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Abstract

We prove that for any set E ⊆ Z with upper Banach density d∗(E) > 0, the set “of cubic
configurations” in E is large in the following sense: for any k ∈ N and any ε > 0, the set

{(n1, . . . , nk) ∈ Z
k : d∗(

⋂
e1,...,ek∈{0,1}(E − (e1n1 + · · ·+ eknk))) > d∗(E)2

k

− ε} is an AVIP∗
0-

set. We then generalize this result to the case “of polynomial cubic configurations” e1p1(n) +
· · · + ekpk(n) where the polynomials pi:Z

d −→ Z are assumed to be sufficiently algebraically
independent.

0. Introduction

Let (X,B, µ, T ) be an invertible probability measure preserving system. By a result
of Khintchine ([Kh]), for any A ∈ B one has

lim
N−M→∞

1

N −M

N−1∑

n=M

µ(A ∩ TnA) ≥ µ(A)2. (0.1)

It follows from (0.1) that for any ε > 0 the set

Rε(A) =
{
n ∈ Z : µ(A ∩ TnA) ≥ µ(A)2 − ε

}

is syndetic.(1) This fact forms a refinement of the classical recurrence theorem of Poincaré
and is referred to as Khintchine’s recurrence theorem.

The limiting relation (0.1) admits a multiparameter generalization (see [B2], [HoK1],
[HoK2], and, for a short proof of a rather general result, [BL2], Theorem 0.8). In particular,
one has the following theorem:

Partially supported by NSF grants DMS-1162073 and DMS-1500575.
(1) A set S in a discrete abelian group G is called syndetic if there exists a finite set F ⊆ G

such that G = F + S.
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Theorem 0.1. For any k ∈ N and any A ∈ B,

lim
N−M→∞

1

(N −M)k

∑

M≤n1,...,nk≤N−1

µ
( ⋂

e1,...,ek∈{0,1}

T e1n1+···+eknkA
)
≥ µ(A)2

k

.

Corollary 0.2. For any k ∈ N, any A ∈ B with µ(A) > 0, and any ε > 0 the set

R(k)
ε (A) =

{
(n1, . . . , nk) ∈ Z

k : µ
( ⋂

e1,...,ek∈{0,1}

T e1n1+···+eknkA
)
> µ(A)2

k

− ε
}

(0.2)

is syndetic.

Via the Furstenberg correspondence principle(2), Corollary 0.2 implies that any set of
positive upper Banach density(3) in Z contains many “k-dimensional cubic configurations”:

Corollary 0.3. Let E ⊆ Z be a set with d∗(E) > 0. Then for any k ∈ N and any ε > 0
the set

R(k)
ε (E) =

{
(n1, . . . , nk) ∈ Z

k : d∗
( ⋂

e1,...,ek∈{0,1}

(
E − (e1n1 + · · ·+ eknk)

))
> d∗(E)2

k

− ε
}

(0.3)
is syndetic.

The goal of this paper is to refine Theorem 0.1 and Corollary 0.2 in two natural
directions. The first direction has to do with multiple recurrence along polynomials. By
utilizing results obtained in [BFM], one can show that for any A ∈ B with µ(A) > 0, any
ε > 0, and any intersective(4) polynomial p:Zd −→ Z, the set

Rε(A; p) =
{
n ∈ Z

d : µ(A ∩ T p(n)A) > µ(A)2 − ε
}

is syndetic. This leads to a question whether it is true that for any jointly intersective
polynomials p1, . . . , pk the set

Rε(A; p1, . . . , pk) =
{
n ∈ Z

d : µ
( ⋂

e1,...,ek∈{0,1}

T e1p1(n)+···+ekpk(n)A
)
> µ(A)2

k

− ε
}

(0.4)

(2) The Furstenberg correspondence principle says that for any set E ⊆ Z there exists (an

ergodic) invertible probability measure preserving system (X,B, µ, T ) and a set A ∈ B such

that µ(A) = d∗(E) and for any k and any n1, . . . , nk ∈ Z, d∗((E − n1) ∩ · · · ∩ (E − nk)) ≥

µ(Tn1A ∩ · · · ∩ TnkA), where d∗ is the upper Banach density (which is defined in the next

footnote). See [B4] and [BHoK].
(3) For a subset E ⊆ Z

d, the upper Banach density d∗(E) of E is the supremum of

limsupN→∞|E ∩ΦN |/|ΦN | over all Følner sequences (ΦN ) in Z
d.

(4) A polynomial p:Zd −→ Z is intersective if for any m ∈ N there exists n ∈ Z
d such that

m|p(n). Several polynomials p1, . . . , pk:Z
d −→ Z are jointly intersective if for any m ∈ N there

exists n ∈ Z
d such that m|pi(n) for all i = 1, . . . , k. The class of intersective polynomials appears

naturally in Ergodic Ramsey Theory – these are the ultimate class of polynomials for which the

polynomial Szemerédi theorem holds; see [BLLe2].
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is syndetic, which, in turn, would imply that for any E ⊆ Z the set

Rε(E; p1, . . . , pk) =
{
n ∈ Z

d : d∗
( ⋂

ei∈{0,1}

(
E − (e1p1(n) + · · ·+ ekpk(n)

))
> d∗(E)2

k

− ε
}

(0.5)
is syndetic. (Note that in the case d = k and pi(n) = ni, i = 1, . . . , k, (0.4) and (0.5) give
(0.2) and (0.3).) We answer this question positively in the case where the polynomials pi
are “sufficiently algebraically independent”. (See Theorem 0.8 and Corollary 0.9 below.)

Another question of interest – both from the point of view of dynamics and combi-

natorics – is whether “the sets of returns with large inersections”, such as R
(k)
ε (A) and

Rε(A; p1, . . . , pk), have a property stronger than that of syndeticity. As we will see, in
certain situations the answer to this question is positive. In order to formulate the results
obtained in this paper we first have to introduce some relevant notions of largeness. (The
reader will find a more detailed discussion of the hierarchy of notions of largeness in the
next section.)

Definition 0.4. Let (ni) be a sequence in Z
d. The IP-set (5) generated by (ni) is “the set

of finite sums”

FS(n1, n2, . . .) =
{
ni1 + · · ·+ nij : i1 < · · · < ij , j ∈ N

}
.

A set S ⊆ Z
d is called an IP∗-set if it has a nontrivial intersection with any IP-set. For

r ∈ N and any n1, . . . , nr ∈ Z
d the set

FS(n1, . . . , nr) =
{
ni1 + · · ·+ nij : i1 < · · · < ij , j ≤ r

}

is called an IPr-set. A set S ⊆ Z
d is said to be an IP∗

r-set if it has a nontrivial intersection
with any IPr-set, and we say that a set is an IP∗

0-set if it is an IP∗
r-set for some r ∈ N.

(Equivalently, one can define an IP0-set as a set that contains an IPr-set for all r, and an
IP∗

0-set as a set having a nonempty intersection with every IP0-set.)

Clearly, IP∗
0-sets are IP

∗; it will be shown in the next section that the property of being
an IP∗

0-set is strictly stronger than that of being an IP∗-set. It is also not hard to see that
any IP∗-set is syndetic, and that the property of being an IP∗-set is stronger than that of
being syndetic. For example, one can show that the family of IP∗-sets in Z

d has the filter
property, meaning that for any finite collection S1, . . . , Sk ⊆ Z

d of IP∗-sets the intersection⋂k
i=1 Si is also an IP∗-set. (This follows from Hindman’s theorem ([H]), stating that for

any finite partition of Zd one of the cells of the partition contains an IP-set.)
One can show in an elementary way that the set Rε(A) introduced above is IP∗

0 (see
[B1], Section 5 and Theorem 1.2 in Section 1) and it is natural to inquire whether the

sets R
(k)
ε or Rε(A; p1, . . . , pk) are IP∗

0-sets, or, at least, IP∗-sets. While it turns out that

even for an ergodic T already the set R
(2)
ε (A) may fail to be IP∗(6), we will show that the

sets R
(k)
ε (A), as well as the sets Rε(A; p1, . . . , pk) when the polynomials pi are “sufficiently

algebraically independent”, are Almost IP∗
0-sets:

(5) The abbreviation “IP” was introduced in [FuW] and stands for the “Infinite-dimensional

Parallelepiped”, as well as for “IdemPotent”.
(6) For example, R

(2)
ε (A) may have trivial intersection with the IP-set {(n, 2n), n ∈ N}.
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Definition 0.5. A set S ⊆ Z
d is an AIP∗-set if S = R \N where R is an IP∗-set and N

is a set of zero Banach density, and is an AIP∗
0-set if S = R \N where R is an IP∗

0-set and
N is a set of zero Banach density.

The property of being AIP∗ is still quite a bit stronger than that of being syndetic.
In particular, the family of AIP∗-sets has the finite intersection property. We will discuss
in Section 1 connections between the AIP∗-sets and some other important families of large
sets.

Here is one of the ergodic-theoretical results obtained in this paper, together with its
combinatorial counterpart:

Theorem 0.6. Let (X,B, µ, T ) be an invertible ergodic probability measure preserving

system and let A ∈ B with µ(A) > 0. Then for any k ∈ N and any ε > 0, the set R
(k)
ε (A)

is an AIP∗
0-set.

Corollary 0.7. For any E ⊆ Z with d∗(E) > 0, any k ∈ N, and any ε > 0, the set

R
(k)
ε (E) is an AIP∗

0-set.

Theorem 0.6 generalizes to families of “algebraically independent” polynomial pow-
ers of a transformation. We say that polynomials p1, . . . , pk:Z

d −→ Z are algebraically
independent up to degree c if for any nonzero polynomial P :Zk −→ Z of degree ≤ c, the
polynomial P (p1(n), . . . , pk(n)) is not equal to zero.

Examples. 1. If pi are polynomials in pairwise disjoint sets of variables (say, p1 = p1(n1)
and p2 = p2(n2)), they are algebraically independent up to any degree.

2. The polynomials n, nc+1, n(c+1)2 , . . . , n(c+1)k on Z are algebraically independent up to
degree c.
3. The polynomials n2, n2 + n are algebraically independent up to degree 2.

Theorem 0.8. Let (X,B, µ, T ) be an invertible ergodic probability measure preserving
system and let polynomials p1, . . . , pk:Z

d −→ Z with zero constant term be algebraically
independent up to degree k. Then for any A ∈ B with µ(A) > 0 and any ε > 0 the set
Rε(A; p1, . . . , pk) is AIP∗

0.

Corollary 0.9. Let polynomials p1, . . . , pk:Z
d −→ Z with zero constant term be alge-

braically independent up to degree k. Then for any set E ⊆ Z with d∗(E) > 0 and any
ε > 0 the set Rε(E; p1, . . . , pk) is an AIP∗

0-set.

Polynomials with no constant term form a special case of intersective polynomials
(defined in footnote (4) above). When dealing with jointly intersective polynomials one
encounters “shifted” AIP∗-sets:

Definition 0.10. An IP∗
0,+-set (respectively, an AIP∗

0,+-set) in Z
d is a set of the form

n0 + S where S is an IP∗
0-set (respectively, an AIP∗

0-set) and n0 ∈ Z
d.

Theorem 0.11. Let (X,B, µ, T ) be an invertible ergodic probability measure preserving
system and let polynomials p1, . . . , pk:Z −→ Z be jointly intersective and algebraically
independent up to degree k. Then for any set A ∈ B with µ(A) > 0 and any ε > 0 the set
Rε(A; p1, . . . , pk) is an AIP∗

0,+-set.
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Corollary 0.12. Let polynomials p1, . . . , pk:Z −→ Z be jointly intersective and alge-
braically independent up to degree k. Then for any set E ⊆ Z and any ε > 0 the set
Rε(E; p1, . . . , pn) is an AIP∗

0,+-set.

As a matter of fact, the setsR
(k)
ε (A), R

(k)
ε (E), Rε(E; p1, . . . , pk), andRε(A; p1, . . . , pk),

appearing in Theorems 0.6–0.11 and their corollaries, possess a property stronger than just
being AIP∗

0 or AIP∗
0,+-sets – they are, in fact, “polynomial AIP∗

0-sets”, AVIP
∗
0-sets or, re-

spectively, AVIP∗
0,+-sets. We postpone the definition and the relevant discussion until the

next section.

1. Hierarchy of large sets, AVIP∗
0-sets, and translations on nilmanifolds

Our goal in this section is to introduce and discuss various notions of largeness for
sets in Z and Z

d, which will allow us to put in a better perspective the results obtained in
this paper.

Let (X,B, µ, T ) be an invertible probability measure system and let A ∈ B, µ(A) >
0. One pertinent notion of largeness, namely syndeticity, has already appeared in the
introduction, and it was mentioned that the sets

Rε(A) =
{
n ∈ Z : µ(A ∩ TnA) ≥ µ(A)2 − ε

}
,

R(k)
ε (A) =

{
(n1, . . . , nk) ∈ Z

k : µ
( ⋂

e1,...,ek∈{0,1}

T e1n1+···+eknkA
)
> µ(A)2

k

− ε
}

for k ≥ 2,

Rε(A; p) =
{
n ∈ Z : µ(A ∩ T p(n)A) > µ(A)2 − ε

}
, where p is an intersective polynomial,

are known to be syndetic. In the case of the sets Rε(A) one can however show that these
sets possess stronger combinatorial properties, which we will describe now.

The set {nj − ni : 1 ≤ i < j
}
of differences of the elements of an infinite sequence

(ni) of distinct elements of Zd is called a ∆-set, and the set of differences of an r-element
sequence of distinct elements is called a ∆r-set. A set S ⊆ Z

d is called a ∆∗-set if it has a
nonempty intersection with every ∆-set in Z

d, and, for r ∈ N, is called a ∆∗
r-set if it has

a nonempty intersection with every ∆r-set in Z
d. Also, we say that a set S is a ∆∗

0-set if
it is a ∆∗

r-set for some r. Let us denote by S, ∆∗, ∆∗
r for r ∈ N, and ∆∗

0 the families of
syndetic, ∆∗, ∆∗

r , and ∆∗
0-sets respectively. Then, for any r1, r2 ∈ N with r1 > r2 ≥ 4, the

following strict inclusions hold:

S ⊃ ∆∗ ⊃ ∆∗
0 ⊃ ∆∗

r1
⊃ ∆∗

r2
.

Let us show, for example, that ∆∗ 6= ∆∗
0 in the case d = 1. Put B =

⋃∞
r=1

{
22

r

, 2 · 22
r

, 3 ·

22
r

, . . . , r22
r}

, so that B contains ∆r-sets for arbitrarily large r, but contains no ∆-sets;
hence, the complement S = Z \B of B is a ∆∗-set but not a ∆∗

0-set.
We observe that ∆∗

r-sets naturally appear in the traditional proof of Poincaré’s recur-
rence theorem. Indeed, let A ∈ B, µ(A) > 0. Given any set {n1, . . . , nr} ⊂ Z of cardinality
r > µ(A)−1, the sets Tn1A, . . . , TnrA cannot be all disjoint. Thus for some 1 ≤ i < j ≤ r
one has 0 < µ(TniA ∩ TnjA) = µ(A ∩ Tnj−niA), which immediately implies that the set

{
n ∈ Z : µ(A ∩ TnA) > 0

}
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is a ∆∗
r-set for all r > µ(A)−1.

A refinement of this short argument allows one to get the following sharpening of
Khintchine’s recurrence theorem.

Theorem 1.1. Let (X,B, µ, T ) be an invertible probability measure preserving system.
Then for any A ∈ B and ε > 0 the set Rε(A) =

{
n ∈ Z : µ(A ∩ TnA) > µ(A)2 − ε

}
is a

∆∗
0-set.

The assertion of Theorem 1.1 follows from the elementary fact (originally due to Gillis,
[G]) that given ε > 0, if r ∈ N is large enough, for any sets A1, . . . , Ar ∈ B of measure
a > 0 there exist 1 ≤ i < j ≤ r such that µ(Ai ∩ Aj) > a2 − ε. (It also follows from this
argument that the set Rε(A) is an ∆∗

r-set where r depends only on µ(A).)

Encouraged by Theorem 1.1, one would like to know whether some other natural “sets
of large returns”, such as

Rε(A;n
2) =

{
n ∈ Z : µ(A ∩ Tn2

A) > µ(A)2 − ε
}

and

R(2)
ε (A) =

{
(n,m) ∈ Z

2 : µ(A ∩ TnA ∩ TmA ∩ Tn+mA) > µ(A)4 − ε
}
,

which are known to be syndetic, also possess stronger properties. The answer to this query
is positive, but the issue is more delicate than one might expect. First, it is not true in
general that the sets of the form Rε(A;n

2) are ∆∗
0 or even ∆∗. To see this, it is enough to

consider an irrational rotation on the unit circle and utilize the fact that for any irrational
number α and any ε > 0 there exists an infinite sequence (ni) such that, for any i 6= j,∣∣(nj − ni)

2αmod 1− 1
2

∣∣ < ε.

On the other hand, it was proved in [BFM] that the sets of the form Rε(A;n
2) are

IP∗-sets (see Definition 0.4 above). This fact looks quite satisfactory since the IP∗ property
is still (much) stronger than that of syndeticity. But, as we have already mentioned in the

introduction, the sets R
(2)
ε (A) do not possess this property. It can be shown that these

sets are so-called C∗ (central∗) sets.(7) We obtain a stronger result (see Theorems 2.1

below and 3.9 below), which establishes, for the sets R
(k)
ε (A) and Rε(A; p1, . . . , pk), with

certain algebraic independence restrictions on the polynomials pi, an almost IP∗property:
we show that they are AIP∗, and, indeed, AIP∗

0-sets. (In fact, we will show that these sets
are AVIP∗

0-sets, see Definition 1.2 below.)

To visualize the relations between the various classes of sets we have described, let
us denote by IP∗, IP∗

r , IP
∗
0, AIP

∗, AIP∗
r , AIP

∗
0, C

∗, AIP∗
+, AIP

∗
r,+, AIP

∗
0,+, and C∗

+, the
families of sets having the corresponding property. We then have, for any r1 > r2 ≥ 2, the

(7) A subset of Zd is called central if it is a member of a minimal idempotent in the semigroup

(βZd,+) (the Stone-Čech compactification of Zd; for relevant background see [B1] and [B3]). A

subset of Zd is C∗ (central∗) if it has a non-trivial intersection with any central set in Z
d. (This

notion often appears in the context of multiple recurrence; see, for example, [BD], [BM1], [BM2].)

6



following diagram of strict inclusions:

∆∗ ⊃ ∆∗
0 ⊃ ∆∗

r1
⊃ ∆∗

r2

∩ ∩ ∩ ∩
IP∗ ⊃ IP∗

0 ⊃ IP∗
r1

⊃ IP∗
r2

∩ ∩ ∩ ∩
C∗ ⊃ AIP∗ ⊃ AIP∗

0 ⊃ AIP∗
r1

⊃ AIP∗
r2

∩ ∩ ∩ ∩ ∩
S ⊃ C∗

+ ⊃ AIP∗
+ ⊃ AIP∗

0,+ ⊃ AIP∗
r1,+ ⊃ AIP∗

r2,+.

(1.1)

The strictness of some of the inclusions in (1.1) is not immediately obvious, and we address
this issue in the following comments.

The inclusion C∗ ⊇ AIP∗ follows from the facts that a subset of Zd is IP iff it is a
member of any idempotent ultrafilter in the semigroup β(Zd,+), whereas it is central iff it
is a member of any minimal idempotent in β(Zd,+) (see, for example, [B3], Theorem 2.15
and the subsequent remark), and that the family of C∗-sets is stable under the operation
of removing subsets of zero Banach density. On the other hand, a construction due to
McCutcheon ([M]; see also [MZ]) shows that there are C∗-sets which are not AIP∗, that
is, that this inclusion (as well as the inclusion C∗

+ ⊃ AIP∗
+) is strict.

The fact that S ⊃
6=
C∗

+ is proven in [B3], Theorem 2.20.
To see that, for r ≥ 2, IP∗

r 6= ∆∗
r , it is enough to take a ∆r-set B which contains no

IPr-sets (say, B = {1, . . . , r − 1} ⊂ Z) and put S = Z
d \ B; then S is an IP∗

r but not a
∆∗

r-set.
To see that IP∗

r1
6= IP∗

r2
for r1 > r2 (which implies that, for any r, IP∗

0 6= IP∗
r), take

any IPr2-set B which is not an IPr1 -set and put S = Z
d \ B. Similarly, taking B to be a

union of IPr-sets for all r which contains no IP-set (in Z, the set B =
⋃∞

r=1

{
22

r

, 2 · 22
r

, 3 ·

22
r

, . . . , r22
r}

, already used above, works) and putting S = Z
d \ B, we get a set which is

IP∗ but not IP∗
0.

It is somewhat harder to establish the strictness of the inclusions between the “A”-
families of sets, such as AIP∗

r , AIP
∗
0, and AIP∗. To prove, in the case d = 1, that AIP∗

r1
6=

AIP∗
r2

for r1 > r2, one can check that for any r ∈ N the lattice rZ is an IP∗
r-set but not

AIP∗
r−1. Indeed, given any n1, . . . , nr ∈ Z, consider the r elements m1 = n1, m2 = n1+n2,

. . ., mr = n1+ · · ·+nr of FS(n1, . . . , nr); if none of mi is divisible by r, then for some i < j
one has mi = mj mod r, so ni+1 + · · ·+ nj ∈ FS(n1, . . . , nr) ∩ rZ. To show that rZ is not
AIP∗

r−1, let N ⊂ Z be a set of density zero, and assume that S = rZ ∪N is an IP∗
r−1-set.

Then for any n1, . . . , nr−1 ∈ Z with ni = 1mod r for all i we have FS(n1, . . . , nr−1)∩N 6= ∅.
Let (n1, . . . , ns) be a maximal sequence in Z for which FS(n1, . . . , ns)∩N = ∅. Then for any
n ∈ Z with n = 1mod r we must have n+m ∈ N for some m ∈ FS(n1, . . . , ns) ∪ {0} 6= ∅,
which contradicts the assumption that d∗(N) = 0.

The strictness of AIP∗ ⊃ AIP∗
0 can be proven “dynamically”; let us briefly describe

the underlying idea. By Theorem 1.3 below, the set of returns in any distal topological
dynamical system is IP∗. Let (X0, T0, x0) be a pointed distal dynamical system with the
property that for any pointed nilsystem(8) (X1, T1, x1), either the systems (X0, T0, x0) and

(8) Nilsystems, as well as distal systems, are defined later in this section.

7



(X1, T1, x1) are disjoint
(9), or have a common isometric factor (X2, T2, x2) over which they

are relatively disjoint. (An example of such a system (X0, T0) is provided by a skew-product
transformation T0(x, y) = (x + α, y + f(x)) on a two-dimensional torus X0 = T

2 for an
irrational α ∈ T and some f ∈ C(T); we thank M. Lemanczyk for kindly confirming this to
us.) Let S = RU (x0) be the set of returns of x0 into its sufficently small neighborhood U ,
RU = {n ∈ Z

d : Tnx0 ∈ U}; then, by Theorem 1.3, S is an IP∗-set. Let P be any IP∗
0-set;

by Theorem 2.6 in [HoK3], P contains a piecewise Nilr−1Bohr0-set, that is, the intersection
P ′ ∩Q where P ′ is a set of returns of the point x1 of a pointed nilsystem (X1, T1, x1) into
some its neighborhood and Q is a thick(10) set. Then, because of the disjointness or
relative disjointness of (X0, T0, x0) and (X1, T1, x1), the set P ′ \ S is syndetic, and so the
set P \ S ⊇ (P ′ \ S) ∩Q has positive upper Banach density. Hence, we have (S ∪N) 6= P
for any set N of zero Banach density, that is, S is not an AIP∗

0-set. A similar argument
applies to the families of the AIP∗

0,+ and AIP∗
+-sets. Apropos, based on the fact that every

∆∗-set contains a piecewise-Bohr set (see [BFW]), one can show, in a similar way, that
IP∗

0 ⊃6= A∆∗ (where A∆∗is the family of “almost” ∆∗-sets, i.e. sets of the form R \N where
R is a ∆∗-set and N is a set of zero Banach density).

This concludes our discussion of diagram (1.1). However, it turns out that the sets

R
(k)
ε (A) and Rε(A; p1, . . . , pk) of large values of correlation functions possess an even

stronger property than that of AIP∗
0, namely, AVIP∗

0, “the polynomial” AIP∗
0-property,

which we will presently introduce. Let (ni)i∈Λ be a collection of elements of Zd indexed
by a set Λ. (That is, let n be a mapping Λ −→ Z

d.) The IP-set generated by (ni)i∈Λ

can be interpreted as the image of “a linear” mapping ϕ:F(Λ) −→ Z
d from the “partial

semigroup” F(Λ) of finite subsets of N under the operation of disjoint unions: ϕ is defined
by ϕ(α) =

∑
i∈α ni, α ∈ F(Λ), and has the property ϕ(α1∪α2) = ϕ(α1)+ϕ(α2) whenever

α1 ∩ α2 = ∅.

For an arbitrary mapping ϕ:F(Λ) −→ Z
d and γ ∈ F(Λ) we define the γ-derivative

Dγϕ:F(Λ\γ) −→ Z
d of ϕ by Dγϕ(α) = ϕ(α∪γ)−ϕ(α), α ∈ F(Λ\γ). We now have that

ϕ is linear, in the above sense, iff ϕ(∅) = 0 and Dγϕ is constant for every γ ∈ F(Λ); and
equivalently, iff ϕ(∅) = 0 and Dγ1Dγ2ϕ = 0 for any disjoint γ1, γ2 ∈ F(Λ). We say that
a mapping ϕ:F(Λ) −→ Z

d is polynomial of degree ≤ k if Dγ1Dγ2 · · ·Dγk+1
ϕ = 0 for any

disjoint γ1, . . . , γk+1 ∈ F(Λ). It can be shown (see [BL1], Theorem 8.3) that a mapping
ϕ:F(Λ) −→ Z

d is polynomial of degree ≤ k iff it is of the form ϕ(α) =
∑

β⊆α
|β|≤k

mβ , where

β 7→ mβ is a mapping from F≤k(Λ) =
{
β ∈ F(Λ) : |β| ≤ k

}
to Z

d.

(9) A pointed dynamical system (X,T, x) is a compact metric space X with a homeomorphism

T :X −→ X and a point x ∈ X whose orbit under T is dense in X. Two pointed dynamical

systems (X0, T0, x0) and (X1, T1, x1) are said to be disjoint if the orbit of (x0, x1) under the

action T0×T1 is dense in the product space X0×X1. If the systems (X0, T0, x0) and (X1, T1, x1)
have a nontrivial common factor (X2, T2, x2), they cannot be disjoint; we say that these systems

are relatively disjoint (with respect to X2) if the orbit of (x0, x1) is dense in the relative product

space X0 ×X2
X1.

(10) A subset of Z is said to be thick if it contains arbitrarily large intervals in Z.
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Definition 1.2. A VIP-set of degree ≤ k in Z
d is defined as the image ϕ(F(Λ)) of a

polynomial mapping ϕ:F(Λ) −→ Z
d of degree ≤ k with ϕ(∅) = 0. A set S ⊆ Z

d is
said to be a VIP∗-set if it has a nonzero intersection with any infinite VIP-set in Z

d. A
set S ⊆ Z

d is said to be a VIP∗
0-set if for every k ∈ N there exists r such that S has a

nonzero intersection with any VIP-set in Z
d of degree ≤ k and of cardinality ≥ r. We

define AVIP∗
0-sets as sets of the form S \N where S is a VIP∗

0-set and N is a set of zero
Banach density in Z

d. We define VIP∗
0,+ and AVIP∗

0,+-sets as shifted VIP∗
0 and AVIP∗

0-sets
respectively.

Let us denote by VIP∗, VIP∗
0, AVIP

∗, and AVIP∗
0 the classes of VIP∗, VIP∗

0, AVIP
∗,

and AVIP∗
0-sets respectively. We then have the following diagram of strict inclusions

VIP∗ ⊃VIP∗
0

∩ ∩
IP∗ ⊃ IP∗

0

(1.2)

Again, easy examples prove the strictness of these inclusions. For the inclusion IP∗ ⊃
6=
VIP∗,

for instance, take S = Z \ B, where B = {n2 : n ∈ N}. B is a VIP-set of degree 2 (this is
the image of the polynomial mapping ϕ(α) = |α|2 from F(N) to Z) and does not contain
any infinite IP-set (since any infinite IP-set contains infinitely many pairs of elements with
the same difference); thus, the set S is an IP∗ but not a VIP∗-set in Z.

As for the “A”-version of the diagram (1.2),

AVIP∗ ⊇AVIP∗
0

∩| ∩|

AIP∗ ⊃ AIP∗
0

(1.3)

we believe that all the inclusions in (1.3) are also strict, but this needs a separate inves-
tigation. (The dynamical approach described above fails here since both IP∗

0 and VIP∗
0

families of sets come from the same class of dynamical systems, nilsystems.)

We will now describe how VIP∗
0 and AVIP∗

0-sets appear in the context of the problems
we deal with. The crucial fact which explains the emergence of VIP∗-sets in our study has
to do with the intrinsic “nilpotent” nature of multiple recurrence. A polynomial multiple
correlation sequence is a sequence (or rather a mapping Z

d −→ R) of the form

τ(n) = µ
(
A0 ∩ T

p1(n)A1 ∩ · · · ∩ T pk(n)Ak

)
, n ∈ Z

d, (1.4)

or, more generally,

τ(n) =

∫

X

f0 · T
p1(n)f1 · · ·T

pk(n)fk dµ, n ∈ Z
d, (1.5)

where T is a measure preserving transformation of a probability measure space (X,B, µ), pi
are polynomials Zd −→ Z, Ai ∈ B, and fi ∈ L∞(X). It follows from [L3], Theorem 3 that
any polynomial multiple correlation sequence (1.5) induced by an ergodic transformation is
approximable in density by correlation sequences of the same sort coming from nilsystems:
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for any ε > 0 there exists a compact nilmanifold X ′ (a compact homogeneous space of a
nilpotent Lie group G) with normalized Haar measure µ′, a nilrotation T ′ (the translation
of X ′ by an element of G), and functions f ′0, . . . , f

′
k ∈ C(X ′) such that for the sequence

τ ′(n) =

∫

X′

f ′0 · (T
′)p1(n)f ′1 · · · (T

′)pk(n)f ′k dµ
′

one has d∗
(
{n ∈ Z

d : |τ(n) − τ ′(n)| > ε|
})

= 0. (In other words, nilsystems approximate

a characteristic factor of (X,T )(11); see [HoK1] or [Zi].) It follows that when studying
the level sets of polynomial multiple correlation sequences, we may confine ourselves to
nilsystems as long as we are ready to ignore subsets of Zd of zero Banach density and small
errors.

Nilrotations are known to be distal transformations(12) (see [AGH], [Ke1], [Ke2]) and
therefore, by the following theorem, possess the property of IP∗-recurrence:

Theorem 1.3. (Cf. [Fu], Theorem 9.11) Let X be a compact metric space and let n 7→ Tn

be a distal action of Zd on X by self-homemomorphism. Then for any x0 ∈ X and any
neighborhood U of x0 the set RU (x0) =

{
n ∈ Z

d : Tnx0 ∈ U
}
is a IP∗-set.

While the IP∗ property of the sets of returns RU (x0) is universal for all distal systems
(and, in fact, characterizes distality – see, for example, Theorem 3.8 in [B3]), nilsystems
possess a stronger property:

Theorem 1.4. ([BL3], Theorem 0.5) Let X be a compact nilmanifold, let n 7→ Tn be an
action of Zd on X by nilrotations. Then for any x0 ∈ X and any neighborhood U of x0,
the set RU (x0) is a VIP∗

0-set.

Let us remark that the class of VIP∗
0-sets is stable under taking polynomial preimages:

if S ⊆ Z
d is a VIP∗

0-set and p:Zl −→ Z
d is a polynomial mapping with p(0) = 0, then

p−1(S) is a VIP∗
0-set in Z

l. (This follows from the fact that if B is a VIP-set of degree ≤ k
in Z

l then p(B) is a VIP-set of degree ≤ k deg p in Z
d.) It thus follows from Theorem 1.4

that for any polynomial mapping p:Zl −→ Z
d with p(0) = 0 the set RU (x0; p) =

{
n ∈ Z

l :

T p(n)x0 ∈ U
}
is VIP∗

0.
Let X be a compact nilmanifold, n 7→ Tn is an action of Zd on X by nilrotations,

h ∈ C(X), and x0 ∈ X; then the sequence ϕ(n) = h(Tnx0), n ∈ Z
d, is called a basic

nilsequence; a general nilsequence is a uniform limit of basic ones. (This terminology was
introduced in [BHoK].) For any c < h(x0), by Theorem 1.4 the set R =

{
n ∈ Z

d : ϕ(n) >
c} is an VIP∗

0-set. If one has c < h(x) for some x 6= x0 (and the action T is assumed to be
ergodic), R is, in general, only an VIP∗

0,+ (see Definition 0.10).
Because of the “nilpotent nature” of polynomial multiple correlation sequences, it is

not surprising that any such sequence is an “almost” nilsequence:

(11) A factor system (X ′,B′, µ′, T ′) of a probability measure preserving system (X,B, µ, T )
is said to be characteristic (with respect to the scheme

∫
X

f0 · T p1(n)f1 · · ·T
pk(n)fk dµ) if for

any f0, f1, . . . , fk ∈ L∞(X) one has UC-limn∈Zd(
∫
X f0 · T p1(n)f1 · · ·T

pk(n)fk dµ −
∫
X′ f0 ·

(T ′)p1(n)E(f1|X
′) · · · (T ′)pk(n)E(fk|X

′) dµ′) = 0. (UC-lims are defined below.)
(12) An action n 7→ Tn of Zd on a metric space (X, ρ) by continuous transformation is said to

be distal if for any distinct x1, x2 ∈ X, infn∈Zdρ(Tnx1, T
nx2) > 0.
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Theorem 1.5. ([L7], Theorem 0.1) Let (X,B, µ, T ) be an invertible probability measure
presering system. For any polynomials p1, . . . , pk:Z

d −→ Z and any A0, . . . , Ak ∈ B, the
polynomial multiple correlation sequence τ(n) = µ

(
A0∩T

p1(n)A1∩· · ·∩T pk(n)Ak

)
, n ∈ Z

d,

has the form τ = ϕ+ λ, where ϕ is a nilsequence and λ is a null-sequence(13).

(See also a recent result of Frantzikinakis in [F], which deals with the case of several
commuting transformations.)

Definition. For a sequence (un), n ∈ Z
d, in a normed vector space we write UC-limn∈Zd un

for limN→∞
1

|ΦN |

∑
n∈Zd un if this limit exists for all Følner sequences (ΦN ) in Z

d (in which

case the limit is the same for all these sequences).

Let τ be a polynomial multiple correlation sequence with UC-limn∈Zd τ(n) = C. Rep-
resent τ in the form τ = ϕ+ λ where ϕ is a nilsequence, ϕ(n) = h(Tnx0) for x0 ∈ X, h ∈
C(X), and λ is a null-sequence. Then

∫
X
h dµ(X) = UC-limn ϕ(n) = UC-limn τ(n) = C.

From Theorem 1.4 we now get the following result:

Theorem 1.6. For any polynomial multiple correlation sequence τ and any ε > 0, the set
R =

{
n ∈ Z

d : τ(n) > C − ε
}
, where C = UC-limn∈Zd τ(n), is AVIP∗

0,+.

We now see from Theorems 1.6 and 0.1 that the sets R
(k)
ε (A) and Rε(A; p1, . . . , pk)

appearing in Theorems 0.6 and 0.8 are AVIP∗
0,+-sets; our goal is to show that these sets

are in fact “non-shifted” AVIP∗
0-sets. Under the notation of Theorem 1.6, to prove that a

set R is AVIP∗
0 it suffices to represent the corresponding multiple correlation sequence in

the form ϕ + λ, where ϕ(n) = h(Tnx0) is a nilsequence and λ is a null-sequences, and to
show that h(x0) ≥ C. In order to achieve this goal we will have to take a close look at the
orbit closure of the diagonal of a Cartesian power of a nilmanifold.

2. The sets R
(k)
ε (A)

The following is the main “linear” (i.e. pertaining to polynomials of degree 1) result
of the paper:

Theorem 2.1. Let (X,B, µ, T ) be an ergodic probabilty measure preserving system and
let f ∈ L∞(X). Then for any k ∈ N and ε > 0, the set

R(k)
ε (f) =

{
(n1, . . . , nk) ∈ Z

k :

∫

X

∏

e1,...,ek∈{0,1}

T e1n1+···+eknkf dµ >
(∫

X

f dµ
)2k

− ε
}

is AVIP∗
0.

(13) We say that a sequence λ(n) is a null-sequence if λ −→ 0 in Banach density, that is, for

any ε > 0 the set {n ∈ Z
d : |λ(n)| > ε} has Banach density zero.
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Taking f = 1A in this theorem where A is a measurable subset of X and confining ourselves
to VIP-sets of first degree, we get Theorem 0.6; then, applying Furstenberg’s correspon-
dence principle, we obtain Corollary 0.7.

The proof of Theorem 2.1 hinges on results from [L1], [L2], [L3], [L4], [L6], [L7], [BL2],
and [BL3]. Let us consider a more general situation: let p1, . . . , pr be distinct linear forms
Z
k −→ Z and assume that we need to show that for any nonnegative function f ∈ L∞(X)

the set {
n ∈ Z

k :

∫

X

r∏

i=1

T pi(n)f dµ >
(∫

X

f dµ
)r

− ε
}

is AVIP∗
0. First, as was described above, we may confine ourselves to nilsystems and assume

that X = G/Γ is a compact nilmanifold, µ is the Haar measure, T ∈ G is a nilrotation of
X, and f is a continuous function on X. Next, we may assume that the nilmanifold X is
connected. Indeed, let X have b > 1 connected components, Xo

1 , . . . , X
o
b ; then for any j,

the translation T b preserves Xo
j and is ergodic on it. Assume that for any j = 1, . . . , b the

set

Rj =
{
n ∈ Z

k :

∫

X

r∏

i=1

T bpi(n)f |Xo
j

d(bµ) >
(∫

X

f |Xo
j

d(bµ)
)r

− ε/b
}
,

is AVIP∗
0; then the set R′ =

⋂b
j=1Rj is also AVIP∗

0, and for any n ∈ R′, by the convexity
of the function t 7→ tr,

∫

X

b∏

i=1

T bpi(n)f d(bµ) >
(∫

X

f d(bµ)
)r

− ε,

so bR′ ⊆ R.
It is easy to see that if R′ is an AVIP∗

0-set, then bR′ is also AVIP∗
0, so R is AVIP∗

0.
So, after replacing T by T b and X by each of Xo

j , j = 1, . . . , b, we may and will assume
that X is connected.

Let D be the diagonal {(x, . . . , x), x ∈ X} of Xr. For any m = (m1, . . . ,mr) ∈ Z
r

we have ∫

X

r∏

i=1

Tmif dµ =

∫

Dm

f⊗rdµDm
,

where Dm = (Tm1 , . . . , Tmk)D, f⊗r(x1, . . . , xr) = f(x1) · · · f(xr), and µDm
is the normal-

ized Haar measure on Dm. Put p = (p1, . . . , pr) and F = f⊗r. We next use results from
[L6] and [L7], which describe the behavior of the sequence

∫
Dp(n)

F dµDp(n)
. Let Y be the

orbit closure
⋃

n∈Zk Dp(n) of D in Xr under the action T p(n) = (T p1(n), . . . , T p1(n)); then
Y is a subnilmanifold of X, and UC-limn∈Zk

∫
Dp(n)

F dµDp(n)
=

∫
Y
F dµY , where µY is the

Haar measure on Y . (See [L2], Corollary 1.9.)
Let G0 be the subgroup of G generated by T and the identity component of G; then

X is a homogeneous space of G0 as well, so, we may and will assume that G = G0.
Let π:G −→ X be the natural projection, and let H be the minimal closed subgroup
of Gr such that T p(n) ∈ H for all n and π(H) = Y . Let K be the normal closure in
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H of the diagonal ∆ = {(g, . . . , g), g ∈ G} of Gr. (That is, K is the minimal normal
subgroup of H containing ∆.) Let N = K\Y , let σ:Y −→ N be the natural projection,
let h = E(F |N), and let w = σ(K). Then the sequence T p(n) acts on N , and by [L7],
Proposition 0.2, if we put τ(n) =

∫
Dp(n)

F dµDp(n)
and τ ′(n) = h(T p(n)w), n ∈ Z

d, then

for any ε > 0, d∗
({
n ∈ Z

d : |τ(n)− τ ′(n)| > ε|
})

= 0. Hence, we only need to prove that

the set
{
n ∈ Z

k : h(T p(n)w) >
(∫

X
f dµ

)r
− ε

}
is VIP∗

0. By Theorem 1.4, for any δ > 0

the set
{
n ∈ Z

k : dist(T p(n)w,w) < δ
}
is a VIP∗

0-set; it therefore remains to show that

h(w) ≥
(∫

X
f dµ

)r
.

Let W = π×r(K), where π×r denotes the Cartesian product of k copies of π,
π×r(x1, . . . , xk) =

(
π(x1), . . . , π(xk)

)
. We have h(w) =

∫
W
F dµW , where µW is the Haar

measure on W ; we will now determine K and so, W . We need to first introduce some
additional notation. Let the nilpotency class of G be c, and let G = G1 > G2 > · · · >
Gc > Gc+1 = {1G} be the lower central series of G. For g ∈ G and v = (v1, . . . , vr) ∈ Z

r,
define gv = (gv1 , . . . , gvr ) ∈ Gr. For a group A and a set V ⊆ Z

r, by AV we understand
the subgroup of Ar generated by the set {gv, g ∈ A, v ∈ V }. For v = (v1, . . . , vr) and
u = (u1, . . . , ur) ∈ Z

r, let vu = (v1u1, . . . , vrur). For a subgroup V of Zr and i ∈ N, let
V ⋆i denote the subgroup of Zr generated by the products v1 · · · vi, v1, . . . , vi ∈ V .

Now let pi(n1, . . . , nk) =
∑k

j=1 ai,jnj , i = 1, . . . , r, and let V be the subgroup of
Z
r generated by the vectors e = (1, . . . , 1), (a1,1, . . . , ar,1), . . ., (a1,k, . . . , ar,k). By [L6],

Theorem 6.3,

H = GVGV ⋆2

2 · · ·GV ⋆c

c .

It follows that

K = GeGV
2 G

V ⋆2

3 · · ·GV ⋆(c−1)

c = ∆GV
2 G

V ⋆2

3 · · ·GV ⋆(c−1)

c .

Recall thatW = K/(Γ∩K). The torus (Gr
2 ∩K)\W is naturally isomorphic to Z = G2\X;

let η:W −→ Z be the natural projection. Then we have

∫

W

F dµW =

∫

W

f⊗rdµW =

∫

Z

∫

Wz

f⊗r(w) dµWz
(w) dµZ(z),

where for each z ∈ Z, Wz = (η×r)−1(z), and µWz
is the Haar measure on Wz. For any

z ∈ Z we have Wz = π×r(Kz) where

Kz = gezG
V
2 G

V ⋆2

3 · · ·GV ⋆(c−1)

c

for gz ∈ π−1(η−1(z)). Now let X2 = π(G2), let

M = GV
2 G

V ⋆2

3 · · ·GV ⋆(c−1)

c ⊆ Gr
2, (2.1)

and let L be the subnilmanifold π×r(M) of Xr
2 ; let µX2 and µL be the Haar measures on

X2 and on L respectively. Then for any z ∈ Z, Kz = geM and Wz = gezL, so

∫

Wz

f⊗r(w) dµWz
=

∫

L

h⊗r
z dµL
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where hz(u) = f(gzu), u ∈ L. It therefore suffices to show that for any nonnegative
continuous function h on X2 one has

∫

L

h⊗rdµL ≥
(∫

X2

h dµX2

)r

, (2.2)

since, if this is the case, we will have

∫

W

f⊗rdµW =

∫

Z

∫

Wz

f⊗r(w) dµWz
(w) dµZ(z) =

∫

Z

∫

L

h⊗r
z dµL dµZ(z)

≥

∫

Z

(∫

X2

hz dµX2

)r

dµZ(z) ≥
(∫

Z

∫

X2

hz dµX2 dµZ(z)
)r

=
(∫

Z

∫

Wz

f(w) dµWz
(w) dµZ(z)

)r

=
(∫

Z

f dµZ

)r

.

The definition of the subgroup M of Gr
2 (in formula (2.1)) and of the subnilmanifold

L of Xr
2 looks similar to the definition of the subgroup H of Gr and of the subnilmanifold

Y of Zr, with G replaced by G2; however, this similarity is somewhat deceiving since
the series G2 > G3 > · · · > Gc is not the lower central series of the group G2. We can
restore the similarity by considering the group Q = G2Γ; the lower central series of Q
is G2Γ1 > G3Γ2 > · · · > GcΓc−1 > Γc, where Γ = Γ1 > Γ2 > · · · > Γc is the lower
central series of Γ. The nilmanifold X2 is a homogeneous space of Q, X2 = Q/Γ, and the
“canonical” subnilmanifolds Gi+1Γi/Γi, i = 1, . . . , c, of X2 coincide with the nilmanifolds
Gi+1/Γi+1. Choose an element P0 in the identity component of G2 such that the orbit
π(Pn

0 ), n ∈ Z, is dense in X2. (P0 is any “irrational” element of the identity component
of G2; see [L4], Section 1.2.) Let Λ be the group generated by Γ and P0; then the action
of Λ on X2 is ergodic.

Proof of Theorem 2.1. We will now deal with the special case where r = 2k and
{p1, . . . , pr} =

{
e1n1+ · · ·+nkek, ei ∈ {0, 1}

}
. It follows from Theorem 6.3 from [L6] that

under the action
(
P e1
1 · · ·P ek

k , e1, . . . , ek ∈ {0, 1}
)
(P1,...,Pk)∈Λk of Λ2k , the orbit closure of

the diagonal of X2k

2 is the nilmanifold L̃ = π×2k(M̃), where

M̃ = GV
2 Γ

U1GV ⋆2

3 ΓU2
2 · · ·GV ⋆(c−1)

c Γ
Uc−1

c−1 ΓUc
c ,

where V is, as above, the subgroup of Z2k generated by the vector-coefficients of the linear

form p = (p1, . . . , p2k), and for each i, Ui is a subgroup of Z2k that is slightly larger than
V ⋆i. ([L6] deals with a single transformation, but the results therein can be easily extended

to the case of a group action: M̃ contains the orbit of the diagonal of Q2k and is a minimal

subgroup of Q2k whose projection to X2k

2 coincides modulo Q2k

2 = (G3Γ2)
2k with the

closure of this orbit of the diagonal of X2k

2 . For each i, V ⋆i has finite index in Ui, and ΓUi

i

normalizes G
⋆Vj

j for all j ≥ i; the exact definition of the groups Ui is cumbersome, and

we will not specify them here because, anyway, the groups ΓUi

i vanish after an application

of the mapping π×2k .) Thus, L̃ = π×2k(M) where M = GV
2 G

V ⋆2

3 · · ·GV ⋆(c−1)

c , that is, L̃
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coincides with the nilmanifold L introduced above. By [L1], Theorems 2.17 and 2.19, for
any nonnegative continuous function h on X2 one has

UC-lim
(P1,...,Pk)∈Λk

∫

X

∏

e1,...,ek∈{0,1}

P e1
1 · · ·P ek

k h dµX2 =

∫

L

h⊗2kdµL.

By [BL2], Theorem 0.5,

UC-lim
(P1,...,Pk)∈Λk

∫

X

∏

e1,...,ek∈{0,1}

P e1
1 · · ·P ek

k h dµX2 ≥
(∫

X2

h dµX2

)2k

.

This establishes (2.2) and thus concludes the proof.

3. The sets Rε(A; p1, . . . , pk)

We will now extend Theorem 2.1 to polynomial sequences of powers of a measure
preserving transformation. Let p1, . . . , pk be polynomials Z

d −→ Z with zero constant
term. Notice that despite the fact that, by Theorem 2.1, the set Rε(f) has “polynomial
flavor”, this theorem gives no information whether there are nonzero n ∈ Z

d such that
(p1(n), . . . , pk(n)) ∈ Rε(f) – since the set Rε(f) is not a VIP∗

0 but only an AVIP∗
0-set, and

since, in general, the set
{
(p1(n), . . . , pk(n)), n ∈ Z

d
}
has zero Banach density in Z

k.
As in the linear case, when studying polynomial multiple correlation sequences (1.5),

after ignoring a subset of zero Banach density in Z
d and an arbitrarly small error we may

assume that (X,T ) is a nilsystem. However, in comparison with the “linear” case, the
polynomial situation presents additional difficulties. Like in the linear case, the value of
the limit UC-limn∈Zd

∏k
i=1 T

pi(n)f is equal to the integral of f⊗k over the orbit closure Y
of the diagonal of Xk under the polynomial action (T p1(n), . . . , T pk(n)), but now Y is not,
generally speaking, a nilmanifold – it is a union of several nilmanifolds, which are visited
by the sequence (T p1(n), . . . , T pk(n)) with potentially different frequencies. (Consider, for
example, the polynomial mapping n2 from Z to Z/3Z: the orbit closure Y consists here
of the points 0 and 1, where 0 is visited by the sequence (n2) with the frequency 1/3 and
1 with the frequency 2/3.) Also, in the case of polynomial actions, the orbit closure Y
does not have such a simple description as in the linear case. (See [L6], Sections 9–13.)
The first problem can be got around by passing to a subsequence (T p1(bn), . . . , T pk(bn)) of
(T p1(n), . . . , T pk(n)) for certain b ∈ N so that the orbit closure Y is reduced to a single con-
nected component. The second problem can be avoided by dealing with only “sufficiently
algebraically independent” systems of polynomials.

Let P = {p1, . . . , pk} be a system of polynomials Z
d −→ Z; the complexity of P

is defined as the minimal nonnegative integer c such that, when computing the limit
UC-limn∈Zd

∫
X

∏k
i=1 T

pi(n)fi dx for a general ergodic probability system (X,T ), one may
replace X by its factor-nilsystem of nilpotency class c (see [BLLe1], Section B of the in-
troduction, and [L6], Sections 2.7–2.11). If the complexity of P is c, then the polynomial
multiple correlation sequence (1.5) corresponding to P for an ergodic system can be com-
puted, up to an arbitrarily small error, on a factor-nilsystem of nilpotency class c + 1.
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(See [L7], Section 5.) The complexity of P depends only on the orbit closure of the di-
agonal D of the power Xk for a general nilsystem (X,T ) under the polynomial action
(T p1(n), . . . , T pk(n)) (see [L6], Section 0.7).

We will also need some information about the structure of nilrotations. Let X be a
connected nilmanifold, X = G/Γ, where G is a nilpotent Lie group of nilpotency class ≤ c
and Γ is a lattice in G, let Go be the identity component of G, and let Q = [Go, Go]\X =
G/([Go, Go]Γ). Q is a torus (the maximal factor-torus of X), and under the action of G

has the structure of a c-step skew-product system. To see this, let Ĝ = G/[Go, Go], so

that Q is the factor of Ĝ by the lattice Γ̂ = Γ/([Go, Go] ∩ Γ). Let us identify elements of

G with their images in Ĝ. Let N be the identity component of Ĝ, then N is a connected
commutative Lie group; after passing to the universal cover, we may assume that N ∼= R

d.
Let N1 = N , N2 = [G,N1], N3 = [G,N2], . . ., Nc+1 = [G,Nc] = {1}; this is a sequence

of nested connected subgroups of N with the property that, for each i, the lattice Ni ∩ Γ̂
is cocompact in Ni. For any γ ∈ Γ and any u ∈ N we have γu = γuγ−1, that is,
the action of γ on N is a linear transformation Aγ of L. Moreover, for any i and any
u ∈ Ni, u

−1Aγu = [u, γ−1] ∈ Ni+1, or, passing to additive notation, Aγu ∈ u + Ni+1,
and every element T = vγ ∈ G, with v ∈ Go and γ ∈ Γ, acts as an affine transformation,
Tu = v + Aγu. For each i find a subspace (a closed subgroup) Li of Ni that is generated

by Li ∩ Γ̂ and such that Ni = Ni+1 ×Li. Then N = L1 ×L2 × · · ·×Lc, and every element
T of G acts on u = (u1, u2, u3, . . . , uc) by the formula

T (u1, u2, u3, . . . , uc) =
(
u1 + v1, u2 + ψ2(u1) + v2, u3 + ψ3(u1, u2) + v3, . . . ,

uc + ψc(u1, . . . , uc−1) + vc
)
,

where the ψi are linear forms and vi ∈ Li, i = 1, . . . , c. Factorizing by Γ and defining Qi

to be the image of Li, i = 1, . . . , c, in Q, we obtain that Q = Q1 × Q2 × · · · × Qc, where
the Qi are tori and every element T of G acts on Q by the formula

T (z1, z2, z3, . . . , zc) =
(
z1 + α1, z2 + ψ2(z1) + α2, z3 + ψ3(z1, z2) + α3, . . . ,

zc + ψc(z1, . . . , zc−1) + αc

)
,

where the ψi are linear forms and αi ∈ Qi, i = 1, . . . , c.
Let us start with the case where the polynomials pi are linearly independent. When

X is a connected nilmanifold G/Γ and T ∈ G is an ergodic nilrotation of X, we will
use notation from Section 2, with r replaced by k: let G2 = [G,G], Z = G2\X, D be
the diagonal of Xk, Y be the orbit closure of D under the (polynomial) action T p(n) =
(T p1(n), . . . , T pk(n)), ∆ be the diagonal of Gk, H = (π×k)−1(Y ) ⊆ Gk, π:G −→ H be the
natural projection, K be the normal closure of ∆ in H, W = π×k(K) ⊆ Xk, F = f⊗k,
h = E(F |N), and w = σ(K); let also Go

2 = [Go, Go] and Q = Go
2\X. Z and Q are

tori with T acting as an ergodic rotation on Z and as a skew-shift (an affine unipotent
transformation) on Q. If the polynomials p1, . . . , pk are linearly independent, the orbit of
every point, and so of the diagonal, of Zk under the action (T p1(n), . . . , T pk(n)) is dense, and
actually well distributed, in the torus Zk. Since the system {p1, . . . , pk} has W-complexity
(the complexity with respect to the Weyl systems) 1 (see [L6], Theorem 9.7), this implies
that the orbit of the diagonal of Qk is well distributed in the torus Qk as well. And by
[L2], Theorem C and Corollary 1.9, we then have that Y = Xk and the orbit of D is well
distributed in Xk. (For the case d = 1 see also [FK], Theorem 1.2.)
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Theorem 3.1. Let (X,B, µ, T ) be an invertible probability measure preserving system and
let p1, . . . , pk be linearly independent polynomials Z

d −→ Z with pi(0) = 0, i = 1, . . . , k.
Then for any nonnegative function f ∈ L∞(X) and any ε > 0 there exists b ∈ N such that

UC-lim
n∈Zd

∫

X

k∏

i=1

T pi(bn)f dµ >
(∫

X

f dµ
)k

− ε.

Proof. First, let us assume that T is ergodic. Assume, as we may, that (X,T ) is a
nilsystem, X = G/Γ, and that the group G is generated by T and the connected component
of the identity.

If X is connected, then for any b ∈ N the polynomials p1(bn), . . . , pk(bn) are linearly
independent, so Y = Xk and

UC-lim
n∈Zd

k∏

i=1

T pi(bn)fi =
k∏

i=1

∫

X

fi dµ.

Assume now that X is disconnected, and let Xo
1 , . . . , X

o
a be its connected components. The

nilrotation T permutes the components Xo
j ; thus there exists b ∈ N such that T b(Xo

j ) = Xo
j

and T pi(bn)(Xo
j ) = Xo

j for all j = 1, . . . , a, i = 1, . . . , k, n ∈ Z
d. (Note that b may differ

from a since the polynomials pi may have non-integer rational coefficients.) For any j,
since Xo

j is connected and T is ergodic on X, the transformation T b is ergodic on Xo
j . The

polynomials b−1pi(bn), i = 1, . . . , k, are linearly independent, so for any j,

UC-lim
n∈Zd

∫

Xo
j

k∏

i=1

T pi(bn)f |Xo
j

d(aµ) = UC-lim
n∈Zd

∫

Xo
j

k∏

i=1

(T b)b
−1pi(bn)f |Xo

j

d(aµ)

=
(∫

Xo
j

f |Xo
j

d(aµ)
)k

.

(3.1)

Since the function t 7→ tk is convex, we have

a∑

j=1

(∫

Xo
j

f |Xo
j

d(aµ)
)k

≥
(∫

X

f dµ
)k

,

thus, adding the terms in the left part of (3.1) for j = 1, . . . , a, we get

UC-lim
n∈Zd

∫

X

k∏

i=1

T pi(n)f dµ ≥
(∫

X

f dµ
)k
. (3.2)

This proves the assertion in the case T is ergodic; note also that if an integer b works for
the construction above, then any multiple of b also works, and so, also gives (3.2).

If T is not ergodic, let X =
∫
Ω
Xωdw, µ =

∫
Ω
µωdw be the ergodic decomposition of

X. For each ω ∈ Ω let bω be the minimal integer satisfying the assertion of the theorem
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for the system (Xω, T |Xω
); clearly, ω 7→ bω is a measurable function on Ω. For each l ∈ N

let Ωl = {ω ∈ Ω : bω ≤ l}. Then Ω1 ⊆ Ω2 ⊆ · · ·, and
⋃

l∈N
Ωl = Ω; choose l such that

w(Ω \ Ωl) < ε. Put b = l!, so that bω|b for all ω ∈ Ωl. Then

UC-lim
n∈Zd

∫

Xω

k∏

i=1

T pi(bn)f dµω >
(∫

Xω

f dµω

)k

− ε

for all ω ∈ Ωl, and so, assuming, as we may, that |f | ≤ 1 and ε < 1, we get

UC-lim
n∈Zd

∫

X

k∏

i=1

T pi(bn)f dµ ≥

∫

Ωl

UC-lim
n∈Zd

∫

Xω

k∏

i=1

T pi(bn)f dµω dw

>

∫

Ωl

((∫

Xω

f dµω

)k

− ε
)
dw ≥

(∫

Ωl

∫

Xω

f dµω dw
)k

− ε

>
(∫

X

f dµ− ε
)k

− ε >
(∫

X

f dµ
)k

− 2kε.

Continuing to deal with a system of linearly independent polynomials, we now get the
following result:

Theorem 3.2. Let (X,B, µ, T ) be an invertible ergodic probability measure preserving
system and let p1, . . . , pk be linearly independent polynomials Z

d −→ Z with pi(0) = 0,
i = 1, . . . , k. Then for any nonnegative function f ∈ L∞(X) and any ε > 0 the set

Rε(f) =
{
n ∈ Z

d :

∫

X

k∏

i=1

T pi(n)f dµ >
(∫

X

f dµ
)k

− ε
}
.

is AVIP∗
0.

Proof. We may assume that (X,T ) is a nilsystem: X = G/Γ, T ∈ G, and f ∈ C(X).
Let us start with the case of connected X. Since p1, . . . , pk are linearly independent,
we have Y = Xk and thus K = ∆Gk

2 . By [L7], Proposition 0.2, if we put τ(n) =∫
Tp(n)D

F dµTp(n)(D) and τ ′(n) = h(T p(n)w), n ∈ Z
d, then for any ε > 0, d∗

({
n ∈ Z

d :

|τ(n)− τ ′(n)| > ε|
})

= 0. Thus, as explained in the discussion after Theorem 2.1, we only

have to check that h(w) ≥
(∫

X
f dµ)k. But

h(w) =

∫

W

F dµW =

∫

DZ

E(f |Z)⊗k dµDZ
=

∫

Z

E(f |Z)k dµZ ≥
(∫

X

f dµ
)k

,

where DZ is the diagonal of Zk.
Now assume that the nilmanifold X has a components Xo

1 , . . . , X
o
a . Let b ∈ N be such

that T pi(bn)(Xo
j ) = Xo

j for all j = 1, . . . , a, i = 1, . . . , k, n ∈ Z
d. Then for each j = 1, . . . , a

the set

Rj =
{
n ∈ Z

k :

∫

Xo
j

k∏

i=1

T pi(bn)f |Xo
j

d(aµ) >
(∫

Xo
j

f |Xo
j

d(aµ)
)k

− ε
}
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is AVIP∗. Since the function t 7→ tk is convex, and since the intersection of finitely many
AVIP∗

0-sets is AVIP
∗
0, after summing these integrals for j = 1, . . . , a we obtain that the set

R =
{
n ∈ Z

d :

∫

X

k∏

i=1

T pi(bn)f dµ >
(∫

X

f dµ
)k

− ε
}

contains
⋂l

j=1Rj and thus is AVIP∗
0 if all Rj are. Next, it is easy to see that if R ⊆ Z

d is
AVIP∗

0, then the set bR is also AVIP∗
0; since Rε(f) ⊇ bR, we get that Rε(f) is AVIP

∗
0.

Remark. In the proof of Theorem 3.2, we only used the linear independence of the poly-
nomials pi to get H ⊇ Gk

2 . Thus, in the situation where the maximal nilsystem factor
of a measure preserving system is a Kronecker system, in which case G2 is trivial, the
assumption in Theorem 3.2 that the pi are linearly independent can be dropped:

Theorem 3.3. (Cf. [HoKM], Theorem 6.1) Let (X,B, µ, T ) be an invertible ergodic prob-
ability measure preserving system whose maximal nilsystem factor is a Kronecker system
and let p1, . . . , pk be polynomials Z

d −→ Z with pi(0) = 0, i = 1, . . . , k. Then for any
nonnegative function f ∈ L∞(X) and any ε > 0 the set

Rε(f) =
{
n ∈ Z

d :

∫

X

k∏

i=1

T pi(n)f dµ >
(∫

X

f dµ
)k

− ε
}
.

is AVIP∗
0.

The situation becomes more subtle when the pi satisfy some linear relations, that is,
when we deal with polynomials of the form ϕ1(p1, . . . , pk), . . . , ϕr(p1, . . . , pk), where pi are
linearly independent polynomials and ϕj are linear forms; the problem is that polynomial
relations between pi also start playing a role. (For example, the systems {n, 2n, 3n, n2} and
{n, 2n, 3n, n3} produce different orbit closures of the diagonal of the power of nilmanifolds
and so, different Cesàro limits of the corresponding expressions! (See [L6], Example 13.16.))
There is, however, a general principle that sometimes allows one to reduce a polynomial
problem to the linear case. We say that polynomials p1, . . . , pk:Z

d −→ Z are algebraically
independent up to degree c if for any nonzero polynomial P :Zk −→ Z of degree ≤ c the
polynomial P (p1(n), . . . , pk(n)) is not equal to zero. We have the following:

Proposition 3.4. Let ϕ1, . . . , ϕr be distinct linear forms Zk −→ Z, let p1, . . . , pk be poly-
nomials Zd −→ Z with zero constant term and algebraically independent up to degree c, let
X be a nilmanifold of nilpotency class ≤ c let T1, . . . , Tr be nilrotations of X, and let x ∈ X.
Then for any b ∈ N that is divisible by the number of connected component of X, the orbit

closure of x under the polynomial action T
ϕ1(p1(bn),...,pk(bn))
1 · · ·T

ϕr(p1(bn),...,pk(bn))
r , n ∈ Z

d,

coincides with the orbit closure of x under the action T
bϕ1(m1,...,mk)
1 · · ·T

bϕr(m1,...,mk)
r of

Z
k.
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Proof. The orbit closure
{
T

ϕ1(m)
1 · · ·T

ϕr(m)
r x, m ∈ Zk

}
of x is a subnilmanifold Y of X.

After replacing ϕi(m) by bϕi(m), i = 1, . . . , r, and pj(n) by b−1pj(bn), j = 1, . . . , k, we
may assume that Y is connected.

Let Y = H/Λ, where H is a nilpotent Lie group of nilpotency class ≤ c and Λ is a
lattice in H, let Ho be the identity component of H, and let Q be the maximal factor-torus
of Y , Q = [Ho, Ho]\Y = Ho/(Λ[Ho, Ho]), which, under the action of H, has the structure
of a c-step skew-product system: Q is a product of subtori, Q = Q1 ×Q2 × · · · ×Qc, and
every element S of H acts on Q by the formula

S(z1, z2, z3, . . . , zc) =
(
z1 + α1, z2 + ψ2(z1) + α2, z3 + ψ3(z1, z2) + α3, . . . ,

zc + ψc(z1, . . . , zc−1) + αc

)
,

where the ψi are linear forms and αi ∈ Qi, i = 1, . . . , c. (See the discussion at the beginning

of the section.) In these coordinates, the action T
ϕ1(m)
1 · · ·T

ϕr(m)
r on Q takes the form

T
ϕ1(m)
1 · · ·Tϕr(m)

r (z1, . . . , zc) =
(
z1 + q1(m), z2 + q2(m, z1), z3 + p3(m, z1, z2), . . . ,

zc + qc(m, z1, . . . , zc−1)
)
,

where for each i = 1, . . . , c, qi is a polynomial in m of degree ≤ i. Let z = (z1, . . . , zc) be
the projection of x to Q, and let Pi(m) = qi(m, z1, . . . , zi−1), i = 1, . . . , c. Since the orbit

{
T

ϕ1(m)
1 · · ·Tϕr(m)

r (z), m ∈ Z
k
}
=

{
z1 + P1(m), z2 + P2(m), . . . , zc + Pc(m), m ∈ Z

k
}

is dense in Q, the polynomials P1, . . . , Pc are linearly independent. Now, since the polyno-
mials p1, . . . , pk are algebraically independent up to degree c and the polynomials P1, . . . , Pc

have degree ≤ c, the polynomials P1(p1(n), . . . , pk(n)), . . . , Pc(p1(n), . . . , pk(n)) are also
linearly independent. Hence, the orbit

{
T

ϕ1(p1(n),...,pk(n))
1 · · ·Tϕr(p1(n),...,pk(n))

r z, n ∈ Z
d
}
=

{
z1+P1(p1(n), . . . , pk(n)), z2+P2(p1(n), . . . , pk(n)), . . . , zc+Pc(p1(n), . . . , pk(n)), n ∈ Z

d
}

of z is also dense in Q. By [L2], Theorem C, this implies that the orbit
{
T

ϕ1(p1(n),...,pk(n))
1

· · ·T
ϕr(p1(n),...,pk(n))
r x, n ∈ Z

d
}
of x is dense in Y , which is what we needed.

Let now N be a connected subnilmanifold of X. By [L5], Theorem 2.2, N has a dense
subset J such that the orbit closures of the points of J are all congruent (that is, are
nil-translations of each other) and their union is dense in the orbit closure of N . The same
b in Proposition 3.4 works for all points of J , and if N is disconnected there is an integer
b that works for such dense subsets Ji of every component of N . This implies that, under
the assumptions of Proposition 3.4, the following is also true:

Proposition 3.5. For any subnilmanifold N of X there exists b ∈ N such that the orbit

closure of N under the action T
ϕ1(p1(bn),...,pk(bn))
1 · · ·T

ϕr(p1(bn),...,pk(bn))
r , n ∈ Z

d, coincides

with the orbit closure of N under the (linear) action T
bϕ1(m)
1 · · ·T

bϕr(m)
r , m ∈ Z

k.
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Let (X,T ) be an ergodic invertible probability measure preserving system, which we
will (as we may up to an arbitrarily small error) continue to assume to be a nilsystem. Let
f1, . . . , fk ∈ L∞(X); as in the proof of Theorem 2.1, the limit

UC-lim
n∈Zd

∫

X

r∏

i=1

Tϕi(p1(n),...,pk(n))fi dµ

is determined by the orbit closure of the diagonal D of Xr under the polynomial action

T
ϕ1(p1(n),...,pk(n))
1 · · ·T

ϕr(p1(n),...,pk(n))
d , n ∈ Z

d. (See, for example, [L6], Section 0.7.) Ap-
plying Proposition 3.5 to this action, we see that if p1, . . . , pk are algebraically independent
up to degree c+1, then there exists b ∈ N such that the orbit closure of the diagonalDc+1 of
Xr

c+1 under the action
(
Tϕ1(p1(bn),...,pk(bn)), . . . , Tϕr(p1(bn),...,pk(bn))

)
, n ∈ Z

d, coincides with

the orbit closure of Dc+1 under the action
(
T bϕ1(m), . . . , T bϕr(m)

)
, m ∈ Z

k. This means

that the complexity of the system
{
ϕ1(p1(bn), . . . , pk(bn)), . . . , ϕr(p1(bn), . . . , pk(bn))

}
is

≤ c, and that

UC-lim
n∈Zd

∫

X

r∏

i=1

Tϕi(p1(bn),...,pk(bn))fi dµ = UC-lim
m∈Zk

∫

X

r∏

i=1

T bϕi(m)fi dµ.

Using the ergodic decomposition and taking b “divisible enough” so that it works for
most components of this decomposition, we may, as in the proof of Theorem 3.1, get rid
of the assumption of ergodicity of T to obtain the following result:

Proposition 3.6. Let (X,B, µ, T ) be an invertible probability measure preserving system,
let {ϕ1, . . . , ϕr} be a system of linear forms Z

k −→ Z of complexity c, and let p1, . . . , pk
be polynomials Z

d −→ Z with zero constant term that are algebraically independent up to
degree c+ 1. Then for any f1, . . . , fr ∈ L∞(X) and any ε > 0 there exists b ∈ N such that

∣∣∣UC-lim
n∈Zd

∫

X

r∏

i=1

Tϕi(p1(bn),...,pk(bn))fi dµ−UC-lim
m∈Zk

∫

X

r∏

i=1

T bϕi(m)fi dµ
∣∣∣ < ε.

The complexity of the “k-dimensional cubic” system of linear forms is k − 1 (see
[BHoK] or [L6], Example 4 in Section 6.7). Therefore, as a special case of Proposition 3.6
we obtain:

Theorem 3.7. Let (X,B, µ, T ) be an invertible probability measure preserving system and
let polynomials p1, . . . , pk:Z

d −→ Z with zero constant term be algebraically independent
up to degree k. Then for any nonnegative function f ∈ L∞(X) and any ε > 0 there exists
b ∈ N such that

UC-lim
n∈Zd

∫

X

∏

e1,...,ek∈{0,1}

T e1p1(bn)+···+ekpk(bn)f dµ >
(∫

f dµ
)2k

− ε.

As a corollary, we obtain that for any ε > 0, the set

Rε(f ; p1, . . . , pk) =
{
n ∈ Z

d :

∫

X

∏

e1,...,ek∈{0,1}

T e1p1(n)+···+ekpk(n)f dµ >
(∫

f dµ
)2k

− ε
}
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is syndetic in Z
d. If T is ergodic, this set is, actually, an AVIP∗

0-set. Indeed, as in the
proof of Theorem 2.1, whether the set

{
n ∈ Z

d :

∫

X

r∏

i=1

Tϕi(p1(n),...,pk(n))f dµ >
(∫

X

f dµ
)r

− ε
}

is AVIP∗ or not is determined (assuming that (X,T ) is a nilsystem) exclusively by the
closure Y of the orbit

⋃

n∈Zd

(
Tϕ1(p1(n),...,pk(n)), . . . , Tϕd(p1(n),...,pk(n))

)
D

of the diagonal D of Xr. If the complexity of the system {ϕ1, . . . , ϕr} is c, then the
nilpotent class of X may be assumed to be equal to c + 1. Now, if the polynomials
pi are algebraically independent up to degree c + 1, then, as discussed above, for some
b ∈ N, the orbit closure of D under the action

(
Tϕ1(p1(bn),...,pk(bn)), . . . , Tϕr(p1(bn),...,pk(bn))

)

becomes connected and coincides with the orbit closure of D with respect to the action(
T bϕ1(m1,...,mk), . . . , T bϕd(m1,...,mk)

)
. The transformation T b may not be ergodic on X, but

in this case X consists of several ergodic components Xo
1 , . . . , X

o
a , and for each j, if the set

{
m ∈ Z

k :

∫

Xo
j

r∏

i=1

T bϕi(m1,...,mk)f |Xo
j

d(aµ) >
(∫

Xo
j

f |Xo
j

d(aµ)
)r

− ε
}

is AVIP∗, then the set

Rj =
{
n ∈ Z

d :

∫

Xo
j

d∏

i=1

T bϕi(p1(n),...,pk(n))f |Xo
j

d(aµ) >
(∫

Xo
j

f |Xo
j

d(aµ)
)r

− ε
}

is also AVIP∗. Since the function t 7→ tr is convex, and since the intersection of finitely
many AVIP∗

0-sets is AVIP
∗
0, after summing these integrals for j = 1, . . . , a we obtain that

the set

R =
{
n ∈ Z

d :

∫

X

r∏

i=1

Tϕi(p1(bn),...,pk(bn))f dµ >
(∫

X

f dµ
)r

− ε
}

contains
⋂l

j=1Rj and thus is AVIP∗
0 if Rj are. Next, if R ⊆ Z

d is AVIP∗
0, then the set bR

is also AVIP∗
0; it follows that the set

{
n ∈ Z

d :

∫

X

r∏

i=1

Tϕi(p1(n),...,pk(n))f dµ >
(∫

X

f dµ
)r

− ε
}

is AVIP∗
0. Returning to the case of a general system (X,T ), we obtain the following

principle:
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Proposition 3.8. Let {ϕ1, . . . , ϕr} be a system of linear forms Z
k −→ Z of complexity c

such that for any ergodic invertible probability measure preserving system (X,B, µ, T ) the
set {

m ∈ Z
k :

∫

X

r∏

i=1

Tϕi(m)f dµ >
(∫

X

f dµ
)r

− ε
}

is AVIP∗
0. Then for any ergodic invertible probability measure preserving system (X,B, µ, T ),

any polynomials p1, . . . , pk:Z
d −→ Z with zero constant term and algebraically independent

up to degree c+ 1, any nonnegative function f ∈ L∞(X), and any ε > 0 the set

{
n ∈ Z

d :

∫

X

r∏

i=1

Tϕi(p1(n),...,pk(n))f dµ >
(∫

X

f dµ
)r

− ε
}

is AVIP∗
0 as well.

As a special case, we get

Theorem 3.9. Let (X,B, µ, T ) be an invertible ergodic probability measure preserving
system and let polynomials p1, . . . , pk:Z

d −→ Z with zero constant term be algebraically
independent up to degree k. Then for any nonnegative function f ∈ L∞(X) and any ε > 0
the set

Rε(f ; p1, . . . , pk) =
{
n ∈ Z

d :

∫

X

∏

e1,...,ek∈{0,1}

T e1p1(n)+···+ekpk(n)f dµ >
(∫

f dµ
)2k

− ε
}

(3.3)
is AVIP∗

0.

Taking f = 1A in (3.3), where A is a measurable subset of X, and utilizing Fursten-
berg’s correspondence principle (see footnote 2 in the introduction), we obtain Theorem 0.8
and Corollary 0.9.

We conclude this paper with addressing the situation where the polynomials p1, . . . , pk:
Z
d −→ Z are not assumed to have zero constant term but are jointly intersective (see

footnote 4 in the introduction). In this case, for any point x of a nilmanifold X, any
translations T1, . . . , Tk of X and any b ∈ N there exists m ∈ Z

d such that the orbit

closure of x under the action T
p1(bn+m)
1 · · ·T

pk(bn+m)
k , n ∈ Z

d, is the same as for the action

T
p̂1(bn)
1 · · ·T

p̂k(bn)
k , n ∈ Z

d, where p̂i = pi − pi(0), i = 1, . . . , k. (This fact is a corollary
of Proposition 2.4 from [BLLe2].) This allows us to extend Theorem 3.7 in the following
way:

Theorem 3.10. Let (X,B, µ, T ) be an invertible probability measure preserving system and
let polynomials p1, . . . , pk:Z

d −→ Z be jointly intersective and algebraically independent up
to degree k. Then
(i) for any nonnegative function f ∈ L∞(X) and any ε > 0 there exist b ∈ N and m ∈ Z

d

such that

UC-lim
n∈Z

∫

X

∏

e1,...,ek∈{0,1}

T e1p1(bn+m)+···+ekpk(bn+m)f dµ >
(∫

f dµ
)2k

− ε;
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(ii) for any nonnegative function f ∈ L∞(X) and any ε > 0, the set Rε(f ; p1, . . . , pk) is
AVIP∗

0,+.

Specializing to f = 1A, where A is a measurable subset of X, and utilizing Furstenberg’s
correspondence principle, we obtain Theorem 0.11 and Corollary 0.12.

Acknowledgment. We thank Donald Robertson for helpful remarks on the preliminary
draft of this paper.
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