisfy hgt(p1) > ... > hgt(p,,). We distinguish between two cases:

Case 1: m = 1 (“extending the trunk”). Put ¢ = p1, then p = a[q] with cmp(q) = d — 2.

NpLuN

1b1’2 bl,d—l
Let P, = ( ! b2’?“> € My—1(A). Define
i

shift the order <, so that it is now defined on I, = {(i,))}2<i<j<a instead of
{(4,J) h1<i<j<a—1, and put

<, = <(Iq,<q),(1,2),(1,3),...,(1,d)>.

(In plain words, the entries of P, go first then follow the entries of the first row of P,.)

Case 2: m > 2 (“adding a branch”). Put ¢ = a[pi]...[pm-1] and r = p,,, then p = ¢|r]

with hgt(q) > hgt(r).
SNV N
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Let dy = cmp(q) + 1 and do = cmp(r) + 1, then d = cmp(p) + 1 = dy + dy — 1. Let

1b1’2 b17d1 161’2 Cl,dz
1 ..
P, = ! U bQEdl € My, (A) and P, = ( U 62’:‘12) € My, (A). We define
i 1

161 2 Cl,d2 0 0
1 02,d2 0 0

R ; P |0

Pp = [1 [b12 cobia, | = | c Md(.A)
1 . boa, P,

That is, P, occupies the submatrix of P, indexed by I, = {(%, j) }d,<i<;j<a and P, occupies
the submatrix of P, indexed by I, = {(¢, j) }1<i<j<d,. Shift the order <, so that it is defined

on I, instead of {(%,j)}1<i<j<d,, and let <; be any legal order on J = {(%,j)} 1<i<d,—1-
d2+1<j<d
We define the order <, on {(%, j)}1<i<j<d to be

<p = ((Iq \ {(d2,d)}, <q), (Ir, <+), (d2, d), (J,<J))-

(That is, first the entries of P, excluding by 4, appear, then follow the entries of P,, then
follow b1 4, , and finally all other entries of P, follow.)

9.3. Lemma. Letp e €' d=cmp(p)+1, and 1 < n < d. Then the submatriz Q of P,
indexed by {(%,J)}n<i<j<a s equal to P, and <plg = =t for some t € €. If brn(p) > 2
so that Case 2 takes place, that is, p = q[r] with q,r € €*, hgt(q) > hgt(r), cmp(q) = d,
cmp(r) = do, and if 1 < n < dy, then Q is equal to Py, and =plg = qls] for some
s € €t

Proof. In Case 1, that is, when p = a[q], @ is a submatrix of P,, and we are done by
induction on cmp(p).

Consider Case 2, where p = q[r], di = cmp(q), do = cmp(r). If n > ds, then Q is a
submatrix of P, and we are done.

161’2 Cl,dz 0 0
1 62’d2 0 0

P, = i
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If n < da, consider the submatrix R indexed by {(,7) }n<i<j<ds-

161 2 .-+ C1.do 0 0

1 C2,d2 0 0
Pp — 1 b172 bl,dl
1 ..bagy

i
R is a submatrix of P, and, by induction, R = P and <q|p = <s for some s € ¢t. The
matrix ) and the order ~p|g are obtained from P, <,, Ps, and <, in the way described
in Case 2; hence, @ = F; and <,|, = <; for t =¢[s]. m
9.4. Proposition. For any p € €* one has c¢*(&1,a(Pp, <p)) =p + o(p).

Proof. We will prove this proposition by induction on cmp(p). We strengthen our in-
duction hypothesis and will simultaneously be proving that c®(&,4(Pp, <p)) < [p] and

c®(p1,4(Pp, =p)) < [p].
If cmp(p) = 1, that is, p = a € A, we have P, = (1) and &12 = 1,2 = p.

a: 9g

If cmp(p) = 2 then p has form a[b] with a,b € A.

a]: 3

1-a 0
P,, <, are constructed in accordance with Case 1: P, = ( 1 11>> and <, = ((2,3),(1,2),

(1,3)). By formulas (6.2), &3 = 0 — &5 [€a,3] — ¥15&2,3. We have £75 = —a, &3 = b, and
1.2 =0, so that £ 3 = a[b] = p. Also, @13 = —a%g[ﬁz,?,] = a[b] and so, cP(p1.3) = 0.
Now let p € €%, cmp(p) > 3; put d = cmp(p) + 1. We consider several cases.

Case la: p = ablq]] where a,b € A and ¢ € €.

q
b
lei2 oo c1,d—1
1 €2,d—2
Let P, = : € My_2(A), then
1
la;j2 0 0 ... O l1—a 0 O 0 l—a 00...0
1 az3 O 0 1-b 0 0 1-60...0
o 1 as 4 ... a3 4 - 101’2 C1,d—2 _
Pp — 1 ... Q4,4 - 1 C2,d—2 Pq E Md(A)
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We will identify P, with the submatrix of P, indexed by I, = {(¢, j) }3<i<j<a and shift <,
so that it is defined on I, instead of {(7,j)}1<i<j<a—2. Then

<o = ([ =0), (2:3),, (2.0),(1,2),.., (1,d) ).

The entries (¢,5) ¢ I, do not affect the entries from I,, therefore the elements gpfjl (Pp),
wzkjl (P,), €1 P,) with (i, 7) € I, are equal to the corresponding @ﬁj(Pq), Yl PR, PN (P,).

i\ 0. i
From formulas (6.2),

-1
§10=— E £l En,d] — 22 Py na-

One checks by induction on n that for any n € {3,...,d} and (k,l) € I, one has go’f,l% =
k,l k,l 1 nd 1 nd
Y1n =& = 0. It follows that > 3 Enal + > U1 néna = 0.
n=3 n=3

We have &5 = —a and 7’5 = 0, so, &4 = aloq] € BE, and so, cP(é14) = 0.
By our induction hypothesis, c(&2.4) = b[q] + o(blg]) + o([b[¢]]). By Lemma 7.7(a) and
(c ) “(€1.a) = c*(alé.dl) = alblg]] + o(alblg]]) = p + o(p). We also find that @14 =

- 2 PilEn.a) = —pT3l€2,a) = aléz,a) € B, and so, cP(p1,4) = 0.

Case 2a: p = q[r] where ¢,7 € €%, cmp(r) > 2, and hgt(q) > hgt(r).

NG

1b1,2 ... b1,4,
Let di = cmp(q) + 1, do = cmp(r) +1, P, = ! b2’:d1 € My, (A), and P, =
1
lei2 oo c1,dq
1 C2vd2
U € Mgy, (A), then
1
1(11,2 <o Q1,dg 0 0 101,2 v C1,dy 0o ... 0
L ..a24, 0 .. 0 1 ..coay, O ... O
Pp = ‘ 1 adz,;i2+1 ad‘z,d = ' i b1.72 bl:dl E Md(A).
1 ad2+1,d 1 '~~~ b2,.d1
i i
Let Iy = {(i,7)}ar<icj<as Ir = {(i,7) hi<icj<dss and J = {(i,7)}1<i<d—1. We will

da+1<j<d
identify the matrices P, and P, with their images in P, indexed by I, and I, respectively,

and, in particular, will 1ndex the entries of P, by I, 1nstead of {(4, j)}19<3§d1 We then
have —<p = ((Iq \ {(d27 d>}7 —<q>7 (ITv —<7“)7 (d27 d)7 (J7 —<J>)
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The entries of P, do not affect the entries of P, and vice versa. Thus, the elements
gpfjl (Pp), @Di}l(Pp), {‘k’.l(Pp) with (4, j) € I, are equal to the corresponding gpf”;(P,ﬂ), 7,[15”]?(PT),

/1/7]
ffj’jl(P,«) and the elements gpfj(Pp),@bf”jl(Pp),ff’jl(Pp) with (4, j) € I, are equal to the cor-
responding gpfjl (Py), ¢ﬁ3?(Pq), ffj’jl(Pq). From formulas (6.2) we have
d—1 d—1 dz—1
gl,d - - Z Sl n[gn d] Z ’QD Sn d+ Z [51 n]gn d — Z ®1 ngn,d 9.1
n=ds+1 n=ds+1 =2 ( . )
+[&1, d2]5d2 — 01,2 8da d-
By our induction hypothesis, c(&1,4,) = 7+ o(r) + o([r]) and c(&4,.a) = q + o(q) + o([q])-
By Lemma 7.7(a), c([£1,4,]) = [r] +o(] y Lemma 7.7(b), (), and (d), ¢([£1,d5)8d5,4) =

7‘])
qlr] + o(q[r]) + o([g][r]) = p + o(p) + 0([61][ ]) Since hgt(g) > hgt(r), we have hgt([q][r])
hgt(q) = hgt([g[r]]); since br([g][r]) > brn([g[r]]), we have [g][r] < [g[r]] = [p] and so,

c([€1,a5)€45.a) = P+ o(p) + o([p])-

We will now show that the components of all other terms on the right hand side of

(9.1) are smaller than p or [p]. By Lemma 8.7, the complexity of these terms do not exceed
d—1=cmp(p).
=1 =1
We start with the sums Y} &[§na] and >0 1, &na. Fix any (k1) € I\

n=da+1 n=da+1
{(d2,d)}. Since for (i,j) € I, oneﬁilas (k, 1) <p (3,7), v?fJer obtain from formulas (6.2) that
gpfjl = 55”; = ¢;; and wk]l = 0. In particular, cmp(gold )s cmp(wkl ), cmp(§ ,) < 1 for
any ¢ € {1,...,d2 — 1}. Next, since (k,1) <, (n 4) for any (n,j) € J, the entrles (n,7)
with n < ds do not participate in formulas for gpm , wi;, fw‘ with (i, j) € J. By Lemma 8.7
one has cmp(py ), CHlp(?/Jn,J) cmp(&y,;) < n — 7, and one checks by induction on j that
for any (i,7) € J, cmp(gow) cmp(zpk l) cmp(fk l) < j —ds + 1. In particular, for any n €
{d2+1,...,d—1} one has cmp(élﬁn),cmp(zﬁﬂ‘f) < n—dy+1, and since dy = cmp(r)+1 > 3,

we obtain cmp( [fn d)), cmp(wﬁ’gfn,d) <n—-dos+14+d—n<d—-1=cmp(p).

d2 1 d2 1
Now turn to the sums Z [€1.n)én.a and > ©1.n&na. Fixn € {2,...,ds —1}. By
=2 n=2

Lemma 9.3 the submatrix of P indexed by {(i, j) }n<i<j<d, has form P, for some s € €*
with cmp(s) < cmp(r), and by induction hypothesis ¢(&,,q) = ¢[s| + o(q[s]) + o([¢[s]]). By
Lewmna 7.5, <([€1,))¢*(&n.0) = ofalr]) = olp) and <((€1) >(€n.0) = ollarl)) = ofp) +
o([p]). We also have by Lemma 7.8 that c¢®(¢1.,) c®(&,.4) = 0(g[r]) and cP(p1.,,) € (&n.a) =
o([g[r]]), and by Lemma 7.9 that c®(¢1.,) cP(&,.4) = o(g[r]). By Lemma 8.7, cmp(fm ) <
d—n and cmp(p1,,,) < n—1, s0 cmp(ct(p1,n) € (&na)) < d—n+n—1-1=d—2 < cmp(p).
Summarizing, c®(¢1 ,&n.a) = o(q[r]) = o(p) and cP(p1.1,€n.a) = o([g[r]]) = o([p])-

Now consider the term ¢1,4,84,,4- Again, we have cmp(ct(¢1,4,) €*(€ay,0)) < cmp(p).
By our induction hypothesis, ¢+(&g, 4) = 4-+0(q), ®(Eq,.4) = o([)), and ¢ (1.,) = o{[1])
By Lemma 7.7(b) and (d), e®(¢1,4,) €%(€a,.0) = 0(q[r]) = o(p) and e®(p1,4,) ®(4y.0) =
o([g][r]) = o([p))- By Lemma 7.7(c), €*(1,4,) €®(§ds.0) = €*(101,45)0([a]) = 0(c*(01,4,)[])-
Since hgt(c*(¢1,4,)g]) > hgt(g) + 1 > hgt(p), we have c*(p1,4,)[g] = o(p) and so,
c*(¢1,a) €®(€a,a) = o(p). Hence, c*(¢1,4,€a,,a) = o(p) and € (p1,4,€a,.0) = o([p))-
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It remains to check that cP(p1 4) < [p]. By formulas (6.2),

da

Pl,d = — Z ¥1 n[gn d] Z (Spl,n - [gl,n]) [Sn,d]-

n=ds+1 n=2

Again, forn € {da+1,...,d—1} one has cmp(@?i) <n—dy+1 and so, cmp(gp’f”g[é’n,d]) <
d—1 = cmp(p). Forn € {2, ,do — 1} one has c([¢,,4]) = [¢[s]] + o([¢[s]]), and by
Lemma 7.8, cb(ozl,n[fn,d]) +c ([fl,n][fn,d]) = o([q[r]]) = o([p]). For n = dy one has
c([€nal) = la] + o([a]), cP(a1,n) = o([r]), and e([¢1,n]) = [7“] + o([r]); by Lemma 7.7,
c®(o1,n[én,a]) + P ([€1n][6n.a]) = lallr] + o(lal[r]) = o([p)).

Case 1b: p = a[g[r]] where a € A and ¢,r € €* with hgt(q) > hgt(r).

alg[r]]
1612 b1,dq
1 ...b
Let di = cmp(q) + 1, do = cmp(r) +1, P, = ol e Mg, (A), and P, =
1
leio ... C1,dy
. 02,d2
: € My, (A), then
1
lai2 0 ... 0 0 e 0 1-a 0 ... 0 0 .. O
1 a3 ... a27d2+1 0 0 1 C1,2 ... Cl,dz 0 ... 0
1 .. a3,do+1 0 0 1 ...c24y 0 ... O
PP = 1 Gdyt1,dg+42 - Gdot1,d | 1 bl"2 b1:d1 = Md('A)
1 ad2+2,d 1 : bzv'dl
1 1

Let I, = {(i, ) Yaa+1<i<i<ds Ir = {(i,J) Ye<icj<do+1, and J = {(i, )} 2<i<d, - We will
da+2<5<d

identify the matrices P, and P, with their images in P, indexed by I, and I, respectively,
and will index the entries of P, and P, by I, and I, respectively. We then have <, =
((Ig\{(d2 + 1,d)}, =q), (Ir, <r), (d2 + 1,d), (J, <), (1,2),...,(1,d)).

The entries of P, do not affect the entries of P, and vice versa. Thus, the elements
gofjl (Pp), wk’?(Pp), fk’?(Pp) with (¢, ) € I, are equal to the corresponding @ﬁ’;(Pr), wﬁb?(PT),

i i
§§’J-Z(Pr) and the elements @ﬁ’}(Pp),wk’-l(Pp),fk’-l(Pp) with (4,7) € I, are equal to the cor-

i, i,
responding @} (Py), i (Py), €51 (Py).
From formulas (6.2), for n € {3,...,d} and 1 < k <1 < d with (k,1) <, (1,n) we
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have

Pim =~ QZ Lom Emonl,
(mn) = (K, l)
k,l — .
wl,n e 22 wl ,m (gm n [gm,n])y (92)
(mn) =y (k, l)

Sf:fz = - Z (ST;:[Sm,n] + @bfr’ggm,n)

m=2,....n—1

(m,n)=<p(k,1)
So,
b(ery) = — QZ b(sol,;ff) b([€m,n));
(o) 0 (k1)
b(d’f:é) - 22 b(@binnzL)(b(Sm,n) - b([&m,n])%

(m, n)'<p(k l)

b(&f,’rlz) - Z (b(g?,lg) b([&m,n]) + b(d];?,l;:) b(gm,n)):

m=2,...,n—1

(m,n)=<p(k,l)

and by induction on n, b(¢! n) = (wffl) = (fffl) = 0. Hence, @If:fl,wlf”fl,éi’i € Bt. In
particular, cP (1 4) = 0.
From formulas (6.2),

fld——25 el — Z¢1n§nd

We have gf;;l = —a, ¢f;§ = 0, and by induction hypothesis, c(&2 4) = q[r]+o(q[r])+o([q[r]]).
By Lemma 7.7(b), ¢(&77 [€2.4] + &2 d¢2’d) = alq [TH +0( [q[r]]) = p + o(p).

We will now show that C(Z §1n[§n dl + Z Py nfn,d) = o(p). First, fix n €

{3,...,d2}. By Lemma 9.3 and the mductlon hypothe51s c(&n.a) = q[s] +o(q[s]) +o([q[s]])
for some s € €* with cmp(s) < cmp(r). By Lemma 7.11, 0(5?7‘5) c([€n.a]) = o(alg[r]]) =
o(p) and c(zpﬁ’g) cP(&,.4) = ol(alq[r]]) = o(p). Also, cmp(c(zﬁg ct(fn,d)) < cmp(p), so
that ¢(¢1') ¢*(n.a) = o(p).

Now put n = dy + 1. By our induction hypothesis, c(£n,d) = q+ o(q) + o([q]). By
Lemma 710, ¢(&]:%€dl) = olalglr]]) = o(p) and e(¥]) c(€na)) = olalalr]]) = o(p).
Also, cmp (c(o,bf’;f) c*(&n,a)) < cmp(p), so that (v,b;’fff) ct(&n.q) = o(p).

Finally, let n € {d2 +2,...,d — 1}. In formulas (9.2), for any (k,1) € I, \ {(d241,d)},
if (m,n) <, (k,1) then it must be m > dy + 1, and by induction on n we conclude that

k,l k,l . n,d n,d n,d n,d
&1 = Y1, = 0. In particular, &, = ¢, = 0. Hence, &, [En.a] + V1 &nd =0
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Case 2b: p = b[q|[a] where a,b € A and ¢ € €.

q a
blgl[a]
lci2 C1,d—1
1 C2 d—2
Let Pq = : € Md_Q(A>, then
1
laijo 0 O 0 la 0 O 0 la 00...0
1 az3 O 0 1-b 0 0 1-60...0
. 1 az4 as.q lci2 crd-2 |
p- ] I N o) I B e IS VAR
1 1

After redefining <, so that it is now defined on I, we have

<o = ([0 =%0), (2:3), (2,4 = 1),(1,2), 2,d), (1,3),..., (1,d)).

The only difference between this case and Case la is that we switched the entries (2, d)
and (1,2). This change only affects the (1, d)-entry of P,, all other computations remain
the same. From formulas (6.2),

1
§1,0=— Z & el — 23 fn,dtbf’g + ([61,2] — ¥1,2) 2,45
Y14 =— 23 O [Endl + ([1,2] — 1.2)[€2.d]-

We have checked in Case la that Z 3 n[ﬁn al+ Z En,d1 4 — 0 and b( Z 1 n[fn 4) = 0.
)

Since &12 = 1,2 = a and by our 1nduct10n hypothesw c(&2.4) = b[q] —|— o(b[q]) + o([blq]]
we obtain by Lemma 7.7(b)

c(é1,a) = c(([a] — a)é2,q) = blglla] + o(blq][a]) + o([blg]][a]) + ablg] + o(ablq]) + o(a[b[q]])
=p+o(p) + o([p])

and
c®(p1,4) = " (([a] — a)[¢2.a]) = [al[bla]] + o([a][blg]]) = o([p)-

Case 2c: p = ¢[r][a] where a € A and ¢,r € €* with hgt(q) > hgt(r).

i T
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1b1,2 ... b1,4

Let di = cmp(q) + 1, do = cmp(r) +1, P, = ! b2’:d1 € My, (A), and P, =
i
leiz oo c1,dq
. C2Zd2

.| € Mg,(A), then
1

lai2 0 ... 0 0 0 1la 0 ... 0 0o ... 0
1 a3 ... a2Yd2+1 0 0 101,2 Cl,d2 0 0
1 a3’d2+1 0 0 1 Co do 0 0
Py = 1 Gdytrdpt2 - Gdgt1a | 1 bioobig | € Mq(A)
1 cee Ado+2.d .. b2v.d1
1 1

Let Iy = {(i,j)}aor1<i<j<das Ir = {(is ) Ye<icj<do+1, and J = {(i,4)} 2<i<a, - After
da+2<;5<d
redefining <, and <, so that they are now defined on I, and I, respectively, we have

<p = ((Ig\{(d2 +1,d)}, <q), (I, <r), (1,2), (d2 + 1,d), (J, <), ..., (1,d)).

The difference between this case and Case 1b is that we switched the entries (d2+1, d)
and (1,2); this change of order only affects the (1, d)-entry of P,, all other computations
remain the same. From formulas (6.2),

d=1 n,d d=l n,d
§1,d=— 23 51,’71 (&n,a] — 23 ¢1,’nfn,d + ([51,2] - 901,2)5241,

d—1 d
P14 = — 2_33 P nlEndl + ([€1,2] — ¢1,2) [€2,d)-

d—1 d—1
We have checked in Case 1b that c( Y Sf’fj[ﬁn,d] + > @bf”jgn,d) < a[q[r]] < p and
n=3 n=3

d—
b( Z: W?,’S[fn,d]) = 0. We have &1 5 = 12 = a and c(&2,4) = ¢[r] + o(q[r]) + o([¢[r]]), thus
bynﬂemma 7.7(b),

c(([€1.2] — w1,2)€2.a) = qlr]la] + o(q[r][a]) + o([g[r]][a]) + aq[r] + o(aq[r]) + o(alq[r]])
= p+o(p) + o([p])

and

P (([£12) — ¢1,2)[€2,a]) = lalr]][a] + o([alr]][a]) = o([p])-

49



10. Conclusion of the proof of Theorem A

10.1. We want to emphasize again that Proposition 6.9 (which has not been proven yet!)
does not imply Theorem A7* because it says nothing about the nilpotency class of the group
necessary for obtaining an element u € B%. Let us return to the notation introduced in
the beginning of Section 5; we will compute the nilpotency class of certain subgroups of
My, d € N.

We will say that a set 7 C {(i,j) 1 <i<j< d} is transitive if it satisfies the
following condition: (4,4), (j, k) € 7 implies (i,k) € 7. Given a transitive set 7 C {(i,j) :
1<i<j<d},

lai2a1,3... a1 q
1 az3... az.4q
My = { : € My : a; ; =0 whenever (i,j) ¢ T}
lag_1,q

1

is a connected Lie subgroup of My, and {Ej; ;}@ jyer is a Malcev basis in M7. We will
now determine the nilpotency class of M.

10.2. Let 7 C {(i,j) : 1 < i < j < d} be a transitive set. For (i,5) € 7 let us
define step+ (i, 7) to be the maximal length of a chain connecting ¢ and j in 7, that is, the
maximal integer m for which there exist kq,..., k-1 € {1,...,d} with (i, k1), (k1, k2), ...,
(Km—2, km—1), (km—1,7) € T. We also define step(7) = max{step;(,7) : (4,5) € T }.

Lemma. The nilpotency class of Mt is equal to step(7).

Eiyifj=k
1 otherwise.
central series (M7); = Mz, (M7),, = [(MT)m_l, MT}, m = 2,3,..., of Mz is generated

by {Ei,j : (7'7]) S T? Step’]’(iaj) = m} |
10.3. We will say that an order < on the elements of a transitive set 7 is legal if

(1,7), (4, k) < (i,k) whenever (3,j),(j,k),(i,k) € 7. This definitions agrees with the
definition of a legal order given in 5.7 for the case 7 = {(i,5) : 1 <i < j < d}.

Proof. We have [E; ;, Ey | = It follows that the m-th member of the lower

10.4. We return to the bracket algebra 8 over a commutative ring A. For D € N we define

Mp = {u € B* : there exist d € N, a transitive set 7 C {(i,j) 1<i< i< d}
with (1,d) € 7 and step(7) < D, a matrix P € Mz (A), a sign
matrix € = (€ j)i1<i<j<d, and a legal order < on 7 such that

u:ﬂ&MRg<»}

and
M= {uecB*:uecMp with D= cmp(u)}.

We will prove the following enhancement of Proposition 6.9, which implies Theorem A7}*:
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Theorem A***. 9 = Bt

10.5. Lemma. If u € Mp then —u € Mp. In particular, v € M implies —u € M.

Proof. Let u = t(&,a(P, €, <)) for d € N, a transitive set 7 C {(¢,7) : 1 <i < j < d} with
1a1,2a1,3... ai,d
1 a23... az.4
(1,d) € T and step(7) < D, a matrix P = ; € Mz (A), a sign matrix
lag—1,4
1
l—ai2—a1,3... —a1q
1 a3 ... a4
€ = (€,5)1<i<j<d, and a legal order < on 7. Define P’ = : € Mr(A)
lag—1,4
1

—eiy ifi=1 1 <i<j <d. Using the

€;,; otherwise,
identity [—u]~! = —[u]* one checks from formulas (6.2) by induction on (4, j) that

and a sign matrix € = (€] ;)1<i<j<a by € ; = {

k,l k,l k,l k,l
9017j(P,7E/7 -<) = _9017j(P7 €, —<)7 ¢1,j(P,76,7 '<) = _,lvbl,j(P? €, '<>7

E5(P e, =) =—€N(Pe, <) forany 1<j<dand (k,1)<(1,])

and
PP e =) = @li(Pre, <), ¥ (Pe, <) =vil(Pe, =),

%]
EN(P ¢, <) =€ (Pe, <)  forany 2 <i<j<dand (k1)< (1,).

In particular, & ¢(P', €, <) = —&1.4(P, €, <), so t({l,d(P’, €, —<)) = —t({l,d(P, €, —<)) = —u
and —u € Mp. g

10.6. Lemma. If v € Mp, and v € Mp, then u + v € Myaxip, p,}- In particular,
u,v € M implies u +v € M.

Proof. Let u = t(&; 4(P, €1, <1)) for d € N, a transitive set 73 C {(4,5) : 1 <i < j <dy}

lais ... ai1,dq

with (1,d;) € 7; and step(7;) < Dp, a matrix R = ( ! a2§d1> € Mz, (A), a sign
T

matrix €1, and a legal order <; on 77, and let v = (51’d2(Q, €2, <2)) for do € N, a transitive

set T € {(i,§) : 1 < i < j < do} with (1,d2) € T3 and step(7Tz) < Da, a matrix

1b1,2 ... bl,dg
S = b b2':d2 € My, (A), asign matrix €5, and a legal order <5 on 73. Put d = dj+dy
T

51



and define

1aiz .. a1,dq—1 bi,2b1,3 ... b1,dy—10a1,d; +b1,dy
1 a27d1_1 0 0 0 ag,dl
adlfz’dlfl 0 0 0 adl,z’dl
1 0 0 ... 0 Qdy—1,d;
pP= e My(A).
1 b23 ... b2 dy—1 b2, d,
1 ... b3,d271 b3,d2
1 bdg—1,dg

1

That is, R occupies the submatrix of P indexed by Ir = {(4,7)}i jef1,2,...d1—1,d},i<j> and
S occupies the submatrix of P indexed by Is = {(i,)}ije{1,di,di+1,....d},i<j; the only
common entry of these submatrices is the (1, d)-entry, which equals a1 4, + b1,4,. We will
identify R and S with their images in P and redefine €1, <1, 77, €2, <2 and 75 accordingly.

Put 7 = T, UTy; then (1,d) € 7, step(T) = max{step(7:), step(73) } < max{D1, D2},
and P € M7 (A). Let € = (€;,5)1<i<j<a be any sign matrix whose restrictions on I and
Is coincide with €; and e respectively; the “common entry” €; 4 = 1. Let < be any legal
order on 7 such that the restriction of < on Ip and on Ig coincides with <; and <
respectively.

When one computes &; ;(P, €, <) by formulas (6.2), the entries of R do not affect the
entries of S and vice versa, except the common (1,d)-entry, which accumulates values
from both R and S. More precisely, one checks by induction that if (¢,j) € Ir U Ig, then

CUI(P), Y (P), €51 (P) = 03 if (i,4) € Tr \ {(1,k)}, then @[ {(P), ¥}/ (P), and £ (P)

%]
are equal to the corresponding gpfjl (R), wfjl (R), and 55”;(}'{); if (i,5) € Is \ {(1,k)}, then

gpf’i;(P), djf”jl(P), and §Z}Z(P) are equal to the corresponding gpf”;(S), @bf”jl(S), and ffj’jl(S);
and finally, & 4(P) = &1,4, (R) + &1,4,(S). Hence, u+v = t(flvd(P)) € Muax{p1, 02} W

10.7. Lemma. If u € Mp, and v € Mp, then [ulv+ u[v] —uwv € Mp, 1 p,. In particular,
u,v € M implies [ulv + ufv] —uv € M.

Proof. Let u = t(&1,4, (R, €1,<1)) for dy € N, a transitiveset 77 C {(4,5) : 1 <i < j <dy}
lai2 ... a1,4q
with (1,d;) € 77 and step(7y) < D;, a matrix R = ( ! a2§d1> € Mz, (A), a sign
i
matrix €7, and a legal order <; on 77, and let v = t(fl,d2(S, 62,<2)) for d» € N, a
transitive set T2 C {(i,7) : 1 < i < j < da} with (1,d3) € T and step(T2) < D3, a
1b1’2 bl,d2
L b

matrix S = € Mz, (A), a sign matrix €3, and a legal order <5 on 75. Put

1
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d =dy + dy — 1 and define

laj 2 ai,d; O 0
1 a27d1 0 0
P = 1 b12 ... b1,dy € Md(.A)
1 .. b2,

1
That is, R occupies the submatrix of P indexed by Ir = {(¢,j) }1<i<j<d, and S occupies
the submatrix of P indexed by I's = {(4, ) }a, <i<j<d; we will identify R and S with their
images in P and redefine €1, <1, 77, €2, <2, and 75 accordingly.

Let 7 be the transitive subset of {(i,j) : 1 < i < j < d} generated by 7; and T3,
that is, the minimal transitive subset containing 73 U75. Then one checks that (1,d) € 7,
step(7) < step(71) + step(73) < Dy + Dy, and P € My (A). Let € be any sign matrix
whose restrictions on Ir and Is coincide with €; and ey respectively, except for €; 4, and
€d, d, which we put equal to 1. Introduce two different orders < and <" on {(%, j) }1<i<j<d

in the following way. Let <; be any legal order on J = {(7,)}1<i<d,—1; put < to be
di1+1<j<d

(T AL}, =), (T ()}, =) (1, o), (e, ), (T 117, <))
and <’ to be
(B4}, <0), (B (s, D), o), (), (1, ), (T 117, <)),

(In plain words, first the entries of R excluding aq q, appear, then the entries of S excluding
by 4, follow, then a4, and by 4, follow, then all other entries of P follow; <’ is obtained
from < by switching the order of a; 4, and by g4,.)

The entries of R do not affect the entries of .S, and vice versa. Thus, for both < and

<’, the elements gpfjl (P),@Df”jl(P),fﬁ’jl(P) with (i,7) € Ir are equal to the corresponding

goﬁ’;(R),wﬁ’j(R),fﬁ’jl(R), and the elements @ﬁj(P),zﬁ%(P),fﬁ}l(P) with (i,5) € Ig are
equal to the corresponding @ﬁ’;(S),zpﬁ ’;(S),éﬁ Jl(S) The difference between the orders

< and <’ only affects the last, (1,d)-entry of P. Since with respect to <’ the entry
(dy, d) precedes (1, d;) and does not affect it, ff’léf(P, <"y =&1,4,(P,<") and @Df}éf(P, <) =
Y1,4, (P, <’). From formulas (6.2) we now have
£1,4(P, <) = &1,a(P, <) = [€1,a,] " €aya — 1.0 8dr,d + €1,y [Ear a0 + 1,a,Edy

= 61,0, )€a1.a + € €anal — (01,00 — V1.a0)Ear,a = [En,a0)6aa + E1,a [Ear.a) — €1,d, € -

Hence,

t(1,a(P, <)) — t(&1,a(P, <)) = t(&1,a(P, <) — £1,a(P, <))

= [t<£1,d1)] t(fdl,d) + b(gl,th) t<£d1,d) + t(él,th)[t(gdhd)] + t(gl,th) b<£d1,d)
—t(§1,a,) t(8ar,a) — t(&1,a,) B(Ear,a) — B(E1,a,) £(Eds )

= [u]v + ufv] — uv.

Since t(&1,4(P, <)), t(&1,4(P, <")) € Mp,+p,, by Lemmas 10.5 and 10.6, [u]v + u[v] —uv =
t(€1,a(P, <)) = t(1,a(P, <) € Mp,4p,. m
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10.8. From Lemmas 10.7, 10.5, and 10.6 we derive the following;:

Lemma. If u,v,[u]v,uv € M then ulv] € M.

10.9. Let “~” be the minimal equivalence relation on the set of trees * for which r[s] ~ [r]s
for any r,s € &t. Graphically, two trees are equivalent if they are obtainable from each
other by changing of the root vertex:

Examples.

PO T PN

10.10. Lemma. Let u,v € B* and c([u]v) =p1 +...+pm. Then c(u[v]) =q1 + ...+ gm
with q1 ~ P15 -+ Am ™~ Pm-

10.11. Let Q be the set of equivalence classes for ~. We deﬁne an order on {2 in the
following way: for wy,ws € 2 we write w1 < we if min(w;) < min(ws).

Example.
w1:w<w><w2:w( ) since mmwl \{/< mmwz \I/

For p € &' we denote by w(p) the class in £ that contains p, and for u € B* let
w(u) = max{w(p) : p € c(u)}.

10.12. We need more notation. We define the number-of-pluses, “nop”, of elements of B*
in the following way: nop(a) = 0 for a € A, nop(afvy]...[vm]) =nop(vi) + ...+ nop(vy,)
for a € A and vy, ...,v,, € Bt and nop(u; +uz) = nop(ui) +nop(uz) +1 for ui, us € B*.
Note that nop(u) = 0 implies u € €*.

The minimal-depth-of-a-plus, “dop”, of elements of B* \ E* is defined by the fol-
lowing rules: dop(u; + uz) = 0 for uj,us € B* and dop(afvq]...[vn]) = 1 +
min{dop(vl), .. .,dop(vm)} fora € A and vy,...,v, € Bt.

Example. For u = aj[ag[as[as + as]] one has nop(u) = 1 and dop(u) = 3, for v =
a1[asfas[as + asl|[as + a7] one has nop(v) = 2 and dop(v) = 1.
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10.13. Proof of Theorem A***. We will use induction on 2; fix w € ) and assume that
v € M for any v € B with w(v) < w.

We will first show that w N M # (). We will use induction on nop(u) and dop(u) of
elements u € 9 for which c(u) =p+p1 + ...+ px with p € w and w(py),...,w(pr) < w.

First of all, such an element u exists. Indeed, let p be the minimal element of w. By
Proposition 9.4 there exists u € 9t such that c(u) =p+p1 + ...+ pg with p1,...,pp < p.
Since p is the minimal element of w we have w(p1),...,w(px) < w.

If nop(u) = 0 then u € €* and so, p = u € M Nw. Let nop(u) > 0. If dop(u) = 0
then u = uy + uy. Assume that w(uy) = w, then w(uz) < w. By our induction hypothesis
ug € M, and hence, u; = v — uz € M by Lemmas 10.5 and 10.6. Since nop(u;) < nop(u),
by induction on nop(u) we have p € M.

If nop(u) > 0 and dop(u) > 0 represent u = afvi|[va]...[vy], with a € A and
V1, ..., Um € B so that dop(vy) < dop(v;) for i =2,...,m and so, dop(u) = dop(vy) + 1.
Define v = afvs] ... [vy], then u = [v1]v. Since cmp(vy), cmp(v), cmp(viv) < cmp(u), by
our induction hypothesis we have vy, v,v1v € 9. Thus by Lemma 10.8, v’ = v;[v] € M.
By Lemma 10.10, c(u') = ¢+ g1 + ... + qx with w(q) = w(p) = w and w(q;) = w(p;) < w,
i=1,...,k. Since dop(u') < dop(vy) < dop(u), by induction on dop(u) we have g € 9.

We will now show that every element of w belongs to 9. Indeed, if ¢ € 9T N w and
q = r[s] with r, s € €%, then, since by the induction hypothesis r, s,rs € 9, Lemma 10.8
states that [r]s € 9.

Now, let u be an arbitrary element of B* with w(u) = w. We will show by induction
on nop(u) and dop(u) that v € M. If nop(u) = 0 then u € €* so v € w and u € M
is proved. Let nop(u) > 0. If dop(u) = 0 then u = wu; + ug, by induction on nop(u) we
have uy,us € M and by Lemma 10.6, u € M. Let nop(u) > 0 and dop(u) > 0. Represent
u = [v1]v so that dop(u) = dop(vy) + 1. Define v’ = wv1[v], then w(v') = w(u) = w
and dop(u’) < dop(v;) < dop(u). By induction on dop(u) we have u' € 9 and since
cmp(vy), cmp(v), cmp(viv) < cmp(u), by our induction hypothesis vy, v,v;v0 € 9. By
Lemma 10.8, u € M. g
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