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Abstract. We establish a ‘diagonal’ ergodic theorem involving the additive and
multiplicative groups of a countable field K and, with the help of a new variant of
Furstenberg’s correspondence principle, prove that any ‘large’ set in K contains many
configurations of the form {x + y, xy}. We also show that for any finite coloring of K
there are many x, y ∈ K such that x, x + y and xy have the same color. Finally, by
utilizing a finitistic version of our main ergodic theorem, we obtain combinatorial results
pertaining to finite fields. In particular, we obtain an alternative proof for a result obtained
by Cilleruelo [Combinatorial problems in finite fields and Sidon sets. Combinatorica 32(5)
(2012), 497–511], showing that for any finite field F and any subsets E1, E2 ⊂ F with
|E1| |E2|> 6|F |, there exist u, v ∈ F such that u + v ∈ E1 and uv ∈ E2.

1. Introduction
Schur’s theorem [17] asserts that, given a finite coloring of N= {1, 2, . . .}, there exist
x, y ∈ N such that x , y and x + y all have the same color. A multiplicative version of this
theorem is also true: given a finite coloring of N, we can find x, y ∈ N such that x , y and xy
all have the same color. To see this, consider, for instance, the induced coloring of the set
{2n
; n ∈ N}. However, very little is known regarding partition regularity of configurations

involving both addition and multiplication. For some results in this direction see [2], [7,
§6], [5, 8, 10, 12, 15].

In particular, the following question is still unanswered (cf. [16, Question 3]).

Question 1.1. Given a finite coloring of N, is it true that there exist distinct x, y ∈ N such
that both x + y and xy have the same color?†

† In fact it is believed that one can find a monochromatic configuration of the form {x, y, x + y, xy} for any
finite coloring of N.
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While replacing N by Z does not seem to make the question easier, replacing N by Q
does and this allows for the introduction of useful ergodic techniques. In this paper we
show that any ‘large’† set in Q contains the sought-after configurations, which leads to
a partition result involving three-element sets having the form {x, y + x, yx}. Actually,
the ergodic method that we employ works equally well in the framework of arbitrary
countable‡ fields§.

Here is the formulation of the main partition result obtained in this paper.

THEOREM 1.2. (See Theorem 4.1 for a more precise formulation) Let K be a countable
field. Given a finite coloring K =

⋃
Ci , there exists a color Ci and x, y ∈ K such that

{x, x + y, xy} ⊂ Ci .

We remark that it follows from Theorem 4.1 below that x and y can in fact be
chosen from outside any prescribed finite set. We will derive Theorem 1.2 from a
‘density’ statement which, in turn, follows from an ergodic result dealing with measure
preserving actions of the affine group AK = {ux + v : u, v ∈ K ∗, u 6= 0} of the field K
(cf. Definition 2.2). To formulate these results, we first need to introduce the notion of
double Følner sequences in K .

Definition 1.3. Let K be a countable field. A sequence of non-empty finite sets (FN )⊂ K
is called a double Følner sequence if for each x ∈ K ∗ := K\{0} we have

lim
N→∞

|FN ∩ (FN + x)|
|FN |

= lim
N→∞

|FN ∩ (x FN )|

|FN |
= 1.

See Proposition 2.4 for the proof of the existence of double Følner sequences in any
countable field.

Here is the formulation of the main ergodic result in this paper and its combinatorial
corollary (which is derived via a version of the Furstenberg correspondence principle - see
Theorem 2.8).

THEOREM 1.4. Let K be a countable field and let AK be the group of affine
transformations of K . Let (�, B, µ) be a probability space and let (Tg)g∈AK be a measure
preserving action of AK on �. For each u ∈ K ∗, let Au = Tg where g ∈AK is defined by
g : x 7→ x + u and let Mu = Th where h ∈AK is defined by h : x 7→ ux. Let (FN ) be a
double Følner sequence in K . Then for each B ∈ B we have

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−u B ∩ M1/u B)≥ µ(B)2

and, in particular, the limit exists.

It is not hard to see that the quantity µ(B)2 in the right hand side of the displayed
formula is the largest possible (consider, for example, the case when the action of AK is
strongly mixing).

† Here large means to have positive upper density with respect to some double Følner sequence in Q. This will
be defined in §2.3.
‡ We use the word ‘countable’ to mean infinitely countable.
§ And indeed in the framework of finite fields, this is explored in §5.
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THEOREM 1.5. Let K be a countable field, let (FN ) be a double Følner sequence in K
and let E ⊂ K be such that d̄(FN )(E) := lim supN→∞ |E ∩ FN |/|FN |> 0. Then there are
an infinite number of pairs x, y ∈ K ∗ with x 6= y such that

{x + y, xy} ⊂ E . (1)

A precise formulation of the size of the set of pairs (x, y) that satisfy equation (1) is
given by Theorem 2.5 below.

We also obtain similar results for finite fields. For example, we have the following result
(see also Theorem 5.1 for a dynamical formulation).

THEOREM 1.6. For any finite field F and any subsets E1, E2 ⊂ F with |E1| |E2|> 6|F |,
there exist x, y ∈ F, y 6= 0, such that x + y ∈ E1 and xy ∈ E2.

Theorem 1.6 has also been obtained for fields of prime order by Shkredov [18], for
general finite fields by Cilleruelo [11, Corollary 4.2] and, with some additional quantitative
estimates, by Hanson [14].

The paper is organized as follows. In §2 we introduce some notation, discuss basic
facts about the affine group of a countable field, explore some properties of double Følner
sequences, state our main results more precisely and obtain a general correspondence
principle. In §3 we prove our main ergodic theoretical results. In §4 we deduce the main
partition result for infinite fields, Theorem 1.2. In §5 we adapt our methods to prove an
analogue of Theorems 1.2 and 1.4 for finite fields. Section 6 is devoted to some general
remarks.

2. Preliminaries
2.1. The group AK of affine transformations. We will work with a fixed countable
field K . The set of non-zero elements of K will be denoted by K ∗. It is not hard to see that
for a set E ⊂ K , the statement that E contains a configuration of the form {u + v, uv} is
equivalent to the statement that (E − u) ∩ (E/u) is non-empty for some u ∈ K ∗. To study
this intersection we need to understand how the additive and the multiplicative groups of
K interact. Hence, it is natural to work with the subgroup of all bijections of K generated
by these two groups, which brings us to the group of all affine transformations of K as
defined below.

Definition 2.2. The affine group of K is the set

AK = {g : x 7→ ux + v | u, v ∈ K , u 6= 0}

with the operation of composition of functions. The additive subgroup of AK is the set
SA of affine transformations of the form Au : x 7→ x + u, with u ∈ K . Note that SA is
isomorphic to the additive group (K ,+). The multiplicative subgroup of AK is the set
SM of affine transformations of the form Mu : x 7→ ux , with u ∈ K ∗. Note that SM is
isomorphic to the multiplicative group (K ∗,×).

Note also that the map x 7→ ux + v can be represented as the composition AvMu . We
have the following identity, which will be utilized frequently in this paper, namely

Mu Av = AuvMu . (2)
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Note that equation (2) expresses the fact that SA is a normal subgroup of AK . Since
both SA and SM ∼=AK /SA are abelian groups, we conclude that AK is a solvable group.

We can now represent the intersection (E − u) ∩ (E/u) as A−u E ∩ M1/u E , where
A−u E = {x − u : x ∈ E} and M1/u E = {x/u : x ∈ E}. With this notation, a set E ⊂ K
contains a configuration of the form {u + v, uv} if and only if there is some u ∈ K ∗ such
that A−u E ∩ M1/u E is non-empty. Also, the statement that there exist u, v ∈ K ∗ such that
{v, u + v, uv} ⊂ E is equivalent to the statement that there exists some u ∈ K ∗ such that
E ∩ A−u E ∩ M1/u E 6= ∅.

2.3. Double Følner sequences. The first step in the proof of Theorem 1.2 is to prove
that the intersection A−u E ∩ M1/u E is non-empty (for many choices of u ∈ K ) when E is
a large subset of K in a suitable sense. In this section, we will make this statement more
precise.

As mentioned before, AK is solvable and hence it is a (discrete) countable amenable
group. This suggests the existence of a sequence of finite sets (FN ) in K , asymptotically
invariant under the action of AK . Indeed, we have the following proposition.

PROPOSITION 2.4. Let K be a countable field. There exists a sequence of non-empty finite
sets (FN ) in K which forms a Følner sequence for the actions of both the additive group
(K ,+) and the multiplicative group (K ∗,×). In other words, for each u ∈ K ∗ we have

lim
N→∞

|FN ∩ (FN + u)|
|FN |

= lim
N→∞

|FN ∩ (uFN )|

|FN |
= 1.

We call such a sequence (FN ) a double Følner sequence.

Proof. Let (G N )N∈N be a (left) Følner sequence in AK . This means that G N is a non-
empty finite subset of AK for each N ∈ N, and that for each g ∈AK we have

lim
N→∞

|G N ∩ (gG N )|

|G N |
= 1.

Note that for g1, g2 ∈AK , if g1 6= g2, then there is at most one solution x ∈ K to the
equation g1x = g2x . Thus, for each N ∈ N, we can find a point xN in the (infinite) field
K such that gi xN 6= g j xN for all pairs gi , g j ∈ G N with gi 6= g j . It follows that FN :=

{gxN : g ∈ G N } has |G N | elements.
Since FN ∩ gFN ⊃ {hxN : h ∈ G N ∩ gG N }, we have |FN ∩ gFN | ≥ |{hxN : h ∈ G N ∩

gG N }| = |G N ∩ gG N |. Therefore

1≥ lim sup
N→∞

|FN ∩ gFN |

|FN |
≥ lim inf

N→∞

|FN ∩ gFN |

|FN |
≥ lim

N→∞

|G N ∩ gG N |

|G N |
= 1.

Finally, putting g = Mu and g = Au in the previous equation we get that (FN ) is a
Følner sequence for (K ∗,×) and for (K ,+). �

From now on we fix a double Følner sequence (FN ) in K . For a set E ⊂ K , the lower
density of E with respect to (FN ) is defined by the formula

d(FN )
(E) := lim inf

N→∞

|FN ∩ E |
|FN |

,



{x + y, xy} patterns 677

and the upper density of E with respect to (FN ) is defined by the formula

d̄(FN )(E) := lim sup
N→∞

|FN ∩ E |
|FN |

.

Note that both the upper and lower densities, d(FN )
and d̄(FN ), are invariant under affine

transformations. In particular, for every u ∈ K ∗ we have d(FN )
(E/u)= d(FN )

(E − u)=
d(FN )

(E) and d̄(FN )(E/u)= d̄(FN )(E − u)= d̄(FN )(E).
The following is the first step towards the proof of Theorem 1.2.

THEOREM 2.5. Let E ⊂ K be such that d̄(FN )(E) > 0. Then for each ε > 0 there is a set
D ⊂ K ∗ such that

d(FN )
(D)≥

ε

ε + d̄(FN )(E)− d̄(FN )(E)2

and for all u ∈ D we have

d̄(FN )((E − u) ∩ (E/u)) > d̄(FN )(E)
2
− ε.

This result is of independent interest and does not follow from Theorem 1.2, because
here we just need E to satisfy d̄(FN )(E) > 0, not that it is a cell in a finite coloring.
Theorem 2.5 will be proved in §2.9 as a consequence of Corollary 2.13, which in turn
is proved in §3.

We will need the following lemma, which, roughly speaking, asserts that certain
transformations of Følner sequences are still Følner sequences.

LEMMA 2.6. Let (FN ) be a double Følner sequence in a field K and let b ∈ K ∗. Then the
sequence (bFN ) is also a double Følner sequence. Also, if (FN ) is a Følner sequence for
the multiplicative group (K ∗,×), then the sequence (F−1

N ), where F−1
N = {g

−1
: g ∈ FN },

is still a Følner sequence for that group.

Proof. The sequence (bFN ) is trivially a Følner sequence for the multiplicative group. To
prove that it is also a Følner sequence for the additive group, let x ∈ F . Then we have

lim
N→∞

|bFN ∩ (x + bFN )|

|bFN |
= lim

N→∞

|b(FN ∩ (x/b + FN ))|

|FN |
= 1.

To prove that (F−1
N ) is a Følner sequence for the multiplicative group note that for any

finite sets A, B ⊂ K we have |A−1
| = |A|, (A ∩ B)−1

= A−1
∩ B−1 and, if x ∈ K ∗, then

(x A)−1
= x−1 A−1. Putting this all together we conclude that

lim
N→∞

|F−1
N ∩ (x F−1

N )|

|F−1
N |

= lim
N→∞

|(FN ∩ (x−1 FN ))
−1
|

|FN |

= lim
N→∞

|FN ∩ (x−1 FN )|

|FN |
= 1. �

2.7. A correspondence principle. To prove Theorem 2.5 we need an extension of
Furstenberg’s correspondence principle for an action of a group on a set (the classical
versions deal with the case when the group acts on itself by translations, cf. [13]).
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THEOREM 2.8. Let X be a set, let G be a countable group and let (τg)g∈G be an action
of G on X. Assume that there exists a sequence (G N ) of finite subsets of X such that for
each g ∈ G we have the property

|G N ∩ (τgG N )|

|G N |
→ 1 as N →∞. (3)

Let E ⊂ X and assume that d̄(G N )(E) := lim supN→∞ |G N ∩ E |/|G N |> 0.
Then there exists a compact metric space�, a probability measureµ on the Borel sets of

�, a µ-preserving G-action (Tg)g∈G on�, a Borel set B ⊂� such that µ(B)= d̄(G N )(E),
and for any k ∈ N and g1, . . . , gk ∈ G we have

d̄(G N )(τg1 E ∩ · · · ∩ τgk E)≥ µ(Tg1 B ∩ · · · ∩ Tgk B).

Proof. Define the family of sets

S :=
{ k⋂

j=1

τg j E : k ∈ N, g j ∈ G∀ j = 1, . . . , k
}
∪ {X}.

Note that S is countable, so using a diagonal procedure we can find a subsequence (G̃ N ) of
the sequence (G N ) such that d̄(G N )(E)= limN→∞(|E ∩ G̃ N |/|G̃ N |) and, for each S ∈ S,
the following limit exists

lim
N→∞

|S ∩ G̃ N |

|G̃ N |
.

Note that (3) holds for any subsequence of (G N ), and in particular for (G̃ N ). Let
B(X) be the space of all bounded complex-valued functions on X . The space B(X) is a
Banach space with respect to the norm ‖ f ‖ = supx∈X | f (x)|. Let ρ ∈ `∞(N)∗ be a Banach
limit†.

Define the linear functional λ : B(X)→ C by

λ( f )= ρ
((

1

|G̃ N |

∑
x∈G̃ N

f (x)
)

N∈N

)
.

The functional λ is positive (i.e. if f ≥ 0, then λ( f )≥ 0) and λ(1)= 1. For any f ∈
B(X), g ∈ G and x ∈ X , the equation fg(x)= f (τgx) defines a new function fg ∈ B(X).
By (3), we have that λ( fg)= λ( f ) for all g ∈ G, so λ is an invariant mean for the
action (τg)g∈G . Moreover, d̄(G N )(E)= λ(1E ) and, for any S ∈ S, we have d̄(G N )(S)≥
λ(1S).

Note that the Banach space, B(X), is a commutative C∗-algebra (with the involution
being pointwise conjugation). Now, let Y ⊂ B(X) be the (closed) subalgebra generated
by the indicator functions of sets in S. Then Y is itself a C∗-algebra. It has an identity
(the constant function equal to 1) because X ∈ S. If f ∈ Y , then fg ∈ Y for all g ∈ G.
Moreover, since S is countable, Y is separable. Thus, by the Gelfand representation
theorem (cf. [1, Theorem 1.1.1]), there exists a compact metric space � and a map
8 : Y → C(�) which is simultaneously an algebra isomorphism and a homeomorphism.

† This means that ρ : `∞(N)→ C is a shift invariant positive linear functional such that for any convergent
sequence x= (xn) ∈ `

∞(N) we have ρ(x)= lim xn .
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The linear functional λ induces a positive linear functional L on C(�) by L(8( f ))=
λ( f ). Applying the Riesz Representation theorem we have a measure µ on the Borel sets
of � such that

λ( f )= L(8( f ))=
∫
�

8( f ) dµ for all f ∈ B(X).

The action (τg)g∈G induces an anti-action (or right action) (Ug)g∈G on C(�) by
Ug8( f )=8( fg), where fg(x)= f (τgx) for all g ∈ G, f ∈ Y and x ∈ X . It is not hard
to see that, for each g ∈ G, Ug is a positive invertible isometry of C(�). By the Banach–
Stone theorem [19], for each g ∈ G, there is a homeomorphism Tg :�→� such that
Ugφ = φ ◦ Tg for all φ ∈ C(�). Moreover, for all g, h ∈ G we have φ ◦ Tgh =Ughφ =

UhUgφ =Uh(φ ◦ Tg)= φ ◦ (Tg ◦ Th). This means that (Tg)g∈G is an action of G on �.
For every f ∈ Y , we have λ( fg)= λ( f ) and hence∫

�

8( f ) ◦ Tg dµ=
∫
�

Ug8( f ) dµ=
∫
�

8( fg) dµ

= λ( fg)= λ( f )=
∫
�

8( f ) dµ.

Therefore the action (Tg) preserves measure µ.
Note that the only idempotents of the algebra C(�) are indicator functions of sets.

Therefore, given any set S ∈ S, the Gelfand transform8(1S) of the characteristic function
1S of S is the characteristic function of some Borel subset (which we denote by 8(S))
in �. In other words, 8(S) is such that 8(1S)= 18(S). Let B =8(E). We have

d̄(G N )(E)= λ(1E )=

∫
�

8(1E ) dµ=
∫
�

1B dµ= µ(B).

Since the indicator function of the intersection of two sets is the product of the indicator
functions, we conclude that for any k ∈ N and any g1, . . . , gk ∈ G we have

d̄(G N )

( k⋂
i=1

τgi E
)
≥ λ

( k∏
i=1

1τgi E

)
=

∫
�

8

( k∏
i=1

1τgi E

)
dµ

=

∫
�

k∏
i=1

8(1τgi E ) dµ=
∫
�

k∏
i=1

Ug−1
i
8(1E ) dµ

=

∫
�

k∏
i=1

1B ◦ Tg−1
i

dµ=
∫
�

k∏
i=1

1Tgi B dµ= µ
( k⋂

i=1

Tgi B
)
. �

2.9. Deriving Theorem 2.5 from ergodic results. In this subsection we state the main
ergodic results of the paper and use them to derive Theorem 2.5. The proof of the ergodic
results will be given in §3. We begin by recalling Theorem 1.4 stated in the introduction.

THEOREM 2.10. (Cf. Theorem 1.4 in the Introduction) Let (�, B, µ) be a probability
space and suppose that AK acts on � by measure preserving transformations. Let (FN )
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be a double Følner sequence on K . Then for each B ∈ B we have†

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−u B ∩ M1/u B)≥ µ(B)2

and, in particular, the limit exists.

In the case when the action of AK is ergodic, we can replace one of the sets B with
another set C . This is the content of the next theorem.

THEOREM 2.11. Let (�, B, µ) be a probability space and suppose that AK acts
ergodically on � by measure preserving transformations. Let (FN ) be a double Følner
sequence on K . Then for any B, C ∈ B we have

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−u B ∩ M1/uC)= µ(B)µ(C)

and, in particular, the limit exists.

Remark 2.12. We note that Theorem 2.11 fails without ergodicity. Indeed, take the
normalized disjoint union of two copies of the same measure preserving system. Choosing
B to be one of the copies and C the other we get

A−u B ∩ M1/uC = ∅ for all u ∈ K ∗.

We can extract some quantitative bounds from Theorems 2.10 and 2.11. This is
summarized in the next corollary.

COROLLARY 2.13. Let (�, B, µ) be a probability space and suppose that AK acts on �
by measure preserving transformations. Let (FN ) be a double Følner sequence on K , let
B ∈ B and let ε > 0. Then we have

d(FN )
({u ∈ K ∗ : µ(A−u B ∩ M1/u B) > µ(B)2 − ε})≥

ε

ε + µ(B)− µ(B)2
.

Moreover, if the action of AK is ergodic and B, C ∈ B, the set

Dε := {u ∈ K ∗ : µ(A−u B ∩ M1/uC) > µ(B)µ(C)− ε}

satisfies

d(FN )
(Dε)≥max

(
ε

ε + µ(B)(1− µ(C))
,

ε

ε + µ(C)(1− µ(B))

)
. (4)

Corollary 2.13 will be proved in §3. We will use it now, together with the
correspondence principle, to deduce Theorem 2.5.

Proof of Theorem 2.5. Let X = K , let G =AK and let (G N )= (FN ). Applying the
correspondence principle (Theorem 2.8), we obtain, for each E ⊂ K , a measure preserving
action (Tg)g∈AK of AK on a probability space (�, B, µ), a set B ∈ B such that µ(B)=
d̄(FN )(E), and, for all u ∈ K ∗, we have d̄(FN )(A−u E ∩ M1/u E)≥ µ(TA−u B ∩ TM1/u B).

† By slight abuse of language we use the same symbol to denote the elements (such as M1/u and A−u ) of AK
and the measure preserving transformation they induce on �.
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To simplify notation we will denote the measure preserving transformations TA−u and
TM1/u on� by just A−u and M1/u . Also, recalling that A−u E = E − u and M1/u E = E/u
we can rewrite the previous equation as

d̄(FN )(E − u ∩ E/u)≥ µ(A−u B ∩ M1/u B) for all u ∈ K ∗.

Now assume that d̄(FN )(E) > 0 and let ε > 0. Let

Dε := {u ∈ K ∗ : d̄(FN )((E − u) ∩ (E/u)) > d̄(FN )(E)
2
− ε}.

By Corollary 2.13 we have

d(FN )
(Dε)≥ d(FN )

({u ∈ K ∗ : µ(A−u B ∩ M1/u B) > µ(B)2 − ε})

≥
ε

ε + µ(B)− µ(B)2

=
ε

ε + d̄(FN )(E)− d̄(FN )(E)2
. �

2.14. Some classical results. We will need to use two results that are already in
the literature. The first is a version of the classical van der Corput trick for unitary
representations of countable abelian groups. For a proof see [9, Lemma 2.9].

PROPOSITION 2.15. Let H be an Hilbert space and let (au)u∈K ∗ be a bounded sequence
in H, indexed by K ∗. If, for all b in a co-finite subset of K ∗, we have

lim sup
N→∞

∣∣∣∣ 1
|FN |

∑
u∈FN

〈abu, au〉

∣∣∣∣= 0,

then also

lim
N→∞

1
|FN |

∑
u∈FN

au = 0.

Another result we will need is von Neumann’s mean ergodic theorem. See, for instance
[6, Theorem 5.5] for a proof of this version.

THEOREM 2.16. Let G be a countable abelian group and let (FN ) be a Følner sequence
in G. Let H be a Hilbert space and let (Ug)g∈G be a unitary representation of G on H.
Let P be the orthogonal projection onto the subspace of vectors fixed under G. Then

lim
N→∞

1
|FN |

∑
g∈FN

Ug f = P f for all f ∈ H

in the strong topology of H.

3. Proof of the main theorem
In this section we will prove Theorems 2.10 and 2.11 and Corollary 2.13. Throughout this
section let K be a countable field, let (�, B, µ) be a probability space, let (Tg)g∈AK be a
measure preserving action of AK on � and let (FN ) be a double Følner sequence on K .

Let H = L2(�, µ) and let (Ug)g∈AK be the unitary Koopman representation of AK

(this means that (Ug f )(x)= f (g−1x)). By a slight abuse of notation we will write Au f
instead of UAu f and Mu f instead of UMu f .
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Let PA be the orthogonal projection from H onto the subspace of vectors which are
fixed under the action of the additive subgroup SA and let PM be the orthogonal projection
from H onto the subspace of vectors which are fixed under the action of the multiplicative
subgroup SM .

We will show that the orthogonal projections PA and PM commute, which is surprising
considering that the subgroups SA and SM do not. The reason for this is that, for each
k ∈ K ∗, the map Mk : K → K is an isomorphism of the additive group.

LEMMA 3.1. For any f ∈ H we have

PA PM f = PM PA f.

Proof. First, we prove that, for any k ∈ K ∗, the projection PA commutes with Mk . For
this, we will use Theorem 2.16, Lemma 2.6 and equation (2). We have

Mk PA f = Mk

(
lim

N→∞

1
|FN |

∑
u∈FN

Au f
)
= lim

N→∞

1
|FN |

∑
u∈FN

Mk Au f

= lim
N→∞

1
|FN |

∑
u∈FN

Aku Mk f = lim
N→∞

1
|FN |

∑
u∈k FN

Au Mk f = PA Mk f.

Now we can conclude the result. It follows that

PM PA f = lim
N→∞

1
|FN |

∑
u∈FN

Mu PA f = PA

(
lim

N→∞

1
|FN |

∑
u∈FN

Mu f
)
= PA PM f. �

Lemma 3.1 implies that PM PA f is invariant under both SA and SM . Since those two
subgroups generate AK , this means that PM PA is the orthogonal projection onto the space
of functions invariant under AK .

Let P : H → H be the orthogonal projection onto the space of functions invariant under
the action of the group AK . We have P = PA PM = PM PA.

The bulk of the proofs of Theorems 2.10 and 2.11 comes from the next lemma.

LEMMA 3.2. Let f ∈ H = L2(�, µ). We have

lim
N→∞

1
|FN |

∑
u∈FN

Mu A−u f = P f.

In particular, the limit exists.

Proof. First, we assume that PA f = 0. For u ∈ K ∗, let au = Mu A−u f . Then, for each
b ∈ K ∗ we have

〈aub, au〉 = 〈Mub A−ub f, Mu A−u f 〉

= 〈Mb A−ub f, A−u f 〉

= 〈A−ub f, M1/b A−u f 〉

= 〈A−ub f, A−u/b M1/b f 〉

= 〈A−u(b−1/b) f, M1/b f 〉,
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where we used equation (2) and the fact that the operators are unitary. Now, if b 6= ±1,
then b − 1/b = (b2

− 1)/b 6= 0 and so the sequence of sets (−((b2
− 1)/b)FN )N is again

a double Følner sequence on K , by Lemma 2.6. Thus, applying Theorem 2.16 we get
(keeping b 6= ±1 fixed)

lim
N→∞

1
|FN |

∑
u∈FN

〈aub, au〉 =

〈
lim

N→∞

1
|FN |

∑
u∈FN

A−u(b−1/b) f, M1/b f
〉

=

〈
lim

N→∞

1
|FN |

∑
u∈−((b2−1)/b)FN

Au f, M1/b f
〉

= 〈PA f, M1/b f 〉 = 0.

Thus, it follows from Proposition 2.15 that

lim
N→∞

1
|FN |

∑
u∈FN

Mu A−u f = 0.

Now, for a general f ∈ H , we can write f = f1 + f2, where f1 = PA f and f2 = f −
PA f satisfies PA f2 = 0. Note that f1 is invariant under Au . Therefore

lim
N→∞

1
|FN |

∑
u∈FN

Mu A−u f = lim
N→∞

1
|FN |

∑
u∈FN

Mu A−u f1

= lim
N→∞

1
|FN |

∑
u∈FN

Mu f1

= PM f1 = PM PA f = P f. �

Remark 3.3. Lemma 3.2 can be interpreted as an ergodic theorem along a sparse subset of
AK (namely the subset {Mu A−u : u ∈ K ∗}).

Proof of Theorem 2.10. Let B ∈ B. By Lemma 3.2 applied to the characteristic function
1B of B we get that

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−u B ∩ M1/u B)= lim
N→∞

1
|FN |

∑
u∈FN

∫
�

A−u1B M1/u1B dµ

= lim
N→∞

1
|FN |

∑
u∈FN

∫
�

(Mu A−u1B)1B dµ

=

∫
�

(P1B)1B dµ.

We can use the Cauchy–Schwartz inequality with the functions P1B and the constant
function 1, and the trivial observation that P1= 1, to get∫

�

(P1B)1B dµ= ‖P1B‖
2
≥ 〈P1B, 1〉2 = 〈1B, P1〉2 = 〈1B, 1〉2 = µ(B)2.

Putting everything together we obtain

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−u B ∩ M1/u B)≥ µ(B)2. �
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Proof of Theorem 2.11. Let B, C ∈ B. By Lemma 3.2 applied to the characteristic
function 1B of B we get that

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−u B ∩ M1/uC)= lim
N→∞

1
|FN |

∑
u∈FN

∫
�

A−u1B M1/u1C dµ

= lim
N→∞

1
|FN |

∑
u∈FN

∫
�

(Mu A−u1B)1C dµ

=

∫
�

(P1B)1C dµ.

Since the action of AK is ergodic, P1B = µ(B) and hence

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−u B ∩ M1/uC)= µ(B)
∫
�

1C dµ= µ(B)µ(C). �

Proof of Corollary 2.13. Let B, C ⊂ B. Note that trivially µ(A−u B ∩ M1/u B)≤
µ(M1/u B)= µ(B). For each ε > 0, let Dε be the set Dε := {u ∈ K : µ(A−u B ∩
M1/u B) > µ(B)2 − ε}.

Now let (F̃N )N∈N be a subsequence of (FN )N∈N such that

d(FN )
(Dε)= lim

N→∞

|Dε ∩ F̃N |

|F̃N |
.

Thus, d(FN )
(Dε)= d

(F̃N )
(Dε)= d̄

(F̃N )
(Dε). By Theorem 2.10, we now have

µ(B)2 = lim
N→∞

1
|FN |

∑
u∈FN

µ(A−u B ∩ M1/u B)

= lim
N→∞

1

|F̃N |

∑
u∈F̃N

µ(A−u B ∩ M1/u B)

= lim
N→∞

1

|F̃N |

( ∑
u∈F̃N∩Dε

µ(A−u B ∩ M1/u B)+
∑

u∈F̃N \Dε

µ(A−u B ∩ M1/u B)
)

≤ µ(B)d̄
(F̃N )

(Dε)+ (µ(B)2 − ε)(1− d
(F̃N )

(Dε))

=µ(B)d(FN )
(Dε)+ (µ(B)2 − ε)(1− d(FN )

(Dε)).

From this we conclude that d(FN )
(Dε)≥ ε/(ε + µ(B)(1− µ(B))).

Now assume that the action of AK is ergodic. Note that trivially µ(A−u B ∩ M1/uC)≤
µ(M1/uC)= µ(C). For each ε > 0 let Dε be the set Dε := {u ∈ K : µ(A−u B ∩ M1/uC) >
µ(B)µ(C)− ε}.

Now let (F̃N )N∈N be a subsequence of (FN )N∈N such that

d(FN )
(Dε)= lim

N→∞

|Dε ∩ F̃N |

|F̃N |
.
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Thus, d(FN )
(Dε)= d

(F̃N )
(Dε)= d̄

(F̃N )
(Dε). By Theorem 2.11, we now have

µ(B)µ(C)= lim
N→∞

1
|FN |

∑
u∈FN

µ(A−u B ∩ M1/uC)

= lim
N→∞

1

|F̃N |

∑
u∈F̃N

µ(A−u B ∩ M1/uC)

= lim
N→∞

1

|F̃N |

( ∑
u∈F̃N∩Dε

µ(A−u B ∩ M1/uC)+
∑

u∈F̃N \Dε

µ(A−u B ∩ M1/uC)
)

≤ µ(C)d̄
(F̃N )

(Dε)+ (µ(B)µ(C)− ε)(1− d
(F̃N )

(Dε))

=µ(C)d(FN )
(Dε)+ (µ(B)µ(C)− ε)(1− d(FN )

(Dε)).

From this we conclude that d(FN )
(Dε)≥ ε/(ε + µ(C)(1− µ(B))). Switching the roles of

B and C we obtain equation (4). �

Remark 3.4. Note that the lower bound on d(FN )
(Dε) does not depend on the set B, only

on the measure µ(B). Moreover, it does not depend on the double Følner sequence (FN ).

4. Proof of Theorem 1.2
In this section we give a proof of Theorem 1.2. We start by giving a more precise statement.

THEOREM 4.1. For any finite coloring K =
⋃

Ci there exists a color Ci , a subset D ⊂
K satisfying d̄(FN )(D) > 0 and, for each u ∈ D, there is a set Du ⊂ K also satisfying
d̄(FN )(Du) > 0 such that, for any v ∈ Du , we have {u, u + v, uv} ⊂ Ci .

Definition 4.2. Let G be a group. A set R ⊂ G is a set of recurrence if, for all
probability preserving actions (�, µ, (Tg)g∈G) and every measurable set B ⊂� with
positive measure, there exists some non-identity, g ∈ R, such that µ(B ∩ Tg B) > 0.

The proof of Theorem 4.1 uses the fact that sets of recurrence are partition regular. For
other similar applications of this phenomenon see for instance [3], the discussion before
[4, Question 11] and [10, Theorem 0.4].

The following lemma is well known; we include the proof for the convenience of the
reader.

LEMMA 4.3. Let G be a group and let R ⊂ G be a set of recurrence. Then for every finite
partition R = R1 ∪ · · · ∪ Rr , one of the sets Ri is also a set of recurrence.

Proof. The proof goes by contradiction. Assume that none of the sets R1, . . . , Rr is a
set of recurrence. Then, for each i = 1, . . . , r , there is some probability preserving action
(�i , µi , (Tg)

(i)
g∈G) and a set Bi ⊂�i with µi (Bi ) > 0, such that µi (Bi ∩ T (i)g Bi )= 0 for

all g ∈ Ri .
Let �=�1 × · · · ×�r , let µ= µ1 ⊗ · · · ⊗ µr , let B = B1 × · · · × Br and, for

each g ∈ G, let Tg(ω1, . . . , ωr )= (T
(1)
g ω1, . . . , T (r)g ωr ). Then (Tg)g∈G is a probability

preserving action of G on � and µ(B)= µ1(B1) · · · µr (Br ) > 0.
Since R is a set of recurrence, there exists some g ∈ R such that µ(B ∩ Tg B) > 0.

Since µ(B ∩ Tg B)=
∏r

i=1 µi (Bi ∩ Tg Bi ), we conclude that µi (Bi ∩ Tg Bi ) > 0 for all
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i = 1, . . . , r . But this implies that g /∈ Ri for all i = 1, . . . , r , which contradicts the fact
that g ∈ R = R1 ∪ · · · ∪ Rr . �

Proof of Theorem 4.1. Let K = C1 ∪ C2 ∪ · · · ∪ Cr ′ be a finite partition of K . Assume
without loss of generality that, for some r ≤ r ′, the upper density d̄(FN )(Ci ) is positive for
i = 1, . . . , r and d̄(FN )(Ci )= 0 for i = r + 1, . . . , r ′.

For a set C ⊂ K and each u ∈ C , define the set Du(C)= (C − u) ∩ (C/u). Let
D(C)= {u ∈ C : d̄(FN )(Du(C)) > 0}. We want to show that, for some i = 1, . . . , r , we
have d̄(FN )(D(Ci )) > 0.

If, for some 1≤ i ≤ r , we have d̄(FN )(D(Ci ))= 0 but D(Ci ) 6= ∅, we can consider the
more refined coloring obtained by distinguishing between D(Ci ) and Ci\D(Ci ). Since

D(Ci\D(Ci ))⊂ (Ci\D(Ci )) ∩ D(Ci )

we conclude that D(Ci\D(Ci ))= ∅. Thus, without loss of generality, we can assume
that either D(Ci )= ∅ or d̄(FN )(D(Ci )) > 0. Therefore, it suffices to show that for some
i = 1, . . . , r we have D(Ci ) 6= ∅.

For each i = 1, . . . , r , let Ri = {Mu A−u : u ∈ Ci } ⊂AK and let R = R1 ∪ · · · ∪ Rr .
We claim that R is a set of recurrence. Indeed, given any probability preserving action
(�, µ, (Tg)g∈AK ) of AK and any measurable set B ⊂� with positive measure, by
Theorem 2.10, we find that the set {u ∈ K ∗ : µ(A−u B ∩ M1/u B) > 0} has positive upper
density. In particular, for some u ∈ C1 ∪ · · · ∪ Cr , we have that µ(Mu A−u B ∩ B)=
µ(A−u B ∩ M1/u B) > 0. Since Mu A−u ∈ R, we conclude that R is a set of recurrence.

By Lemma 4.3, we conclude that for some i = 1, . . . , r the set Ri is a set of recurrence.
We claim that D(Ci ) 6= ∅.

To see this, apply the correspondence principle (Theorem 2.8), with X = K , G =AK ,
G N = FN and E = Ci , to find a probability preserving action (Tg)g∈AK of AK on some
probability space (�, µ) and a measurable set B ⊂� satisfying µ(B)= d̄(FN )(Ci ) and

d̄(FN )(A−uCi ∩ M1/uCi )≥ µ(TA−u B ∩ TM1/u B)

for all u ∈ K ∗. Since Ri is a set of recurrence, there is some u ∈ Ci such that

0<µ(TMu A−u B ∩ B)= µ(TA−u B ∩ TM1/u B)

≤ d̄(FN )(A−uCi ∩ M1/uCi )= d̄(FN )(Du(Ci )).

We conclude that u ∈ D(Ci ) and hence d̄(FN )(D
i ) > 0.

Let D = D(Ci )⊂ Ci and for each u ∈ D let Du = Du(Ci ). Now, let v ∈ Du . Then we
have u + v ∈ Ci and uv ∈ Ci . We conclude that {u, u + v, uv} ⊂ Ci as desired. �

5. Finite fields
The main result of this section is an analogue of Theorem 2.10 for finite fields.

For a finite field F , let F∗ = F\{0} be the multiplicative subgroup. The group of affine
transformations, which we denote by AF , is the group of maps of the form x 7→ ux + v,
where u ∈ F∗ and v ∈ F . Again, we will use the notation Au ∈AF to denote the map
x 7→ x + u and Mu ∈AF to denote the map x 7→ ux , and we will use the subgroups SA

and SM as defined in Definition 2.2. The next result is an analogue of Theorem 2.10 for
finite fields.
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THEOREM 5.1. Let F be a finite field and assume that the affine group AF acts by measure
preserving transformations on a probability space (�, B, µ). Then for each B ∈ B such
that µ(B) >

√
6/|F |, there exists u ∈ F∗ such that µ(B ∩ Mu A−u B) > 0.

Moreover, if the action of AF on � is ergodic (this is the case, for instance, when
�= F) and if B, C ∈ B are such that µ(B)µ(C) > 6/|F∗|, then there exists u ∈ F∗ such
that µ(B ∩ Mu A−uC) > 0.

For an estimation of how many u ∈ F∗ satisfy Theorem 5.1, see Corollary 5.2 below.
The proof of Theorem 5.1, is a ‘finitization’ of the proof of Theorem 2.10.

Proof. Let H = L2(�, µ). We consider the Koopman representation (Ug)g∈AF of AF on
H by defining (Ug f )(x)= f (g−1x). By an abuse of notation, we will denote UAu f by
just Au f and UMu f by just Mu f . Let PA be the orthogonal projection onto the space of all
functions invariant under the additive subgroup SA, so that PA f (x)= (1/|F |)

∑
u∈F Au f ,

and let PM be the orthogonal projection onto the space of all functions invariant under
the multiplicative subgroup SM , so that PM f (x)= (1/|F∗|)

∑
u∈F∗ Mu f . We claim that

PM PA f = PA PM f , in analogy with Lemma 3.1. Indeed, by equation (2) we have

PM PA f =
1
|F∗|

∑
u∈F∗

1
|F |

∑
v∈F

Mu Av f =
1

|F | |F∗|

∑
u∈F∗

∑
v∈F

AuvMu f.

Since, for each u ∈ F∗, we have {uv : v ∈ F} = F , we conclude that

PM PA f =
1

|F | |F∗|

∑
u∈F∗

∑
v∈F

AvMu f = PA PM f,

proving the claim. Let B, C ∈ B be such that µ(B)µ(C) > 6/|F∗| and let f = 1C −

PA1C . Note that PA f = 0 and Au PA1C = PA1C . Since we are in a finite setting now, we
will need to bound error terms that are not 0 (but asymptotically go to 0 as |F | increases
to∞). For that, we will need an estimation on the norm of f .

We have, for every u ∈ F∗, that |Au1C − 1C | is the indicator function of a set with
measure no larger than 2µ(C). Hence, ‖1C − Au1C‖ ≤

√
2µ(C). Therefore

‖ f ‖ =
∥∥∥∥ 1
|F |

∑
u∈F

1C − Au1C

∥∥∥∥≤ 1
|F |

∑
u∈F

‖1C − Au1C‖ ≤
√

2µ(C).

We need to estimate the sum of the measures of the intersections B ∩ Mu A−uC with u
running over all possible values in F∗. We have that∑

u∈F∗
µ(B ∩ Mu A−uC)=

∑
u∈F∗
〈1B, Mu A−u PA1C 〉 +

∑
u∈F∗
〈1B, Mu A−u f 〉. (5)

Also, by the Cauchy–Schwartz inequality we have that∣∣∣∣∑
u∈F∗
〈1B, Mu A−u f 〉

∣∣∣∣= ∣∣∣∣〈1B,
∑

u∈F∗
Mu A−u f

〉∣∣∣∣≤√µ(B)∥∥∥∥∑
u∈F∗

Mu A−u f
∥∥∥∥. (6)

Using linearity of the inner product, the fact that the operators Au and Mu are unitary,
equation (2) and the fact that F∗ is a multiplicative group (so that we can change the
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variables in the sums while still adding over the whole group) we get∥∥∥∥∑
u∈F∗

Mu A−u f
∥∥∥∥2

=

∑
u,d∈F∗

〈Mu A−u f, Md A−d f 〉

=

∑
u,d∈F∗

〈Ad2/u−u f, Md/u f 〉

=

∑
u,d∈F∗

〈Au(d2−1) f, Md f 〉.

Now we separate the sum when d =±1 and note that when d 6= ±1 we have∑
u∈F∗
〈Au(d2−1) f, Md f 〉 = 〈|F |PA f − f, Md f 〉 = −〈 f, Md f 〉.

So putting this together we obtain∥∥∥∥∑
u∈F∗

Mu A−u f
∥∥∥∥2

= |F∗|(〈 f, M1 f + M−1 f 〉)−
∑

d 6=±1

〈 f, Md f 〉.

Applying the Cauchy–Schwartz inequality again and using the bound ‖ f ‖ ≤
√

2µ(C), we
get the estimate ∥∥∥∥∑

u∈F∗
Mu A−u f

∥∥∥∥2

≤ 3|F∗|‖ f ‖2 ≤ 6|F∗|µ(C). (7)

Combining this with (5) and (6) we have∑
u∈F∗

µ(B ∩ Mu A−uC)≥
∑

u∈F∗
〈1B, Mu PA1C 〉 −

√
6|F∗|µ(B)µ(C).

Normalizing we conclude that

1
|F∗|

∑
u∈F∗

µ(B ∩ Mu A−uC)≥ 〈1B, PM PA1C 〉 −

√
6µ(B)µ(C)
|F∗|

. (8)

Note that PM PA1C = PA PM 1C is a function invariant under AF . Thus, if the action of AF

is ergodic then PM PA1C = µ(C) . Therefore, the right hand side of the previous inequality
isµ(B)µ(C)−

√
6µ(B)µ(C)/|F∗|, so whenµ(B)µ(C) > 6/|F∗| it is positive and hence

for some n ∈ F∗ we have µ(B ∩ Mu A−uC) > 0.
When C = B, and without assuming ergodicity, we have that PM PA1B = PA PM 1B

is the projection of 1B onto the subspace of invariant functions under the action of AF .
Therefore

〈1B, PM PA1B〉 = ‖PM PA1B‖
2
≥ 〈PM PA1B, 1〉2 = 〈1B, 1〉2 = µ(B)2. (9)

So, if µ(B) >
√

6/|F∗|, the average above is positive and hence µ(B ∩ Mu A−u B) > 0 for
some u ∈ F∗. �

As a Corollary of the proof we get the following estimates.
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COROLLARY 5.2. Let F be a finite field and assume that the affine group AF acts by
measure preserving transformations on a probability space (�, B, µ). Then for each
B ∈ B and for each δ < µ(B), the set D := {u ∈ F∗ : µ(B ∩ Mu A−u B) > δ} satisfies

|D|
|F∗|
≥
µ(B)2 − µ(B)

√
6/|F∗| − δ

µ(B)− δ
.

Moreover, if the action of AF on � is ergodic, then for all B, C ∈ B and for each δ <
min{µ(B), µ(C)}, the set D := {u ∈ F∗ : µ(B ∩ Mu A−uC) > δ} satisfies

|D|
|F∗|
≥
µ(B)µ(C)−

√
6µ(B)µ(C)/|F∗| − δ

min(µ(B), µ(C))− δ
.

Proof. Let B ∈ B and let δ < µ(B). Let D := {u ∈ F∗ : µ(B ∩ Mu A−u B) > δ}. From
equations (8) and (9) we have

1
|F∗|

∑
u∈F∗

µ(B ∩ Mu A−u B)≥ µ(B)2 − µ(B)

√
6
|F∗|

.

On the other hand, since µ(B ∩ Mu A−u B)≤ µ(B) we have

1
|F∗|

∑
u∈F∗

µ(B ∩ Mu A−u B)≤
|D|
|F∗|

µ(B)+
(

1−
|D|
|F∗|

)
δ = δ +

|D|
|F∗|

(µ(B)− δ).

Putting both together, we obtain the conclusion of Corollary 5.2. The case when the action
is ergodic follows similarly, using equation (8) and the fact that P1C = µ(C) is a constant
function. �

An application of Theorem 5.1 is the following finitistic analogue of Theorem 2.5.

THEOREM 5.3. For any finite field F and any subsets E1, E2 ⊂ F with |E1| |E2|> 6|F |,
there exist u, v ∈ F, v 6= 0, such that u + v ∈ E1 and uv ∈ E2.

More precisely, for each s <min(|E1|, |E2|) there is a set D ⊂ F∗ with cardinality

|D| ≥
|E1| |E2| |F∗|/|F | −

√
6|E1| |E2| |F∗| − s|F∗|

min(|E1|, |E2|)− s

such that for each u ∈ D there are s choices of v ∈ F such that u + v ∈ E1 and uv ∈ E2.

Since the action of AF on F is always ergodic, we get a slightly stronger result than
Theorem 2.5, in that we have two sets E1 and E2. Unfortunately, we were unable to apply
the methods of §4 used to derive Theorem 1.2 from Theorem 2.10 in the finitistic situation.

Proof of Theorem 5.3. Let�= F , let µ be the normalized counting measure on F and let
AF act on F by affine transformations. Note that this action is ergodic. Let δ = s/|F | and
let D = {u ∈ F∗ : µ(E2 ∩ Mu A−u E1) > δ}. By Corollary 5.2 we have that

|D|
|F∗|
≥
µ(E1)µ(E2)−

√
6µ(E1)µ(E2)/|F∗| − δ

min(µ(E1), µ(E2))− δ

=
|E1| |E2|/|F | −

√
6|E1| |E2|/|F∗| − s

min(|E1|, |E2|)− s
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and hence

|D| ≥
|E1| |E2| |F∗|/|F | −

√
6|E1| |E2| |F∗| − s|F∗|

min(|E1|, |E2|)− s
.

For each u ∈ D we have
s
|F |
= δ ≤ µ(E2 ∩ Mu A−u E1)= µ(M1/u E2 ∩ A−u E1)=

|M1/u E2 ∩ A−u E1|

|F |
.

Thus, we have s choices for v inside M1/u E2 ∩ A−u E1 and, for each such v, we have both
uv ∈ E2 and u + v ∈ E1. �

Theorem 5.1 implies also the following combinatorial result in finite dimensional vector
spaces over finite fields.

COROLLARY 5.4. Let d ∈ N and let F be a finite field. Then for each set B ⊂ Fd with
|B|>

√
6|F |d−1/2 and any α = (α1, . . . , αd) ∈ (F∗)d there exists v = (v1, . . . , vd) ∈

Fd and u ∈ F∗ such that both v + uα := (v1 + uα1, . . . , vd + uαd) and vu :=
(v1u, . . . , vdu) are in B.

Proof. Let�= Fd and let µ be the normalized counting measure on�. Note that µ(B) >
√

6/|F |. Consider the action of the affine group AF on � defined coordinate-wise.
By Theorem 5.1, we obtain u ∈ F∗ such that µ(B ∩ Mu A−u B)= µ(M1/u B ∩

A−u B) > 0. Let v ∈ M1/u B ∩ A−u B. We conclude that both uv ∈ B and u + vα ∈ B. �

Theorem 5.3 was obtained by different methods by Cilleruelo [11] and by Hanson [14].
It should also be mentioned that, for fields of prime order, Shkredov obtained a stronger
result, as stated in the following theorem.

THEOREM 5.5. [18] Let F be a finite field of prime order and let A, B, C ⊂ F be such that
|A| |B| |C |> 40|F |5/2. Then there are x, y ∈ F such that x + y ∈ A, xy ∈ B and x ∈ C.

6. Some concluding remarks
6.1. Iterating Theorem 2.5 one can obtain more complex configurations. For instance, if
E ⊂ K ∗ is such that d̄(FN )(E) > 0, then there exist x, y ∈ K ∗ such that

d̄(FN )((((E − x) ∩ (E/x))− y) ∩ (((E − x) ∩ (E/x))/y))

= d̄(FN )((E − x − y) ∩ (E/x − y) ∩ ((E − x)/y) ∩ (E/(xy))) > 0.

In particular there exist x, y, z ∈ K ∗ such that {z + y + x, (z + y)x, zy + x, zyx} ⊂ E .
Iterating once more we get x, y, z, t ∈ K ∗ such that{

((t + z)+ y)+ x ((t + z)+ y)× x ((t + z)× y)+ x ((t + z)× y)× x
((t × z)+ y)+ x ((t × z)+ y)× x ((t × z)× y)+ x ((t × z)× y)× x

}
⊂ E .

More generally, for each k ∈ N, applying Theorem 2.5 k times we find, for a given set
E ⊂ K ∗ with d̄(FN )(E) > 0, a finite sequence x0, x2, . . . , xk such that

(. . . (((x0 ◦1 x1) ◦2 x2) ◦3 x3) . . . ) ◦k xk ∈ E

for each of the 2k possible choices of operations ◦i ∈ {+,×}. Note that the sequence
x0, . . . , xk depends on k, so we do not necessarily have an infinite sequence x0, x1, . . .
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that works for every k (in the same way that we have arbitrarily long arithmetic
progressions on a set of positive density but not an infinite arithmetic progression).

6.2. While the main motivation for this paper was Question 1.1, our methods do not work
in N, at least without some new ideas. The crucial difference between the field set-up and
that of N (or Z) is that the affine group AK of a field K is amenable, whereas the semigroup
{ax + b : a, b ∈ Z, a 6= 0} is not. In particular, it is not difficult to see that no double Følner
sequence can exist for N (or Z). Indeed, the set 2N of even numbers must have density 1
with respect to any multiplicative Følner sequence because it is a (multiplicative) shift
of N. On the other hand, 2N must have density 1/2 with respect to any additive Følner
sequence, because N is the disjoint union of two (additive) shifts of 2N.

Even if, for a ring R, there exists a double Følner sequence, we are not guaranteed
to have Lemma 2.6, which is used to prove Lemma 3.1. Another interesting question
is whether Lemma 3.1 holds for measure preserving actions of the semigroup of affine
transformations of N.

6.3. Note that the stipulation about arbitrarily ‘large’ in Theorem 1.2 is essential since we
want to avoid the case when the configuration {x + y, xy} degenerates to a singleton. To
better explain this point, let x ∈ K , x 6= 1 and let y = x/(x − 1). Then xy = x + y and
hence the configuration {x + y, xy} is rather trivial. We just showed that for any finite
coloring of K there are an infinite number of (trivial) monochromatic configurations of
the form {x + y, xy}. Note that our Theorem 4.1 is much stronger than this statement, not
only because we have configurations with 3 terms {x, x + y, xy}, but also because, for
each of ‘many’ x (indeed a set of positive lower density with respect to any double Følner
sequence), there is not only one but ‘many’ y (indeed a set of positive upper density with
respect to any double Følner sequence) such that {x, x + y, xy} is monochromatic.

6.4. Our main ergodic result (Theorem 2.10) raises the question of whether, under the
same assumptions, one has a triple intersection of positive measure µ(B ∩ A−u B ∩
M1/u B) > 0 for some u ∈ K ∗. This would imply that, given any set E ⊂ K with
d̄(FN )(E) > 0, one can find u, y ∈ K ∗ such that {y, y + u, yu} ⊂ E . Using the methods
of §4, one could then show that for every finite coloring of K , one color contains a
configuration of the form {u, y, y + u, yu}.

On the other hand, not every set E ⊂ K with d̄(FN )(E) > 0 contains a configuration
{u, y, y + u, yu}. In fact, in every abelian group there exists a syndetic set (hence of
positive density for any Følner sequence) not containing a configuration of the form
{u, y, y + u}. Indeed, let G be an abelian group and let χ : G→ R/Z be a non-principal
character (a non-zero homomorphism; it exists by Pontryagin duality). Then the set
E := {g ∈ G : χ(g) ∈ [1/3, 2/3)} has no triple {u, y, y + u}. However, it is syndetic
because the intersection [1/3, 2/3) ∩ χ(G) is syndetic in the group χ(G). (This is true
and easy to check with χ(G) replaced by any subgroup of R/Z.)
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