
Available online at www.sciencedirect.com

ScienceDirect

Indagationes Mathematicae 27 (2016) 437–479
www.elsevier.com/locate/indag

Van der Corput’s difference theorem: some modern
developments

Vitaly Bergelson, Joel Moreira∗

Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

Abstract

We discuss various forms of the classical van der Corput’s difference theorem and explore applications
to and connections with the theory of uniform distribution, ergodic theory, topological dynamics and
combinatorics.
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1. Introduction

Van der Corput’s classical Difference Theorem [33] is traditionally stated as follows:

DT: Let (xn)∞n=1 be a sequence of real numbers. If for any h ∈ N = {1, 2, . . .}, the sequence
(xn+h −xn)∞n=1 is uniformly distributed mod 1, then (xn)∞n=1 is uniformly distributed mod 1.

Let f (x) ∈ R[x] and let xn = f (n), n ∈ N. Then for any h ∈ N, the degree of the polynomial
f (n +h)− f (n) = xn+h − xn equals deg f −1. This rather trivial observation, together with DT,
allows one to obtain a streamlined inductive proof of Weyl’s celebrated theorem, [63], which
states that for any polynomial f ∈ R[x] which has at least one coefficient, other than the
constant term, irrational, the sequence xn = f (n), n ∈ N, is uniformly distributed mod 1.
While the proof of DT can be condensed to just a few lines (see the proof of Theorem 2.3 in
the next section), van der Corput’s Difference Theorem contains in embryonic form a powerful
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idea of Complexity Reduction. In the subsequent sections we will provide numerous examples of
applications of various generalizations of DT. These applications include results in the theory of
uniform distribution, as well as some new multiple recurrence theorems in Ergodic Theory and
Topological Dynamics.

The structure of the paper is as follows. In Section 2 we provide a short proof of DT and
also formulate and prove a general form of DT that will be utilized in later sections. Section 3 is
devoted to various aspects of the phenomenon of well distribution. Section 4 deals with uniform
distribution along Besicovitch almost periodic sequences. Among other things, we establish new
uniform distribution results involving the sequence of squarefree numbers. In Section 5 we pro-
vide some additional applications of the (generalized) DT. In particular, we establish a version
of Weyl’s equidistribution theorem in the group A/Q (where A is the additive group of adeles).
We also prove a novel kind of ergodic theorem involving measure preserving actions of the addi-
tive and multiplicative groups of a countable field. Finally, in sub-Section 5.3 we prove a rather
general ‘non-linear’ mean ergodic theorem involving a family of commuting measure preserving
R-actions. In the relatively short Section 6 we formulate a theorem due to Kátai which may be
interpreted as a multiplicative version of DT and demonstrate its power by providing an applica-
tion involving the classical Möbius function. In Section 7 we consider limits along idempotent
ultrafilters and prove, with the help of an ultrafilter variant of DT, a polynomial ergodic theorem
for mildly mixing transformations. Finally, in Section 8 we show that the idea of Complexity
Reduction can be applied to multiple recurrence in topological dynamics, with new applications
to combinatorics.

Regrettably, due to various constraints, numerous additional applications of, and connections
with, DT were not included in this paper. See, for example, [11,19,20,22,30,37,40,45,48,50,56,
61].

2. Some variants of van der Corput’s difference theorem

We start with the classical definition of uniform distribution, which goes back to the ground-
breaking paper of Weyl [63].

Definition 2.1. A sequence (xn)n∈N taking values in the unit interval [0, 1) is uniformly
distributed if for any subinterval [a, b) ⊂ [0, 1) the proportion of those n ∈ N for which
xn ∈ [a, b) is b − a. More precisely, if

lim
N→∞

n ∈ {1, . . . , N } : xn ∈ [a, b)


N
= b − a (2.1)

for all 0 ≤ a < b ≤ 1.

One can informally say that a sequence is uniformly distributed if each interval gets its fair
share of points. Since there are uncountably many subintervals [a, b) ⊂ [0, 1), it is a priori
not clear from the definition that such sequences exist (although one should certainly believe
that a sequence of i.i.d. random variables taking values in [0, 1) and having probability density
function 1 will have this property almost surely).

The following classical theorem, providing useful characterizations of uniform distribution,
is originally due to Weyl [63]. For a proof see, for instance, [51, Theorems 1.1.1 and 1.2.1].
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Theorem 2.2. Let (xn)n∈N be a sequence taking values in [0, 1). The following are equivalent:

(1) (xn)n∈N is uniformly distributed.
(2)

lim
N→∞

1
N

N
n=1

f (xn) =

 1

0
f (x) dx ∀ f ∈ C[0, 1]

(3)

lim
N→∞

1
N

N
n=1

e2π ihxn = 0 ∀h ∈ N.

Condition (3) of Theorem 2.2 is known as the Weyl criterion for uniform distribution. Using it,
one can easily show, for instance, that for any irrational α ∈ R, the sequence xn = nα mod 11 is
uniformly distributed.

In this paper, as is customary in the theory of uniform distribution, we identify [0, 1) with the
torus T := R/Z. The van der Corput difference theorem, DT, gives a sufficient condition for a
sequence (xn)n∈N taking values in T to be uniformly distributed:

Theorem 2.3 (Van der Corput’s Difference Theorem, [33]). Let (xn)n∈N be a sequence taking
values in the torus T. Assume that for every d ∈ N, the sequence n → xn+d − xn is uniformly
distributed. Then (xn)n∈N is uniformly distributed.

In view of Weyl’s criterion, the assumption of Theorem 2.3 is that, for any d, h ∈ N,

lim
N→∞

1
N

N
n=1

e2π ih(xn+d−xn)
= 0

and to prove Theorem 2.3 we have to show that

lim
N→∞

1
N

N
n=1

e2π ihxn = 0

for any h ∈ N. Therefore, Theorem 2.3 is a corollary of the following version of DT.

Theorem 2.4. Let (un)n∈N be a bounded sequence in C. Assume that for every d ∈ N we have

lim
N→∞

1
N

N
n=1

un+dun = 0. (2.2)

Then

lim
N→∞

1
N

N
n=1

un = 0.

1 For a real number x , we denote by ⌊x⌋ the largest integer not exceeding x , and denote by x mod 1 the number
x − ⌊x⌋ ∈ [0, 1).
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Proof. Our goal will be achieved if we show that for any ϵ > 0

lim sup
N→∞

 1
N

N
n=1

un

 < ϵ.

Notice now that for any ϵ > 0 and any D ∈ N, if N ∈ N is large enough we have 1
N

N
n=1

un −
1
N

1
D

N
n=1

D
d=1

un+d

 <
ϵ

2
.

Hence it suffices to show that, if D is large enough,

lim sup
N→∞

 1
N

1
D

N
n=1

D
d=1

un+d

 <
ϵ

2
.

Using the Cauchy–Schwarz inequality in RN we have

lim sup
N→∞

 1
N

1
D

N
n=1

D
d=1

un+d


2

≤ lim sup
N→∞

1
N

N
n=1

 1
D

D
d=1

un+d


2

= lim sup
N→∞

1
N

N
n=1

1

D2

D
d1,d2=1

un+d1un+d2

≤
1

D2

D
d1,d2=1

lim sup
N→∞

1
N

N
n=1

un+d1un+d2 . (2.3)

Note that, for d1 ≠ d2, it follows from (2.2) that 1
N

N
n=1 un+d1un+d2 → 0 as N → ∞. We

conclude that the quantity in (2.3) is bounded by D
D2 =

1
D which is arbitrarily small for large

enough D. �

As was alluded to in the introduction, DT allows one to easily show that for any polynomial
f ∈ R[x] which has an irrational coefficient, other than the constant term, the sequence
f (n) mod 1


n∈N is uniformly distributed. We will describe now another immediate application

of DT.
A classical result in the theory of uniform distribution is Fejér’s theorem, which we will

presently formulate. Given a sequence n → f (n) of real numbers, we define its discrete
derivative 1 f : N → R by the formula 1 f (n) = f (n + 1) − f (n). We also denote by ∆s f the
iterated discrete derivative, i.e. ∆s f = ∆(∆s−1 f ).

Theorem 2.5 (Fejér; See, for Example, [51, Theorem 1.2.5]). Let


f (n)


n∈N be sequence in R.
Assume that 1 f (n) is eventually decreasing and satisfies

lim
n→∞

1 f (n) = 0 and lim
n→∞

n1 f (n) = ∞.

Then the sequence


f (n) mod 1


n∈N is uniformly distributed.

Definition 2.6. A function f : R → R is called tempered if for some ℓ ∈ {0, 1, 2, . . .} the first
ℓ + 1 derivatives of f exist, are continuous on some interval (a, ∞) and satisfy the following
conditions:
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(1) f (ℓ+1)(s) (eventually) decreases to 0.
(2) lims→∞ f (ℓ)(s) = lims→∞ s f (ℓ+1)(s) = ∞.

The sequence


f (n)


n∈N is called a tempered sequence and ℓ is called the degree of f .

Here are some examples of tempered sequences.

• xn =
k

i=1 ci nαi , where ci , αi ∈ R, ck, αk > 0 and α1 < · · · < αk .
• xn = cnα


cos(logβ n) + d


, where α, β, c, d ∈ R satisfy α, c > 0, β < 1, and d > 1.

Fejér’s theorem together with van der Corput’s DT readily implies:

Corollary 2.7. Let f : R → R be a tempered function. Then the sequence


f (n) mod 1


n∈N is
uniformly distributed.

The notion of uniform distribution in the torus T can naturally be extended to a much more
general setup. For instance, one can consider sequences (functions) defined on more general
domains and taking values in various metric spaces. In order to make a generalization of
Definition 2.1, one needs an appropriate replacement for the discrete interval {1, . . . , N } in (2.1).
Such replacement is provided by the notion of Følner sequence.

Definition 2.8. Let G be a locally compact Hausdorff group. A (left) Følner sequence is a
sequence (FN )N∈N of compact positive measure subsets of G asymptotically invariant under
left translations. More precisely:

lim
N→∞

λ

gFN ∩ FN


λ(FN )

= 1 ∀g ∈ G (2.4)

where gFN := {gx : x ∈ FN } and λ is the (left) Haar measure on G.

Not every locally compact group has a Følner sequence. Groups admitting Følner sequences
are called amenable. It is well known that any abelian group G is amenable. We can now define
uniform distribution of a function u : G → K from an amenable group G to a compact group K .

Definition 2.9. Let G be a σ -compact locally compact amenable group with Haar measure λ, let
(FN )N∈N be a Følner sequence in G, let K be a compact group with normalized Haar measure µ

and let u : G → K be a continuous function. We say that u is uniformly distributed (with respect
to (FN )) if, for every open set U ⊂ K with boundary of measure 0,

lim
N→∞

λ

{t ∈ FN : u(t) ∈ U }


λ(FN )

= µ(U ). (2.5)

In later chapters we will use the following general form of Theorem 2.2.

Theorem 2.10. Let G be a σ -compact locally compact amenable group with Haar measure λ,
let (FN )N∈N be a Følner sequence in G, let K be a compact abelian group with Haar measure
µ and let u : G → K be a measurable function. The following are equivalent:

(1) u is uniformly distributed with respect to (FN ).
(2)

lim
N→∞

1
λ(FN )


FN

f

u(t)


dλ(t) =


K

f (x) dµ(x) ∀ f ∈ C(K )
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(3)

lim
N→∞

1
λ(FN )


FN

χ

u(t)


dλ(t) = 0 ∀χ ∈ K̂ \ {0K̂ }

where K̂ is the Pontryagin dual of K .

Sketch of the proof (cf. [60, Exercise 1.1.1]). The implication (2) ⇒ (3) is trivial and the
implication (3) ⇒ (2) follows directly from the Stone–Weierstrass theorem (and the fact that
characters separate points). To prove the implication (1) ⇒ (2), let us assume that u is uniformly
distributed. Condition (2.5) states that

lim
N→∞

1
λ(FN )


FN

f

u(t)


dλ(t) =


K

f (x) dµ(x) (2.6)

whenever f is the indicator function of an open set U with boundary of 0 measure. Since (2.6)
is linear in f , it follows that (2.6) holds whenever f is a finite linear combination of indicator
functions of open sets with boundary of 0 measure. Now let f ∈ C(K ). For any ϵ > 0, one can
find f1, f2 : K → R which are finite linear combinations of indicator functions of open sets
with boundary of 0 measure and satisfy f1 ≤ f ≤ f2 and


K f2 − f1 dµ < ϵ. It follows that

(2.6) holds for continuous functions.
To prove the converse implication (2) ⇒ (1), one can approximate the indicator function of

any open set with boundary of 0 measure from above and from below by continuous functions,
using Urysohn’s lemma. One can then proceed as in the proof of (1) ⇒ (2) above. �

Van der Corput’s difference theorem can also be adapted to the following generality:

Theorem 2.11 (General Form of DT). Let G be a σ -compact locally compact amenable group
with Haar measure λ, let (FN )N∈N be a Følner sequence in G, let K be a compact abelian group
with Haar measure µ and let u : G → K be a measurable function. Assume that for every
d ∈ G \ {1G}, the function t → u(td) − u(t) is uniformly distributed in K . Then u is uniformly
distributed.

We will derive Theorem 2.11 from the following result involving functions taking values in a
Hilbert space which can be interpreted as yet another form of DT (cf. the remark after Theorem
2.2 in [7]).

Theorem 2.12 (DT for Hilbert Spaces). Let G be a σ -compact locally compact amenable group
with Haar measure λ and let u : G → H be a continuous bounded map into a Hilbert space H.
Let (FN )N∈N be a Følner sequence in G. Assume that

lim
D→∞

1
λ(FD)


FD

lim sup
N→∞

 1
λ(FN )


FN


u(sh), u(s)


dλ(s)

 dλ(h) = 0.

Then we have

lim
N→∞

 1
λ(FN )


FN

u(s) dλ(s)

 = 0.

While it is possible to adapt the proof of Theorem 2.3 to this general setting we instead choose
to employ ideas, going back to Bass [2] that involve properties of positive definite functions.
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Proof. Define a sequence (aN )N∈N in H via the Bochner integral

aN :=
1

λ(FN )


FN

u(s) dλ(s).

Assume for the sake of a contradiction that the theorem is false. After passing, if needed, to a
subsequence, we can assume that a := limN→∞ ∥aN ∥ exists and is not 0. Define, for each h ∈ G

γ (h) := lim
N→∞

1
λ(FN )


FN


u(sh) − aN , u(s) − aN


dλ(s). (2.7)

Passing to a further subsequence we can assume that the limit in (2.7) exists for a countable dense
subset of h. Since γ is continuous, it follows that γ can be defined for every h ∈ G. Using the
Følner property (2.4) we can rewrite γ (h) as

γ (h) = −a + lim
N→∞

1
λ(FN )


FN


u(sh), u(s)


dλ(s). (2.8)

Therefore

lim
D→∞

1
λ(FD)


h∈FD

γ (h) dλ(h) = −a. (2.9)

On the other hand, it follows directly from (2.7) that γ is a positive definite function. Indeed, let
f : G → C be a function with finite support. Then

g,h∈G

f (g) f (h)γ (h−1g)

=


g,h∈G

f (g) f (h) lim
N→∞

1
λ(FN )


FN


u(nh−1g) − aN , u(n) − aN


dλ(n)

=


g,h∈G

f (g) f (h) lim
N→∞

1
λ(FN )


FN


u(mg) − aN , u(mh) − aN


dλ(m)

= lim
N→∞

1
λ(FN )


FN


g∈G

f (g)

u(mg) − aN


2

dµ(m)

≥ 0.

By the Naimark dilation theorem (see, for example, [54, Theorem 4.8]), there exists a unitary
representation (Ug)g∈G of G in some Hilbert space V and some vector v ∈ V such that
γ (h) = ⟨Uhv, v⟩. Invoking the mean ergodic theorem (see, for instance, [44, Theorem 3.3])
we conclude that

−a = lim
D→∞

1
λ(FD)


h∈FD

γ (h) dλ(h)

= lim
D→∞

1
λ(FD)


h∈FD

⟨Uhv, v⟩ dλ(h) = ⟨Pv, v⟩ = ∥Pv∥
2

where P : V → V is the orthogonal projection onto the subspace of invariant functions. The last
equation contradicts the hypothesis that a > 0. �

We can now derive Theorem 2.11 from Theorem 2.12:
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Proof of Theorem 2.11. We will use the Weyl criterion, statement (3) in Theorem 2.10. Let
χ ∈ K̂ be nontrivial. Let v(s) = χ


u(s)


∈ C. Viewing C as a one dimensional Hilbert space

we have, for every s, h ∈ G, h ≠ 1G
v(sh), v(s)


= χ


u(sh)


χ

u(s)


= χ


u(sh) − u(s)


.

Since the map s → u(sh) − u(s) is uniformly distributed, it follows from the Weyl criterion that

lim
N→∞

1
λ(FN )


FN


v(sh), v(s)


dλ(s) = lim

N→∞

1
λ(FN )


FN

χ

u(sh) − u(s)


dλ(s) = 0

for any h ∈ G \ {1G}. If we average the previous equation over all h we will also trivially get 0.
Therefore the conditions of Theorem 2.12 are met and hence

0 = lim
N→∞

 1
λ(FN )


FN

v(s) dλ(s)

 = lim
N→∞

 1
λ(FN )


FN

χ

u(s)


dλ(s)

 .
It follows now from Theorem 2.10 that u is uniformly distributed. �

3. Well distribution

A sequence (un)n∈N taking values in the torus T is well distributed if for every 0 ≤ a < b ≤ 1

lim
N→∞

n ∈ {M + 1, . . . , M + N } : xn ∈ [a, b)


N
= b − a (3.1)

uniformly in M . An equivalent definition is that (un)n∈N is uniformly distributed along any
Følner sequence in N. It follows from the Weyl criterion that (un) is well distributed if and
only if for every h ∈ N

lim
N→∞

sup
M∈N

 1
N

M+N
n=M

e2π ihun

 = 0.

It is not hard to see that a trivial modification of the proof of Theorem 2.3 allows one to establish
the following version of DT for well distribution (one can also derive it from Theorem 2.11).

Theorem 3.1. Let (xn)n∈N be a sequence taking values in the torus T. Assume that for every
d ∈ N, the sequence n → xn+d − xn is well distributed. Then (xn)n∈N is well distributed.

3.1. Well distribution and Hardy fields

It follows from Theorem 2.5 that the sequence xn =
√

n mod 1 is uniformly distributed. Since
the differences between consecutive terms

√
n + 1 −

√
n converge to 0, it is clear that (xn)n∈N

is not well distributed. On the other hand, it is easy to see that the sequence nα mod 1 is well
distributed for any irrational α. What about (nα +

√
n) mod 1? As it turns out, this sequence

is well distributed, and a quick way to prove this is to utilize (a special case of) Theorem 2.12.
More generally, we have the following:

Theorem 3.2. Let (vn)n∈N be a non-decreasing sequence in R such that

lim
N→∞

sup
M∈N

vM+N − vM

N
= 0. (3.2)

Then for every α ∉ Q the sequence un = nα + vn mod 1 is well distributed in T.
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Remark 3.3. (1) Theorem 3.2 extends Theorem 1.3.3 in [51], where, under somewhat stronger
assumptions, it is concluded that un is uniformly distributed (by the way, Theorem 1.3.3
in [51] also appears in van der Corput’s seminal paper [33]).

(2) Under the slightly stronger condition that vN+1 − vN → 0 as N → ∞, it is actually true
that un = an + vn is well distributed for any well distributed sequence an . This follows from
Theorem 4.2.3 in [51].

Examples of sequences (vn) satisfying (3.2) are vn =
√

n, vn = log n and vn = cna
cos(logb n) + d


, where a, b, c, d ∈ R satisfy a, c > 0, a, b < 1, d > 1. More generally,

if f : R → R is a non-decreasing smooth function such that f ′(x) → 0 as x → ∞, then
vn = f (n) also satisfies (3.2). Notice that log n is not even uniformly distributed in T but, in
view of Theorem 3.2, nα + log n is well distributed.

We need the following elementary lemma:

Lemma 3.4. Let (vn)n∈N be a non-decreasing sequence in R satisfying (3.2). Then for every pair
of sequences (Mm), (Nm) of natural numbers such that Nm − Mm → ∞ and every d ≠ 0 we
have

lim
m→∞

1
Nm − Mm

Nm
n=Mm+1

exp

2π ik(vn+d − vd)


= 1.

Proof. Observe that
exp(iθ) − 1

 ≤ |θ | for any θ ∈ R (geometrically this says that a chord is
shorter than the corresponding arc). Then Nm

n=Mm+1

exp

2π ik(vn+d − vd)


− 1

 ≤

Nm
n=Mm+1

exp

2π ik(vn+d − vd)


− 1


≤ 2πk

Nm
n=Mm+1

vn+d − vn


= 2πk
d

i=1


vNm+i − vMm+i


.

Dividing by Nm − Mm and using (3.2) d times we conclude that

lim
m→∞

 1
Nm − Mm

Nm
n=Mm+1

exp

2π ik(vn+d − vd)


− 1

 = 0

as desired. �

Proof of Theorem 3.2. We need to show that for all sequences (Mm), (Nm) such that Nm −

Mm → ∞ and every k ≠ 0 we have

lim
m→∞

1
Nm − Mm

Nm
n=Mm+1

exp(2π ikun) = 0. (3.3)

Let w(n) = exp(2π ikun). In order to prove (3.3), we will use Theorem 2.12 with the Hilbert
space being C, the group G = Z, the Haar measure λ being simply the counting measure and the
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Følner sequence being defined by Fm = {Mm + 1, . . . , Nm}. We have

w(n + d)w(n) = exp

2π ik(un+d − un)


= exp


2π ik(dα + vn+d − vn)


.

Taking Cesàro limits and appealing to Lemma 3.4 we obtain

lim
m→∞

1
|Fm |


n∈Fm

w(n + d)w(n) = exp(2π ikdα) lim
m→∞

1
|Fm |


n∈Fm

exp

2π ik(vn+d − vn)


= exp(2π ikdα).

Taking the Cesàro limit in d we deduce that

lim
D→∞

1
D

D
d=1

lim
m→∞

1
Nm − Mm

Nm
n=Mm+1

w(n + d)w(n) = 0.

Now (3.3) follows from Theorem 2.12 and this finishes the proof. �

Observe that if (aun + bvn)n∈N is well distributed in T for every (a, b) ∈ Z2
\ {(0, 0)}, then

it follows from Weyl’s criterion (Theorem 2.10) that the sequence (un, vn)n∈N is well distributed
in T2. This observation should be juxtaposed with the following corollary of Theorem 3.2.

Corollary 3.5. There exists a sequence (un, vn) ∈ T2 which is not uniformly distributed but such
that for any a, b ∈ Z with a ≠ 0 we have that aun + bvn is well distributed in T.

Proof. Let un = nα for some irrational α ∈ R, let vn = log n and apply Theorem 3.2. �

Recall that ∆s f denotes the sth iterated discrete derivative of f . Bootstrapping Theorem 3.2
with the help of DT we obtain the following more general result.

Corollary 3.6. Let s ∈ N and let p ∈ R[x] be a polynomial with deg p = s whose leading
coefficient is irrational. Let f : N → R be such that

lim
N→∞

sup
M∈N

 1
N

M+N
n=M

∆s f (n)

 = 0. (3.4)

Then the sequence


p(n) + f (n) mod 1


n∈N is well distributed.

Proof. We proceed by induction on s, the case s = 1 being Theorem 3.2. Next assume
that s > 1 and that the result holds for s − 1. Let un = p(n) + f (n) mod 1 and
let d ∈ N be arbitrary. The difference un+d − un can be written as p̃(n) + f̃ (n), where
p̃(n) = p(n + d) − p(n) is a polynomial of degree s − 1 with leading coefficient irrational
and f̃ (n) = 1 f (n) + 1 f (n + 1) + · · · + 1 f (n + d − 1) is a sequence satisfying (3.4) with
s − 1 instead of s. By the induction hypothesis, un+d − un is well distributed for every d ∈ N. It
follows from DT (in the form of Theorem 3.1) that un is well distributed as well. �

Observe that if f : R → R is a smooth function such that f (s)(x) → 0 as x → ∞, then the
sequence f (n) satisfies (3.4).

We will now demonstrate the usefulness of Corollary 3.6 by providing a relatively short proof
of a result of Boshernitzan pertaining to Hardy fields. First we need to introduce some relevant
definitions. Two real valued functions f, g defined for all large enough x ∈ R are equivalent if
there exists M ∈ R such that f (x) = g(x) for all x > M . A germ is an equivalence class of
functions under this equivalence relation.
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Definition 3.7. A Hardy field is a collection of germs of smooth functions f : R → R that
forms a field (with respect to the operations of pointwise addition and multiplication) and is
closed under differentiation.

Observe that any function representing a non-zero germ in a Hardy field must be eventually
non-zero (since it is invertible). It follows that any non-zero element of a Hardy field is eventually
either positive or negative. Since for any Hardy field function f , the derivative f ′ belongs to the
same Hardy field, we deduce that f is eventually monotone, and hence the limit limx→∞ f (x)

always exists in [−∞, ∞]. Many familiar functions belong to some Hardy field, including
any function obtained from ex , log x and polynomial functions by composition and standard
arithmetic operations. On the other hand, (non-constant) periodic functions do not belong to any
Hardy field.

A function f : R → R is called subpolynomial if there exists n ∈ N such that f (x)/xn
→ 0

as x → ∞.

Theorem 3.8 (Boshernitzan, [28]). Assume f : R → R belongs to a Hardy field and is
subpolynomial. Then the sequence


f (n) mod 1


n∈N is uniformly distributed in T if and only if

for every p(x) ∈ Q[x] we have

lim
x→∞

log x

| f (x) − p(x)|
= 0. (3.5)

Proof. First assume that

lim
x→∞

| f (x) − p(x)|

log x
= a < ∞

for some p ∈ Q[x]. Then f (x) =

a + g(x)


log x + p(x) for some function g(x) which

approaches 0 as x → ∞. Let M be a common multiple of the denominators of the coefficients of
p. Then M f (n) =


Ma + g(n)


log n mod 1 for every n ∈ N grows too slowly to be uniformly

distributed (see, for example, Theorem 1.2.6 in [51]).
We move now to the proof of the converse direction. Let f be a function satisfying the

conditions of the theorem. Let d = d( f ) be the smallest integer such that f (x)/xd is bounded
and let L = lim f (x)/xd . (The limit exists because f belongs to a Hardy field.)

We will prove the result by induction on d. If L is irrational, then the uniform distribution
(and indeed well distribution) of


f (n) mod 1


n∈N follows directly from either Theorem 3.2 or

Corollary 3.6.
Observe that for any p ∈ Q[x], the sequence


p(n) mod 1


n∈N is periodic. Hence

f (n) + p(n) mod 1


n∈N is uniformly distributed if and only if


f (n) mod 1


n∈N is. In
particular, if L ∈ Q \ {0}, then the uniform distribution of


f (n) mod 1


n∈N is equivalent to

that of

g(n) mod 1


n∈N, with g(x) = f (x) − Lxd satisfying the conditions of the theorem and

either d(g) < d( f ) or L(g) = 0. Therefore it suffices to assume that L = 0.
Assume first that d = 1. Then L’Hôpital’s rule implies that f ′(x) → 0 and, taking into

account that f (x)/ log(x) → ∞, we obtain that x f ′(x) → ∞ as x → ∞. It now follows from
Theorem 2.5 that


f (n) mod 1


n∈N is uniformly distributed in T.

Next we deal with the case d = 2 (a typical example is f (x) = x log x). The reason why we
cannot use induction here is that the derivative f ′(x) may not be uniformly distributed mod 1. By
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L’Hôpital’s rule we have that f ′(x) → ∞ and f ′′(x) → 0. Therefore also f ′(x)/x2 f ′′(x) → 0
and now the uniform distribution of


f (n) mod 1


n∈N follows from Exercise 1.2.26 in [51].2

Finally, to deal with d > 2, we apply Theorem 2.3. Take an arbitrary h ∈ N and let fh(x) =

f (x+h)− f (x). Since f is a subpolynomial function in a Hardy field, one can show that fh is also
a subpolynomial function in a Hardy field and that fh(x)/xd−1

→ 0. Therefore d( fh) ≤ d − 1.
On the other hand, fh(x)/x → ∞, and in fact | fh(x) − p(x)|/x → ∞ for any p ∈ Q[x]. This
implies that log(x)/| fh(x) − p(x)| → 0 and now the result follows by induction. �

Recently, Theorem 3.8 was extended to sequences of the form f (pn) where f is a subpoly-
nomial Hardy field function and pn is the nth prime:

Theorem 3.9 (See [15, Theorem 3.1]). Assume that f : R → R belongs to a Hardy field and is
subpolynomial and let (pn)n∈N be the increasing sequence listing all the prime numbers. Then
the sequence


f (pn) mod 1


n∈N is uniformly distributed in T if and only if for every p(x) ∈ Q[x]

we have

lim
x→∞

log x

| f (x) − p(x)|
= 0.

See also Corollary 4.10 for another result related to Theorem 3.8.

3.2. Cigler’s characterization of well distribution and some of its corollaries

For completeness of the picture, we present in this subsection a result due to Cigler [31] that
provides an explanation for the dynamical underpinnings of the notion of well distribution. We
also present another result of Cigler [32] which states that for any tempered function f , the
sequence f (n) cannot be well distributed, complementing Corollary 2.7.

Theorem 3.10. Let x = (xn)n∈N be a sequence in T. Consider x as an element of TN and let
S : TN

→ TN be the shift map. Then (xn)n∈N is well distributed in T if and only if for any
S-invariant measure µ on the orbit closure {Sn x : n ∈ N} of x, the pushforward π∗µ by the
projection π : TN

→ T onto the first coordinate is the Lebesgue measure λ on T.

Proof. Assume first that (xn)n∈N is well distributed and let µ be an invariant measure on
X := {Sn x : n ∈ N}. Let f ∈ C(T) be arbitrary. We need to show that


X f ◦ π dµ =


T f dλ.

For each y ∈ X , let ki (y) be a sequence in N such that Ski (y)x → y as i → ∞. We have
X

f ◦ π dµ =


X

f

π(y)


dµ(y)

= lim
N→∞


X

1
N

N
n=1

f

π(Sn y)


dµ(y)

= lim
N→∞


X

lim
i→∞

1
N

N
n=1

f

π(Sn+ki (y)x)


dµ(y)

2 Curiously enough, this exercise is based on yet another result of van der Corput, Theorem 1.2.7 in [51].
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= lim
N→∞


X

lim
i→∞

1
N

N+ki (y)
n=1+ki (y)

f

π(Sn x)


dµ(y)

= lim
N→∞


X

lim
i→∞

1
N

N+ki (y)
n=1+ki (y)

f (xn) dµ(y).

Since (xn)n∈N is well distributed, for any ϵ > 0, if N is large enough we have 1
N

N+ki (y)
n=1+ki (y)

f

π(Sn x)


−


T

f (x) dλ(x)

 < ϵ

regardless of i ∈ N and y ∈ X . Therefore, we deduce that


X f ◦ π dµ =


T f (x) dλ(x).
Now assume that for every invariant measure µ on X we have π∗µ = λ. Let f ∈ C(X) and

assume, for the sake of a contradiction, that

AN :=
1
N

aN +N
n=aN +1

f (xn)

does not converge to


T f dλ for some sequence (aN )N∈N. Passing, if necessary, to a subsequence
we can assume that limk→∞ ANk = A exists and does not equal


T f dλ. Let

µk =
1

Nk

aNk +Nk
n=aNk +1

δSn x

be the corresponding average of point masses at the orbit of x . Passing to a further subsequence
we can assume that µk converges as k → ∞ to some S-invariant measure µ in the weak∗

topology. By the assumption, π∗µ = λ and therefore
T

f dλ =


X

f

π(y)


dµ(y)

= lim
k→∞

1
Nk

aNk +Nk
n=aNk +1

f

π(Sn x)



= lim
k→∞

1
Nk

aNk +Nk
n=aNk +1

f (xn) = A.

This contradiction finishes the proof. �

Corollary 3.11. For every tempered function f : R → R, the sequence ( f (n) mod 1)n∈N in T
is not well distributed.

Proof. Let xn = f (n) mod 1 and x = (xn)n∈N be the corresponding sequence in TN. Let
ℓ be the degree of f , so that f (ℓ) goes to infinity but f (ℓ+1) goes to 0. Then each of the
functions f, f ′, . . . , f (ℓ) is tempered and, moreover, each non-zero linear combination of these
functions (with integer coefficients) is tempered. In view Corollary 2.7 and Theorem 2.10, the
tuple


f (n), f ′(n), . . . , f (ℓ)(n)


is uniformly distributed in Tℓ+1. In particular, that sequence is
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dense in Tℓ+1 so there exists some sequence nk → ∞ such that f (i)(nk) → 0 as k → ∞ for all
i = 0, . . . , ℓ.

For each h ∈ N we now get

f (nk + h) =

ℓ
i=0

f (i)(nk)

i !
hi

+
f (ℓ+1)(t)

(ℓ + 1)!
h(ℓ+1)

for some t ∈ [nk, nk + h]. After reducing modulo 1 we deduce that xnk+h → 0 as k → ∞ for
every h ∈ N. Translating to a dynamical viewpoint, this means that the point (0, 0, . . .) belongs
to the orbit closure of x . Since this point is fixed under the shift map S, it supports a point mass
which is an invariant measure. The projection under π : TN

→ T of this measure is then the
point mass at 0 which is not the Lebesgue measure. It now follows from Theorem 3.10 that x is
not well distributed. �

Corollary 3.12. Almost every sequence in TN (with the product Lebesgue measure) is not well
distributed.

Proof. Notice that the shift S on TN is ergodic with respect to the product Lebesgue measure,
and hence almost every ω ∈ TN has a dense orbit (under S) in TN. In particular, the orbit closure
of ω contains the fixed point (0, 0, . . .) which supports an invariant (atomic) measure δ whose
projection under π is not the Lebesgue measure. �

4. Uniform distribution along Besicovitch almost periodic subsequences

The results obtained in this section heavily depend on ideas introduced in papers by Mendès
France [52] and Daboussi and Mendès France [36]. In particular, we establish a refined version
of DT involving Besicovitch almost periodic functions and derive some interesting new applica-
tions.

Definition 4.1. • For a subset A ⊂ N, we define its upper density and Banach lower density,
respectively, by

d̄(A) = lim sup
N→∞

|A ∩ {1, . . . , N }|

N

d∗(A) = lim
N→∞

inf
M∈N

|A ∩ {M + 1, . . . , M + N }|

N
.

• A function f : N → C is Besicovitch almost periodic if for every ϵ > 0 there exist k ∈ N and
α1, . . . , αk ∈ T, c1, . . . , ck ∈ C such that

lim sup
N→∞

1
N

N
n=1

 f (n) −

k
j=1

c j e
2π iα j n

 < ϵ. (4.1)

• A function f : N → C is uniform Besicovitch almost periodic if for every ϵ > 0 there exist
k ∈ N and α1, . . . , αk ∈ T, c1, . . . , ck ∈ C such that

lim sup
N→∞

sup
M∈Z

1
N

M+N
n=M+1

 f (n) −

k
j=1

c j e
2π iα j n

 < ϵ.
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• An increasing sequence (nk)k∈N in N is a (uniform) Besicovitch sequence if the indicator
function 1A of the set A = {nk : k ∈ N} is (uniform) Besicovitch almost periodic and A has
positive upper density (positive lower Banach density).

The following lemma provides a way to check that certain functions are Besicovitch almost
periodic.

Lemma 4.2 ([26], cf. also [3, Corollary 3.21]). A function f : N → C is (uniform) Besicovitch
almost periodic if there exists a compact abelian group K , a point a ∈ K and a Riemann
integrable function φ : K → C such that f (n) = φ(na).

In the next proposition we collect some examples of Besicovitch sequences.

Proposition 4.3. (1) For any α > 0, the sequence k → ⌊kα⌋ is a uniform Besicovitch sequence.
(2) The increasing sequence (nk)k∈N of squarefree numbers is a Besicovitch sequence.
(3) More generally, for any set Q ⊂ N such that


m∈Q 1/m < ∞, the increasing sequence

(nk)k∈N listing the numbers n without a divisor in Q is a Besicovitch sequence.
(4) For any irrational α ∈ R, the set A :=


n ∈ N : gcd(n, ⌊nα⌋) = 1


has a Besicovitch almost

periodic indicator function, therefore the increasing enumeration of the elements of A is a
Besicovitch sequence.

Proof. (1) Let β = 1/α and let A = {⌊kα⌋ : k ∈ N}. Observe that ⌊kα⌋ = n ⇐⇒ nβ ≤ k <

nβ + β and therefore n ∈ A ⇐⇒ nβ mod 1 ∈ (1 − β, 1]. Let φ : T → C be the indicator
function of the set (1 − β, 1]. It follows from Lemma 4.2 that the sequence k → ⌊kα⌋ is
uniform Besicovitch.

(3) For each M ∈ N, let QM be the set of natural numbers not divisible by an element of
Q ∩ [1, M]. The indicator function 1QM is periodic and hence can be written as a finite sumk

j=1 c j e2π iα j n (with all the α j ∈ Q).
Let ϵ > 0 and choose M so that


m>M 1Q(m)/m < ϵ. It is clear that Q ⊂ QM . Moreover

any number in QM \ Q must be divisible by some element of Q ∩[M +1, ∞). Therefore, for
each N ∈ N, the cardinality of {1, . . . , N } ∩ (QM \ Q) is at most


∞

m=M+1 1Q(m)N/m <

Nϵ. We conclude that

lim sup
N→∞

1
N

N
n=1

1Q(n) −

k
j=1

c j e
2π iα j n

 < ϵ.

(4) This is the content of the paper [59]. �

We have the following result (cf. [52,36,55]) which can be viewed as a refinement of
Theorem 2.3.

Theorem 4.4. Let (un)n∈N be a sequence in T. If for every h ∈ N the difference n → un+h − un
is uniformly distributed in T then for any Besicovitch sequence (nk)k∈N the sequence (unk )k∈N
is uniformly distributed. Moreover, if for every h ∈ N the sequence (un+h − un)n∈N is well
distributed and (nk)k∈N is uniform Besicovitch, then (unk )k∈N is well distributed.

We will actually prove a multidimensional version of Theorem 4.4. First, we will need the
following multidimensional version of Definition 4.1.

Definition 4.5. Let d ∈ N.
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• For a set A ⊂ Nd we define the upper density by the formula

d̄(A) = lim sup
N→∞

A ∩ {1, . . . , N }
d


N d

and the lower Banach density by the formula

d∗(A) = lim inf
N→∞

inf
(M1,...,Md )∈Nd

A ∩

d
i=1

{Mi + 1, . . . , Mi + N }


N d .

• A function f : Nd
→ C is Besicovitch almost periodic if for any ϵ > 0 there exists ℓ ∈ N

and α1, . . . , αℓ ∈ Td , c1, . . . , cℓ ∈ C such that

lim sup
N→∞

1
N d


n∈[1,N ]d

 f (n) −

ℓ
j=1

c j exp 2π i⟨α j , n⟩

 < ϵ.

• We say that f : Nd
→ C is uniform Besicovitch almost periodic if one can replace the above

limit by its uniform version:

lim sup
N→∞

sup
m∈Nd

1
N d


n∈m+[1,N ]d

 f (n) −

ℓ
j=1

c j exp 2π i⟨α j , n⟩

 < ϵ

where [1, N ] = {1, . . . , N }.
• A sequence n : Nd

→ Nd is increasing if whenever a, b ∈ Nd and for some coordinate
j ∈ {1, . . . , d}, one has a j ≤ b j , then also n(a) j ≤ n(b) j .

• An increasing sequence n : Nd
→ Nd is a (uniform) Besicovitch sequence if the indicator

function 1A of the set A := {n(k) : k ∈ Nd
} is (uniform) Besicovitch almost periodic and A

has positive upper density (positive lower Banach density).

Theorem 4.6. Let d ∈ N, let K be a compact abelian group and let u : Nd
→ K be such that

for any h ∈ Nd the map n → u(n + h) − u(n) is uniformly distributed in K . Let n : Nd
→ Nd

be an increasing Besicovitch sequence. Then the sequence k → u

n(k)


is uniformly distributed

in K .
Moreover, if the maps n → u(n +h)−u(n) are well distributed and n is uniform Besicovitch,

then k → u

n(k)


is well distributed in K .

Proof. Let χ ∈ K̂ \ {0K̂ } be an arbitrary non-constant character on the Pontryagin dual K̂ of the
compact abelian group K . We need to show that

lim
N→∞

1
N d


k∈m+[1,N ]d

χ


u

n(k)


= 0

uniformly in m ∈ Nd . Let A = {n(k) : k ∈ Nd
} and let 1A be the indicator function of A.

Also, for each m ∈ Nd and N ∈ N, let I (m, N ) = m + [1, N ]
d

=


i [mi , mi + N ] and
let Ĩ (m, N ) =


i [n(mi ), n(mi + N )]. Observe that n−1


Ĩ (m, N )


= I (m, N ) because n is

increasing, and therefore n

I (m, N )


= A ∩ Ĩ (m, N ). Hence

lim inf
N→∞

N d

| Ĩ (m, N )|
= lim inf

N→∞

|A ∩ Ĩ (m, N )|

| Ĩ (m, N )|
≥ d∗(A) > 0.
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Moreover

1
N d


k∈I (m,N )

χ


u

n(k)


=

1
N d


n∈ Ĩ (m,N )

1A(n)χ

u(n)


.

Fix ϵ > 0 and let α1, . . . , αs ∈ Td and c1, . . . , cs ∈ C such that

lim sup
N→∞

1

| Ĩ (m, N )|


n∈ Ĩ (m,N )

1A(n) −

s
j=1

c j exp(2π i⟨α j , n⟩)

 < ϵ.

We deduce that

lim sup
N→∞

1
N d




n∈ Ĩ (m,N )

1A(n)χ

u(n)


= lim sup

N→∞

1
N d




n∈ Ĩ (m,N )


1A(n) −

s
j=1

c j exp(2π i⟨α j , n⟩)

+

s
j=1

c j exp(2π i⟨α j , n⟩)


χ

u(n)


< ϵ lim sup

N→∞

| Ĩ (m, N )|

N d + lim sup
N→∞

1
N d




n∈ Ĩ (m,N )

s
j=1

c j exp

2π i⟨α j , n⟩


· χ

u(n)


≤

ϵ

d∗(A)
+

s
j=1

c j
1

d∗(A)
lim sup
N→∞

 1 Ĩ (m, N )
 

n∈ Ĩ (m,N )

exp

2π i⟨α j , n⟩


· χ

u(n)

 .
It suffices now to show that the uniform Cesàro limit of the sequence v : n → exp


2π i⟨α j , n⟩


·

χ

u(n)


is 0. To show this we will use Theorem 3.1. We have

v(n + h)v(n) = exp

2π i⟨α j , h⟩


· χ

u(n + h) − u(n)


.

Therefore, averaging over n, with h fixed we obtain

1 Ĩ (m, N )
 

n∈ Ĩ (m,N )

v(n + h)v(n)

= exp

2π i⟨α j , h⟩

 1 Ĩ (m, N )
 

n∈ Ĩ (m,N )

χ

u(n + h) − u(n)


. (4.2)

It follows from Weyl’s criterion, together with the hypothesis that u(n + h) − u(n) is well
distributed, that the limit as N → ∞ of the quantity in (4.2) is 0. It now follows from DT
(in the form of Theorem 3.1) that the uniform Cesàro limit of v(n) is 0 and we are done. �

The argument used in part (1) of Proposition 4.3 can be utilized to show the following:

Proposition 4.7. Let α, β ∈ [1, ∞). Then the sequence n : (k1, k2) → (⌊k1α⌋, ⌊k2β⌋) is
uniform Besicovitch.
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Putting Proposition 4.7 together with Theorem 4.6, we conclude that, for instance, the
sequence (n, m) → (α⌊nβ⌋

3,
√

⌊mγ ⌋) is uniformly distributed in T2 for any irrational α ∈ R
and β, γ ≥ 1.

Observe that Theorem 4.4 does not remain true if one only requires that un is itself uniformly
distributed. For instance, for any irrational α ∈ (0, 1), the sequence n → nα mod 1 is uniformly
distributed, and, in view of Proposition 4.3, the increasing sequence k → ⌊kα⌋ is a Besicovitch
sequence. However, it is not hard to show that ⌊k/α⌋α mod 1 is not uniformly distributed (indeed,
this sequence always lands in the interval (1 − α, 1)). On the other hand, it can be proved that
⌊kα⌋β mod 1 is uniformly distributed whenever αβ and β are irrational (cf. [51, Theorem 5.1.8]).

By looking more closely at the proof of Theorem 4.4, one notices that the condition that
un+h − un is uniformly distributed for every h ∈ N can be replaced with the (weaker) condition
that un +nα is uniformly distributed for every α ∈ T. More precisely, we only need un +nα to be
uniformly distributed for the frequencies α = α j that appear in the periodic approximation (4.1)
of the (indicator function of the) Besicovitch sequence (nk). This improvement of Theorem 4.4
was obtained by Daboussi and Mendès France in [36] (the authors called the set of such
frequencies the spectrum of (un)).

Of particular interest is the case when all the frequencies needed to approximate the (indicator
function of the) Besicovitch sequence (nk) are rational:

Definition 4.8. • A function f : N → C is rational Besicovitch almost periodic if for every
ϵ > 0 there exist k ∈ N and α1, . . . , αk ∈ Q, c1, . . . , ck ∈ C such that

lim sup
N→∞

1
N

N
n=1

 f (n) −

k
j=1

c j e
2π iα j n

 < ϵ.

• An increasing sequence (nk)k∈N in N is a rational Besicovitch sequence if the indicator
function 1A of the set A = {nk : k ∈ N} is rational Besicovitch almost periodic and A
has positive upper density.

It follows from (the proof of) Proposition 4.3 that the sequence (nk)k∈N enumerating the
squarefree numbers is rational Besicovitch.

Theorem 4.9. Let u : N → T and assume that for every α ∈ Q, the sequence n → u(n) + nα

is uniformly distributed. Let (nk)k∈N be a rational Besicovitch sequence. Then the sequence
k → u(nk) is uniformly distributed in T.

Theorem 4.9 immediately implies that if (nk) is the increasing enumeration of the set of
squarefree numbers then, for any irrational α, the sequence k → nkα mod 1 is uniformly
distributed. A more sophisticated application involves Boshernitzan’s theorem (Theorem 3.8).
It is easy to see that a function f : R → R satisfies (3.5) for every p ∈ Q[x] if and only if
f (x) + xα does, for a rational α. Therefore, we obtain the following corollary of Theorem 3.8:

Corollary 4.10. Let f : R → R be subpolynomial and a member of a Hardy field. Let (nk) be
a rational Besicovitch sequence. Assume that condition (3.5) holds for every p ∈ Q[x]. Then the
sequence


f (nk) mod 1


k∈N is uniformly distributed.

5. Some additional applications of DT

In this section we demonstrate the versatility of DT by providing three more applications of
Theorem 2.12.
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5.1. A Weyl type theorem in A/Q

In this subsection, with the help of (a special case of) Theorem 2.11, we establish an “adelic”
version of Weyl’s theorem on equidistribution of polynomials.

Fix a prime p. Given x, y ∈ Q, write x − y = pn
·

a
b where a, b, n ∈ Z, b > 0 and both a

and b are coprime with p. Let dp(x, y) = p−n . It is not hard to check that dp is a metric on Q.
We denote by Qp the completion of Q with respect to this metric and extend dp to Qp. A more
concrete description of Qp is

Qp =


∞

i=N

xi pi
: xi ∈ {0, . . . , p − 1}; N ∈ Z


.

We let Zp ⊂ Qp be the set {n ∈ Qp : dp(n, 0) ≤ 1}. Equivalently, Zp consists of sums
∞

i=N xi pi where N ≥ 0. Observe that Z ⊂ Zp.
Next, let A denote the additive group of the adeles:

A =

(a∞, a2, a3, a5, . . .) ∈

R ×


p prime

Qp

 : ap ∈ Zp for all but finitely many p

 .

If x ∈ Q and p is a prime which does not divide the denominator of x then x ∈ Zp; in particular,
x ∈ Zp for all but finitely many p. Therefore, one can embed Q in A by identifying x ∈ Q with
(x, x, x, . . .) ∈ A. Given x =


∞

i=N xi pi
∈ Qp with xi ∈ {0, . . . , p − 1} we denote by

f p(x) =

−1
i=N

xi pi (5.1)

the p-fractional part of x (with the convention that f p(x) = 0 when N > −1). Therefore
x − f p(x) ∈ Zp for any x ∈ Qp. Observe that f p(x) is in Q for any x ∈ Qp since (5.1) is a
finite sum. Moreover, the denominator of f p(x) is a power of p; it follows that f p(x) ∈ Zq for
any p ≠ q and x ∈ Qp. Given x ∈ A, the sum f̃ (x) =


p f p(x p) ∈ Q has only finitely many

non-zero terms and hence is well defined. Note that each p-adic coordinate of x − f̃ (x) is in Zp

and therefore x − f̃ (x) ∈ R ×


p Zp. Finally, let

f (x) =


f̃ (x) + ⌊x∞ − f̃ (x)⌋


∈ Q (5.2)

and observe that x − f (x) ∈ [0, 1) ×


p Zp.
The topology on A is generated by a basis of open sets of the form

U∞ ×


p∈F

Up ×


p∉F

Zp

where U∞ ⊂ R is open, F is a finite set of primes and Up ⊂ Qp is an open set.
The following lemma is well known; we give a proof for the sake of completeness.

Lemma 5.1. The subgroup Q ⊂ A is discrete and co-compact.

Proof. Let x ∈ Q be an arbitrary rational number. On the one hand, observe that the set

Ux = (x − 1, x + 1) ×


p


x + Zp


⊂ A
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is open, because x ∈ Zp for all but finitely many primes p (those which divide the denominator
of x). On the other hand, for any rational y ∈ Ux , the difference y − x belongs to every Zp and
hence to Z. However, that difference is also in (−1, 1), and so it must be 0. We just showed that
x is the only rational in Ux , and because x ∈ Q was arbitrary it follows that Q is a discrete subset
of A.

Next we focus on the quotient group K := A/Q. Let K̃ := [0, 1) ×


p Zp ⊂ A. We define

a group structure in K̃ as follows: given x, y ∈ K̃ , let x + y := (x + y) − f (x + y), where the
sums and the subtraction on the right are the (usual) pointwise operations in A, and f : A → Q
is defined by (5.2). Note that this group operation is different from the pointwise addition.

We claim that K is isomorphic to K̃ . To show this, let φ : A → K̃ be the map φ(x) =

x − f (x) ∈ K̃ ⊂ A. First we show that φ is a group homomorphism. Indeed, for any x, y ∈ A,
the difference (in A) between φ(x + y) and φ(x) + φ(y) is a rational number which belongs to
the set K̃ − K̃ = (−1, 1) ×


p Zp, and 0 is the only such number.

Next, observe that φ is surjective. Indeed, for x ∈ K̃ ⊂ A we have f (x) = 0 and hence
φ(x) = x . To see that the kernel of φ is Q, notice that f (x) ∈ Q for any x ∈ A, and so, on the
one hand, x = f (x) ⇒ x ∈ Q, and on the other hand, x ∈ Q ⇒ φ(x) ∈ Q ∩ K̃ = {0}.

Finally, observe that φ is not quite a homeomorphism, because the open set [0, 1/2) ×
p Zp ⊂ K̃ cannot be written as φ(U ) where U ⊂ A is an open set invariant under Q. In

fact, if we endow K ∼= K̃ with the topology consisting of the open sets φ(U ) with U ⊂ A open
and invariant under Q, we see that the topology on K is the same as T ×


p Zp (but keep in

mind that the group structure in K is not the product (or pointwise) structure). �

A function g : Q → K is a polynomial if it takes the form g(x) =
m

j=0 α j x j for some
α j ∈ A, j = 0, . . . , m. We say that the polynomial g has an irrational coefficient if for some
j > 0 one has α j ∈ A \ Q.

Theorem 5.2. Let g1, . . . , gd : Q → K be polynomials. If for any (n1, . . . , nd) ∈ Qd
\ {0} the

sum


n j g j : Q → K is not a constant map, then the sequence (g1, . . . , gd) : Q → K d is well
distributed.

In particular, this sequence has a dense image; a special case of this fact was established
in [34] using different methods. A related result, concerning a kind of uniform distribution of
polynomial sequences in A/Q and more general settings, was obtained by D. Cantor in [29].
Cantor used significantly more sophisticated machinery from number theory.

Our proof of Theorem 5.2 is very similar to the classical proof of (multidimensional version
of) Weyl’s theorem using DT and rests on the Weyl criterion, Theorem 2.10. We state in the
following proposition the precise version of Weyl’s criterion we will need.

Proposition 5.3. A sequence f : Q → K d is well distributed if and only if for any Følner
sequence (FN )N∈N in Q and any non-constant character χ : K d

→ C we have:

lim
N→∞

1
|FN |


u∈FN

χ


f (x)


= 0.

Proof. Apply Theorem 2.10 with G = Q with the discrete topology, λ being the counting
measure on Q and the compact group (K in the statement of Theorem 5.2) being K d . �
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The next step is to give a description of the characters of K d . It is a classical fact that the
Pontryagin dual of K is Q (with the discrete topology). More precisely, with any point r ∈ Q we
associate the character χr : K → C described by

χr : u → exp


2π i


f̃ (ru) − nu∞


.

More generally, the Pontryagin dual of K d is Qd and, for r = (r1, . . . , rd) ∈ Qd we define the
character χr : K d

→ C by the formula

χr : u = (u1, . . . , ud) →

d
j=1

χr j (u j ).

Observe that, if we denote χ1 by simply χ , then χr (u) = χ(ru) for any r ∈ Q and u ∈ A.

Proof of Theorem 5.2. Let r ∈ Qd
\ {0} be arbitrary and let (FN )N∈N be an arbitrary Følner

sequence for the additive group (Q, +). In view of Proposition 5.3, we need to show that

lim
N→∞

1
|FN |


x∈FN

χr

g1(x), . . . , gd(x)


= 0. (5.3)

Expanding the definition of χr we get

χr

g1(x), . . . , gd(x)


=

d
j=1

χr j


g j (x)


= χ


d

j=1

r j g j (x)


. (5.4)

Without loss of generality, we may (and will) assume that gi (0) = 0. We proceed by induction
on the highest degree of the polynomials g1, . . . , gd . Assume first that the highest degree is 1,
so that g j (x) = α j x where all α j ∈ A and, for every r = (r1, . . . , rd) ∈ Qd

\ {0}, we have
α :=

d
j=1 r jα j ∉ Q.

In view of (5.3) and (5.4) it suffices to show that

lim
N→∞

1
|FN |


x∈FN

χ(αx) = 0

for any α ∈ A \ Q and any additive Følner sequence (FN )N∈N in Q. Since α ∈ A \ Q, the
projection α + Q ∈ K is nonzero. Therefore there exists some character of K which does not
vanish at α. Since K is the Pontryagin dual of Q, this means that χ(αy) ≠ 1 for some y ∈ Q.

Next take ϵ > 0 and let N ∈ N be such that(FN + y) △ FN


|FN |
≤
1 − χ(αy)

ϵ.
Then, on the one hand, we have 1

|FN |


x∈FN

χ(αx) −
1

|FN |


x∈FN +y

χ(αx)

 ≤

(FN + y) △ FN


|FN |
<
1 − χ(αy)

ϵ,
and, on the other hand, we have

1
|FN |


x∈FN +y

χ(αx) =
1

|FN |


x∈FN

χ

α(x + y)


= χ(αy)

1
|FN |


x∈FN

χ(αx).
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Putting things together we conclude that1 − χ(αy)
 1
|FN |


x∈FN

χ(αx)

 ≤
1 − χ(αy)

ϵ
which finally implies that 1

|FN |


x∈FN

χ(αx)

 < ϵ.

This finishes the proof of the theorem in the case when all the polynomials g1, . . . , gd have
degree 1.

Next assume that s := max{deg g1, . . . , deg gd} > 1 and that the result holds for s − 1. We
will apply DT, Theorem 2.11, with the role of G being played by Q endowed with the discrete
topology and the counting Haar measure. For any h ∈ Q and j ∈ {1, . . . , d}, the difference
x → g j (x + h) − g j (x) is a polynomial of degree at most s − 1. It follows from the induction
hypothesis that

gh(x) := g(x + h) − g(x) =

g1(x + h) − g1(x), . . . , gd(x + h) − gd(x)


is uniformly distributed in K d for any h ∈ Q \ {0}. The result now follows from Theo-
rem 2.11. �

The technique employed in this section works in more general settings. For instance, one can
obtain a similar theorem for polynomials p : K → AK /K , where K is a number field and AK
is the group of adeles over K . These results also extend to the case of polynomials with several
variables. In order to keep the exposition short, we do not pursue these possibilities any further.

5.2. An application to the {x + y, xy} problem

A long standing open question in Ramsey theory asks whether for any finite partition
N = C1 ∪ · · · ∪ Cr of the natural numbers, there exists a cell Ci of the partition and a pair
(x, y) ∈ N2 such that {x, y, x + y, xy} ⊂ Ci . The answer is not known even if one only asks for
{x + y, xy} ⊂ Ci and (x, y) ≠ (2, 2). In [23] a similar question pertaining to partitions of fields
was answered positively. In particular, the following result was proved:

Theorem 5.4. For every infinite field K and every finite partition K = C1 ∪ · · · ∪ Cr there exists
a cell Ci and infinitely many x, y ∈ K such that {x, x + y, xy} ⊂ Ci .

The proof of Theorem 5.4 in [23] is based on ergodic-theoretic techniques. At its core lies a
new ergodic theorem, whose proof hinges on a new application of the following form of DT.

Proposition 5.5. Let H be a Hilbert space, let K be a countable field, let (FN )N∈N be a Følner
sequence in the multiplicative group K ∗ and let u : K ∗

→ H be a bounded function. Assume
that

lim
D→∞

1
|FD|


d∈FD

lim sup
N→∞

 1
|FN |


x∈FN


u(xd), u(x)

 = 0.

Then

lim
N→∞

1
|FN |


x∈FN

u(x) = 0.
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Proof. Apply Theorem 2.12 with G being the multiplicative group K ∗, endowed with the
discrete topology, and λ being the counting measure. �

Theorem 5.6. Let K be a countable infinite field, let (Ax )x∈K and (My)y∈K ∗ be unitary
representations, respectively, of the additive and multiplicative groups (K , +) and (K ∗, ×) on
the same Hilbert space H and satisfying the distributivity law

My Ax = Axy My ∀x, y ∈ K , y ≠ 0. (5.5)

Then for every sequence (FN )N∈N of finite subsets of K ∗ which is simultaneously a Følner
sequence for both3 (K , +) and (K ∗, ×), and for every f ∈ H we have

lim
N→∞

1
|FN |


x∈FN

Mx Ax f = P f

where P is the orthogonal projection onto the invariant subspace {h ∈ H : Ax h = Myh =

h ∀x, y ∈ K , y ≠ 0}.

Proof. Each f ∈ H has a unique representation of the form f = P f + g, where g = f − P f is
orthogonal to the invariant subspace. It is clear that Mx Ax P f = P f , so it suffices to show
that the Cesàro limit of Mx Ax g is 0. The idea is to apply Proposition 5.5 to the function
u : (K ∗, ×) → H defined by u(x) = Mx Ax g.

Let d ∈ K ∗. Using (5.5) and the fact that the representations are unitary we have

⟨u(xd), u(x)⟩ = ⟨Mxd Axd g, Mx Ax g⟩ = ⟨A−x Md Axd g, g⟩ = ⟨Ax(d−1/d)g, M1/d g⟩.

Observe that x → x(d−1/d) is an automorphism of the group (K , +) for every d ≠ 1. Applying
twice the mean ergodic theorem (see, for instance, [8, Theorem 5.5]) we have

lim
D→∞

1
|FD|


d∈FD

lim
N→∞

1
|FN |


x∈FN

⟨u(dx), u(x)⟩ = ⟨PAg, PM g⟩

where PA is the orthogonal projection onto the additively invariant subspace {h ∈ H : Ax h =

h ∀x ∈ K } and PM is the orthogonal projection onto the multiplicatively invariant subspace
{h ∈ H : Mx h = h ∀x ∈ K ∗

}. One can show (see [23, Lemma 3.1]) that PM and PA
commute. Therefore ⟨PAg, PM g⟩ = ∥PA PM g∥

2, but PA PM g = PM PAg is invariant under
both the additive and the multiplicative representation. This implies that PA PM g = Pg = 0. We
can now invoke Proposition 5.5 and conclude that

lim
N→∞

1
|FN |


x∈FN

Mx Ax g = 0

which finishes the proof. �

5.3. A non-linear multiple convergence theorem for ergodic R-actions

In this subsection we demonstrate the power of DT (in the form of Theorem 2.12 with G = R)
in yet another situation. Namely, we obtain a rather general kind of non-linear ergodic theorem
involving several commuting measure preserving R-actions.

3 Such sequences exist in any countable field K (see Proposition 2.4 in [23]).
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Definition 5.7. An increasing function p ∈ C2(b, ∞) defined in some interval (b, ∞) is called
admissible if it satisfies the following:

(1) The derivative p′ is monotone.
(2) For every c ∈ (0, 1) there exist ϵ < 1 such that for large enough τ ∈ R we have

ϵ < p(cτ)/p(τ ) < 1 − ϵ.

Observe that the inverse function p−1 of an admissible function p exists in some interval
(b̃, ∞) and is also an admissible function. Moreover, the composition p1 ◦ p2 of two admissible
functions is again an admissible function. In other words, the class of (germs of) admissible
functions forms a group under composition of functions. Observe that if p ∈ C2(b, ∞) has
monotone derivative and if for every ϵ > 0 there exists a positive α such that

lim
s→∞

sα

f (s)
= lim

s→∞

f (s)

sα+ϵ
= 0,

then f is an admissible function. This observation gives the following examples.

Example 5.8. The following are admissible function:

(1) p(s) =
k

i=1 ci sαi , where ci , αi ∈ R, ck, αk > 0, α1 < · · · < αk .
(2) p(s) = sα logβ s, where α > 0 and β ∈ R.
(3) p(s) = sα


cos(logβ s) + 2


, where α > 0 and β < 1.

(4) p(s) = sα


1 +
sin s
log s


for α > 0.

Observe that (3) and (4) in Example 5.8 do not belong to any Hardy field.
Here now is the formulation of the first theorem of this subsection.

Theorem 5.9. Let k, ℓ be positive integers and let (X, B, µ) be a probability space. For each
i ∈ {1, . . . , k} and j ∈ {1, . . . , ℓ} let (T s

i, j )s∈R : X → X be a continuous ergodic4 measure
preserving R-action and let pi, j : R → R be admissible functions. Assume that all the Ti, j

commute (in the sense that T s
i, j T

s̃
ĩ, j̃

= T s̃
ĩ, j̃

T s
i, j for any i, ĩ ∈ {1, . . . , k}, j, j̃ ∈ {1, . . . , ℓ} and

s, s̃ ∈ R) and that lim pi, j (s)/pĩ, j̃ (s) = 0 whenever i > ĩ or (i = ĩ and j > j̃ ).
Then for any f1, . . . , fk ∈ L∞(X) we have

lim
τ→∞

1
τ

 τ

0

k
i=1


ℓ

j=1

T
pi, j (s)

i, j


fi


ds =

k
i=1


X

fi dµ in L2(X). (5.6)

The strategy of the proof of Theorem 5.9 is to apply a change of variables and then use (an
appropriate version of) DT. We will need the following technical lemma, asserting essentially
that a change of variables involving an admissible function yields an equivalent method of
summation. Similar “change of variable” lemmas appeared for instance in [17, Lemma 7.7]
and [1, Lemma 2.2], but we were unable to find the precise formulation we need in the literature.

4 An action (Tg)g∈G of a group G on a probability space (X, B, µ) by measurable maps is ergodic if any set B ∈ B
satisfying T −1

g (B) = B for every g ∈ G is trivial, in the sense that µ(B) ∈ {0, 1}.



V. Bergelson, J. Moreira / Indagationes Mathematicae 27 (2016) 437–479 461

Lemma 5.10. Let H be a Hilbert space, let a : R → H be a continuous and bounded function
and let σ ∈ C2(0, ∞) be an admissible function. Then

lim
τ→∞

1
τ

 τ

0
a(s) − a


σ(s)


ds = 0 in norm, (5.7)

where the integral is understood in the sense of Bochner.

Proof. Assume, without loss of generality, that ∥a(s)∥ ≤ 1 for every s. We will use the notation
A[x,y] :=

1
y−x

 y
x a(s) ds. Assume that limτ→∞ A[0,τ ] exists and call it L . Let f be the inverse

of σ . Since the contribution of the initial segment [0, τ0] is asymptotically negligible when one
considers long range Cesàro averages, we may and will assume, without loss of generality, that
f is defined on (0, ∞).

We claim that for any c ∈ (0, 1) and any function u : R → R satisfying 0 ≤ u(s) ≤ σ

c f (s)


we have

lim
s→∞

A[u(s),s] = L . (5.8)

Indeed,

A[u(s),s] =
s

s − u(s)
A[0,s] −

u(s)

s − u(s)
A[0,u(s)]. (5.9)

Since σ(cτ) ≤ δσ (τ) for some δ depending on c (but not on τ ), taking τ = f (s) we get that
u(s) ≤ δs. It follows that the coefficients of the linear combination in (5.9) add up to 1 and stay
bounded as s → ∞. Since both A[0,s] and A[0,u(s)] approach L as s → ∞, this proves the claim
(5.8).

We now carry out some computations. Making the change of variables s = f (t) we have τ

0
a

σ(s)


ds =

 σ(τ)

0
a(t) f ′(t) dt =

 σ(τ)

0
a(t)

 t

0
f ′′(u) du dt.

Since both functions a and f ′′ are bounded in the relevant intervals, we may switch the order of
integrals and obtain τ

0
a

σ(s)


ds =

 σ(τ)

0
f ′′(u)

 σ(τ)

u
a(t) dt du

=

 σ(τ)

0
f ′′(u)


σ(τ) − u


A[u,σ (τ )] du. (5.10)

For future use, we now compute the following integral y

x
f ′′(u)


σ(τ) − u


du = f ′(u)


σ(τ) − u

y
x

+

 y

x
f ′(u) du

= f ′(y)

σ(τ) − y


− f ′(x)


σ(τ) − x


+ f (y) − f (x). (5.11)

Let ϵ > 0, let c ∈ (1 − ϵ, 1) and let M = supτ σ ′(τ )/σ ′(cτ). Observe that M is finite, as a
consequence of L’Hôpital’s rule (and of the fact that σ is an admissible function). We will show
that we can truncate the integral in (5.10) at u = σ(cτ), at the cost of an error of size at most
Mϵτ .
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Since ∥a(s)∥ ≤ 1, we have ∥A[x,y]∥ ≤ 1 for every x < y. Also, since f is an admissible
function, the sign of f ′′ does not change. Therefore, using (5.11) we obtain

 σ(τ)

σ (cτ)

f ′′(u)

σ(τ) − u


A[u,σ (τ )] du

 ≤


 σ(τ)

σ (cτ)

f ′′(u)

σ(τ) − u


du


=

− f ′

σ(cτ)


σ(τ) − σ(cτ)


+ f


σ(τ)


− f


σ(cτ)


=

σ(τ) − σ(cτ)

−σ ′(cτ)
+ τ(1 − c)


= τ(1 − c)

1 −
σ ′(b)

σ ′(cτ)


for some b ∈ (cτ, τ ). If σ ′ is decreasing, the last expression is bounded by τϵ. If σ ′ is increasing,
it is bounded by τϵ(M − 1). In either case we obtain1

τ

 σ(τ)

σ (cτ)

f ′′(u)

σ(τ) − u


A[u,σ (τ )] du

 ≤ Mϵ. (5.12)

Putting (5.10) and (5.12) together we obtain

1
τ

 τ

0
a

σ(s)


ds =

1
τ

 σ(cτ)

0
f ′′(u)


σ(τ) − u


A[u,σ (τ )] du + R1

where R1 = R1(τ ) ∈ H satisfies ∥R1∥ ≤ Mϵ.
On the other hand, for u ∈


0, σ (cτ)


, using (5.8) with s = φ(τ) (and hence τ = f (s)) and

τ large enough, we obtain that ∥A[u,σ (τ )] − L∥ < ϵ. Therefore

1
τ

 τ

0
a

σ(s)


ds =

1
τ

 σ(cτ)

0
f ′′(u)


σ(τ) − u


L du + R2 + R1

for some R2 = R2(τ ) ∈ H satisfying ∥R2∥ ≤ ϵ. Calculating the last integral using (5.11), taking
the limit as τ → ∞ and letting ϵ → 0 we conclude that

lim
τ→∞

1
τ

 τ

0
a

σ(s)


ds = L . �

We will need yet another lemma:

Lemma 5.11. Let (X, B, µ, (T s)s∈R) be an ergodic continuous measure preserving R-action
and let b : R → R be a continuous function such that lims→∞ b(s) = 0. Let f ∈ L1(X) and let
(gs)s∈R be a family of functions in L∞(X) such that sups ∥gs∥L∞ < ∞. Then

lim
τ→∞

1
τ

 τ

0


X

f · gs dµ ds = lim
τ→∞

1
τ

 τ

0


X

T b(s) f · gs dµ ds

in the sense that the existence of one limit implies the existence of the other and the equality.

Proof. It suffices to show that

lim
s→∞


X


f − T b(s) f


· gs dµ = 0.
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Let M = sups ∥gs∥L∞ . Then we have
X


f − T b(s) f


· gs dµ

 ≤ M
 f − T b(s) f


L1

.

Since b(s) → 0 and T is a continuous action, we deduce that T b(s) f → f in L1(X) and hence

lim sup
s→∞


X


f − T b(s) f


· gs dµ

 ≤ M lim
s→∞

 f − T b(s) f


L1
= 0. �

The next proposition uses DT. The exact form we need follows from Theorem 2.12 by letting
G = R with its usual topology and the Lebesgue Haar measure λ, and letting (FN )N∈N be any
sequence of intervals [0, bN ] with bN → ∞.

Proposition 5.12. Let k, ℓ be positive integers and let (X, B, µ) be a probability space. For
each i ∈ {1, . . . , k} and j ∈ {1, . . . , ℓ} let (T s

i, j )s∈R : X → X be a continuous ergodic measure
preserving R-action and let qi, j : R → R be an admissible function. Assume that all the Ti, j
commute, that lim q ′

1,1(s) = 1 as s → ∞ and that lim q ′

i, j (s) = 0 for each (i, j) ≠ (1, 1).
If either k = 1, or k > 1 and Theorem 5.9 holds for k − 1, then for any f1, . . . , fk ∈ L∞(X)

with


X f1dµ = 0 we have

lim
τ→∞

1
τ

 τ

0

k
i=1


ℓ

j=1

T
qi, j (s)

i, j


fi


ds = 0.

Proof. With Theorem 2.12 in mind (with G = R and (FN )N∈N being any sequence of intervals

[0, τN ] with τN → ∞), let a(s) =
k

i=1

ℓ
j=1 T

qi, j (s)
i, j


fi


and h ∈ R. We have

⟨a(s + h), a(s)⟩ =


X

k
i=1


ℓ

j=1

T
qi, j (s+h)

i, j


fi ·


ℓ

j=1

T
qi, j (s)

i, j


fi


dµ

=


X

k
i=1


ℓ

j=1

T
qi, j (s)

i, j


fi ·


ℓ

j=1

T
qi, j (s+h)−qi, j (s)

i, j


fi


dµ.

The mean value theorem implies that lims qi, j (s + h) − qi, j (s) = 0 for each fixed h and every
(i, j) ≠ (1, 1), and also that lims q1,1(s + h) − q1,1(s) − h = 0 for any fixed h. In view of
Lemma 5.11 we have

lim
τ→∞

1
τ

 τ

0
⟨a(s + h), a(s)⟩ ds

= lim
τ→∞

1
τ

 τ

0


X


ℓ

j=1

T
q1, j (s)
1, j

 
f1 · T h

1,1 f1

·

k
i=2


ℓ

j=1

T
qi, j (s)

i, j

 
f 2
i


dµ ds. (5.13)

If k = 1 the expression (5.13) reduces to

lim
τ→∞

1
τ

 τ

0


X


ℓ

j=1

T
q1, j (s)
1, j

 
f1 · T h

1,1 f1


dµ ds.
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Using the fact that each T
q1, j (s)
1, j preserves µ, we have

lim
τ→∞

1
τ

 τ

0
⟨a(s + h), a(s)⟩ ds =


X


f1 · T h

1,1 f1


dµ. (5.14)

It follows from the mean ergodic theorem (see [53]) that the Cesàro limit in h of the right hand
side of (5.14) is


X f1dµ

2
= 0 and hence, by Theorem 2.12 the proof is complete.

Assume now that k > 1 and Theorem 5.9 is true for k −1. Since each Tk, j preserves µ we can

apply
ℓ

j=1 T
−qk, j (s)

k, j


to the right hand side of (5.13). Letting f̃1 = f1 · T h

1,1 f1 and f̃i = f 2
i

for i = 2, . . . , k − 1 we have

lim
τ→∞

1
τ

 τ

0
⟨a(s + h), a(s)⟩ ds

= lim
τ→∞

1
τ

 τ

0


X

k−1
i=1


ℓ

j=1

T
qi, j (s)

i, j T
−qk, j (s)

k, j


f̃i · f 2

k dµ ds. (5.15)

It is not hard to check that the right hand side of (5.15) satisfies the conditions of Theorem 5.9
with k − 1. Therefore

lim
τ→∞

1
τ

 τ

0
⟨a(s + h), a(s)⟩ ds =


X

f1 · T h
1,1 f1 dµ ·

k
i=2


X

f 2
i dµ.

By the mean ergodic theorem we get

lim
H→∞

1
H

 H

0
lim

τ→∞

1
τ

 τ

0
⟨a(s + h), a(s)⟩ ds dh =


X

f1 dµ

2

·

k
i=2


X

f 2
i dµ = 0.

The result in question follows now from Theorem 2.12. �

We can now prove Theorem 5.9:

Proof of Theorem 5.9. We proceed by induction. Assume that either k = 1, or k > 1 and the
theorem has been proved for k −1. After decomposing f1 =


X f1 dµ+g1, where


X g1 dµ = 0,

the left hand side of (5.6) becomes the sum of two terms. The first term is
X

f1 dµ · lim
τ→∞

1
τ

 τ

0

k
i=2


ℓ

j=1

T
pi, j (s)

i, j


fi


ds. (5.16)

Since we assumed that either k = 1, or the theorem holds for k − 1, it follows that (5.16) equals
the left hand side of (5.6) as desired. The second term in the decomposition is

lim
τ→∞

1
τ

 τ

0


ℓ

j=1

T
p1, j (s)

1, j


g1 ·

k
i=2


ℓ

j=1

T
pi, j (s)

i, j


fi


ds

and all that remains to prove is that it equals 0. Therefore we have reduced the Theorem to the
case when


X f1 dµ = 0.

Let σ be the inverse of p1,1. Since p1,1 is an admissible function, so is σ . Let qi, j = pi, j ◦ σ

for each i = 1, . . . , k and j = 1, . . . ℓ; observe that these are all admissible functions. Since for
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every (i, j) ≠ (1, 1), pi, j (s)/p1,1(s) → 0 as s → ∞, also qi, j (s)/s → 0 as s → ∞. In view of
Lemma 5.10, the left hand side of (5.6) can be replaced with

lim
τ→∞

1
τ

 τ

0

k
i=1


ℓ

j=1

T
qi, j (s)

i, j


fi


ds.

The result now follows from Proposition 5.12. �

6. A multiplicative variant of DT

Definition 6.1. A function F : N → C is multiplicative if for any coprime a, b ∈ N we have
F(ab) = F(a)F(b).

Classical examples of multiplicative functions include the Möbius function µ(n) and the
Liouville function λ(n). The Liouville function is defined by λ(p) = −1 for any prime p and
λ(ab) = λ(a)λ(b) for every a, b ∈ N. The Möbius function is equal to the Liouville function for
every squarefree number, and µ(n) = 0 whenever n is divisible by a perfect square k2 with k ≥ 2.
The following theorem, due to Kátai, has a clear similarity to DT, in the form of Theorem 2.4.

Theorem 6.2 ([49]). Let a : N → C be bounded and let F : N → N be a multiplicative
function. If for any distinct primes p, q,

lim
N→∞

1
N

N
n=1

a(pn)a(qn) = 0 (6.1)

then

lim
N→∞

1
N

N
k=1

a(n)F(n) = 0. (6.2)

Limiting statements of the form (6.2) are central to analytic number theory. For instance,
if a(n) ≡ 1 and F(n) = µ(n) (the Möbius function), then (6.2) is equivalent to the Prime
Number theorem. If a(n) is replaced with a periodic function, then (6.2) is equivalent to the
prime number theorem in arithmetic progressions. (Unfortunately, neither of these theorems can
be easily derived from Theorem 6.2.) For a(n) = e2π iαn , where α is irrational, an application of
Theorem 6.2 gives a Theorem of Daboussi (cf. [35]), stating that, for this choice of a(n), (6.2)
holds for any multiplicative function F . More generally, one can use Theorem 6.2 to deduce the
following result similar in spirit to (but much simpler than) the main result in [43]:

Theorem 6.3. Let f ∈ R[x] be a polynomial with an irrational coefficient (other than the
constant term) and let F : N → C be a bounded multiplicative function. Then

lim
N→∞

1
N

N
n=1

F(n)e2π i f (n)
= 0.

Proof. In view of Theorem 6.2 it suffices to show that (6.1) holds for a(n) = e2π i f (n). For any
primes p ≠ q, the map n → f (pn) − f (qn) is a polynomial with an irrational (non-constant)
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coefficient. Therefore

lim
N→∞

1
N

N
n=1

a(pn)a(qn) = lim
N→∞

1
N

N
n=1

e2π i


f (pn)− f (qn)


= 0

and this finishes the proof. �

7. Limits along ultrafilters

In this section we will use a variant of DT for limits along idempotent ultrafilters. Since Følner
sequences are only available in amenable groups, the form of DT in Theorem 2.12 does not apply
to non-amenable groups, such as a (non-commutative) free group or SL(n, Z). Nevertheless, it
is possible to study multiple recurrence in the setting of non-amenable groups through the use
of ultrafilters. The following definitions and facts about ultrafilters can be found, for instance, in
[9,47].

Definition 7.1. An ultrafilter on a countable group G is a family p of subsets of G which
is closed under intersections, supersets and which contains exactly one member of any finite
partition of G. The set of all ultrafilters is denoted by βG.

The set βG can be identified with the Stone–Čech compactification of G. In particular, the
operation on G can be lifted to βG. Of special interest are ultrafilters p ∈ βG which satisfy
p · p = p; such ultrafilters are called idempotent.

Given a map f : G → K from G to a compact Hausdorff space K and an ultrafilter p ∈ βG,
we denote by p-limg f (g) the (unique) point x ∈ K with the property that {g ∈ G : f (g) ∈ U } ∈

p for any neighborhood U of x . It follows easily from the definitions that for any f : G → K
from G to a compact Hausdorff space and for any p ∈ βG, p-limg f (g) exists and is unique.
One property which will be important for the exposition in this section is the following:

p-lim
g

p-lim
h

f (gh) = p-lim
g

f (g) whenever p ∈ βG is idempotent. (7.1)

The following proposition is the analog of Theorem 3.2 in the setting of limits along ultrafilters.
It appeared originally as Theorem 2.3 in [21].

Proposition 7.2. Let G be a countable group, let H be a Hilbert space, let u : G → H be a
bounded sequence and let p ∈ βG be an idempotent ultrafilter. Then

If p-lim
h

p-lim
g

⟨u(hg), u(g)⟩ = 0 then p-lim
g

u(g) = 0

where the last limit is in the weak topology.

The proof presented here is due to Schnell [58].

Proof. For each N ∈ N we have that

p-lim
g

u(g) = p-lim
g1

p-lim
g2

· · · p-lim
gN

1
N

N
k=1

u(gk · · · gN ).

Taking norms and using the Cauchy–Schwarz inequality, we get:p-lim
g

u(g)

2

≤ p-lim
g1

p-lim
g2

· · · p-lim
gN

1

N 2

 N
k=1

u(gk · · · gN )


2
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= p-lim
g1

p-lim
g2

· · · p-lim
gN

1

N 2


N

k=1

u(gk · · · gN ),

N
l=1

u(gl · · · gN )



=
1

N 2

N
k,l=1

p-lim
g1

p-lim
g2

· · · p-lim
gN

⟨u(gk · · · gN ), u(gl · · · gN )⟩ .

Now we use the fact that p is an idempotent ultrafilter to get:

=
1

N 2

N
k=1

p-lim
gk→∞

∥u(nk)∥
2
+

2

N 2


k<l

p-lim
gk→∞

p-lim
gl→∞

⟨u(gk gl), u(gl)⟩

=
1
N

p-lim
g→∞

∥u(g)∥2.

Since N can be chosen arbitrarily we conclude that p-limn→∞xn = 0. �

Proposition 7.2 can be used to give a quick proof of the following polynomial extension of
Khintchine’s recurrence theorem (see, for instance, [7, Theorem 5.1]).

Theorem 7.3 (Cf. [7, Theorem 3.12]). Let (X, µ, T ) be an invertible measure preserving system,
let q ∈ Z[x] be a polynomial satisfying q(0) = 0 and let p ∈ βZ be an idempotent ultrafilter.
Then there exists an orthogonal projection P : L2(X) → L2(X) such that for any f ∈ L2(X)

p-lim
n

f ◦ T q(n)
= P f in the weak topology.

In particular, for any ϵ > 0, the set R :=

n ∈ Z : µ(A ∩ T q(n) A) > µ(A)2

− ϵ


is in p and
hence non-empty.

In fact, Theorem 7.3 implies that R is an IP∗-set (see Definition 8.1). This result was first
obtained in [10] (see also Section 3 in [7]). One can deduce combinatorial corollaries from
recurrence results using Furstenberg’s correspondence principle (see [38,39,5]). In particular,
Theorem 7.3 implies that for any set A ⊂ N with positive upper density d̄(A) := lim sup |A ∩

[1, N ]|/N > 0 and for any q ∈ Z[x] with q(0) = 0, there exist many x, y ∈ N such that
{x, x + q(y)} ⊂ A.

Next we define the notion of a p-mixing measure preserving system.

Definition 7.4. Let G be a countable group and let p ∈ βG. A measure preserving system
(X, µ, (Tg)g∈G) is called p-mixing if for every f ∈ L2(X) we have p-limgTg f =


X f dµ in

the weak topology.
When G = Z and p ∈ βZ, a measure preserving system (X, µ, T ) is called totally p-mixing

if for every ℓ ∈ N the system (X, µ, T ℓ) is p-mixing. Equivalently, (X, µ, T ) is totally p-mixing
if for every f ∈ L2(X) and every ℓ ∈ N we have p-limnT ℓn f =


X f dµ in the weak topology.

7.1. A polynomial ergodic theorem for totally p-mixing systems

In this subsection we will use Proposition 7.2 to deduce the following result.

Theorem 7.5. Let p ∈ βN be an idempotent ultrafilter and let (X, µ, T ) be a totally p-mixing
measure preserving system. Let p1, . . . , pk ∈ Z[x] be polynomials such that for every i ≠ j , the
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polynomial pi − p j is not constant. For every f1, . . . , fk ∈ L∞(X) we have:

p-lim
n

k
i=1

T pi (n) fi =

k
i=1


X

fi dµ in the weak topology. (7.2)

If the system is p-mixing but not totally p-mixing, the conclusion of Theorem 7.5 may not
hold. In fact, there are p-mixing systems satisfying p-limnT 2n f = f for every f ∈ L2, see [14].

The proof of Theorem 7.5 utilizes the PET-induction scheme developed in [6]. Two
polynomials p1, p2 ∈ Z[x] are equivalent if they have the same degree and leading coefficient, in
other words, if p2−p1 has degree strictly smaller than p2. Given a finite family P = {p1, . . . , pk}

of polynomials, let d be the maximal degree of the pi and, for each j = 1, . . . , d let s j be the
number of equivalence classes in P of polynomials of degree j . The vector (s1, . . . , sd) is called
the characteristic vector of P . Since sd > 0, the characteristic vector is unique. For example, the
family P = {x, 2x − 1, 3x, x3

+ 2x2, x3
+ 1} has characteristic vector (3, 0, 1).

We order the characteristic vectors by letting (s1, . . . , sd) < (s̃1, . . . , s̃d̃) if and only if either
d < d̃ or both d = d̃ and the maximum j for which s j ≠ s̃ j satisfies s j < s̃ j . For example
(1, 2, 3) < (0, 0, 0, 1) and (9, 3, 5, 2, 4) < (1, 7, 6, 2, 4).

We can now prove Theorem 7.5.

Proof of Theorem 7.5. Theorem 7.5 We will prove this theorem by induction on the
characteristic vector of P = {p1, . . . , pk}. If P has characteristic vector (1), then P must consist
of a single linear polynomial and (7.2) holds trivially. Next assume that the characteristic vector
(s1, . . . , sd) of P is larger than the vector (1) and that Theorem 7.5 has been proved for any
family P̃ with a smaller characteristic vector. Without loss of generality we can assume that

X fi = 0 for every i = 1, . . . , k. We will also assume that the polynomials in P have 0 constant
term.

Let q ∈ P have the smallest degree. If we denote by e the degree of q , then se ≥ 1 and s j = 0
for each j < e.

Let un =


p∈P T p(n) f p. We need to show that p-limnun = 0. We consider separately two
cases.

Case 1 (e > 1). Let Q ⊂ P be the equivalence class of q . With Proposition 7.2 in mind, we look
at the inner product ⟨un+h, un⟩:

⟨un+h, un⟩ =


X


p∈P

T p(n+h) f p · T p(n) f p dµ

=


X


p∈P

T p(n+h)−q(n) f p · T p(n)−q(n) f p dµ

=


X

fq ·


p̃∈Ph

T p̃(n) f̃ p̃ dµ

where Ph is the family of polynomials consisting of the maps p̃ : n → p(n) − q(n)

for p ∈ P \ {q}, associated with the function f̃ p̃ = f p, and the maps p̃h : n →

p(n + h) − q(n) for any p ∈ P , associated with the function f̃ p̃ = f p.
Notice that, for every p ∈ P \ Q and every h ∈ N, the polynomial n → p(n) − q(n)

is equivalent to n → p(n + h)− q(n) and both have the same degree as p. Next, observe
that whenever p1, p2 ∈ P \ Q, the polynomial n → p1(n) − q(n) is equivalent to
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n → p2(n) − q(n) if and only if p1 is equivalent to p2. Finally note that if p ∈ Q,
then the degree of p(n) − q(n) and p(n + h) − q(n) is strictly smaller than e. Since
all polynomials in P have degree at least 2, the family Ph contains no two polynomials
p1, p2 whose difference p1 − p2 is a constant (for all but finitely many h). It follows
from the observations above that the characteristic vector of Ph is strictly smaller than
that of P . From the induction hypothesis we obtain

p-lim
n

⟨un+h, un⟩ =


X

fq

p-lim
n


p̃∈Ph

T p̃(n) f̃ p̃

 dµ = 0

and hence, the desired result p-limnun = 0 follows from the ultrafilter version of DT
(Proposition 7.2).

Case 2 (e = 1). In this case, for any p ∈ P with degree 1, the polynomials p(n) − q(n) and
p(n+h)−q(n) have a constant difference. To overcome this difficulty, let n → ai n, i =

1, . . . , s be all the polynomials of degree 1 in P , and assume that q(n) = a1n. Observe
that all the ai ∈ Z are distinct. Let Q be the set of polynomials in P with degree at least
2. We now have

⟨un+h, un⟩ =


X

s
i=1

T ai (n+h) fi · T ai n fi ·


p∈Q

T p(n+h) f p · T p(n) f p dµ

=


X

s
i=1

T (ai −a1)n


T ai h fi · fi


·


p∈Q

T p(n+h)−q(n) f p · T p(n)−q(n) f p dµ

=


X

T a1h f1 · f1 ·


p̃∈Ph

T p̃(n) f̃ p̃ dµ

where the family Ph consists of the polynomials p̃ : n → (ai − a1)n for i = 2, . . . , s,
associated with the function f̃ p̃ = T ai fi · fi together with the polynomials p̃ : n →

p(n) − q(n) and p̃h : n → p(n + h) − q(n), both associated with the function
f̃ p̃ = f̃ p̃h = f p.

Applying the same reasoning as in the first case we deduce that the family Ph has a
smaller characteristic vector than P . It follows from the induction hypothesis that

p-lim
n

⟨un+h, un⟩ =


X

T a1h f1 · f1 dµ ·


p∈Ph


X

f̃ p dµ.

Since each f̃ p ∈ L∞(X), the absolute value of the second term in this expression is
bounded, say by M . Hence we deduce that

p-lim
h

p-lim
n

⟨un+h, un⟩

 ≤ p-lim
h


X

T a1h f1 · f1 dµ

 · M = 0.

Finally, applying Proposition 7.2 we obtain the desired conclusion. �

Recall that a measure preserving system is called mildly mixing if for any f ∈ L2(X) and any
p = p + p ∈ βN we have p-limnT n f =


X f dµ. We note in passing that every mixing system

is mildly mixing and every mildly mixing system is weakly mixing, but both inclusions are strict
(see, for example [42]).
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Since for every idempotent p ∈ βN and ℓ ∈ N, the ultrafilter ℓp ∈ βN5 is also idempotent, it
follows that a mildly mixing system is in fact totally p-mixing for every idempotent ultrafilter p.
This allows us to deduce from Theorem 7.5 the following corollary:

Corollary 7.6. Let (X, µ, T ) be a mildly mixing measure preserving system and let p1, . . . , pk ∈

Z[x] be polynomials. If for every i ≠ j , the polynomial pi − p j is not constant, then for every
f1, . . . , fk ∈ L∞(X) we have (7.2). In particular, for every ϵ > 0 and f0 ∈ L2(X), the set

n :




X
f0 ·

k
i=1

T pi (n) fi dµ −

k
i=0


X

fi dµ

 < ϵ


is IP∗.

7.2. An ultrafilter analog of joint ergodicity

The mean ergodic theorem states that a measure preserving system (X, B, µ, T ) is ergodic
if and only if for every f ∈ L2(X), the averages 1

N

N
n=1 T n f converge in norm to


f dµ

as N → ∞. The following definition is an extension of the notion of ergodicity to several
transformations:

Definition 7.7. Let k ∈ N and let T1, . . . , Tk be invertible measure preserving transformations
on the same probability space (X, B, µ). We say that the maps T1, . . . , Tk are jointly ergodic if
for any f1, . . . , fk ∈ L∞(X)

lim
N→∞

1
N

N
n=1

T n
1 f1 · · · T n

k fk =


X

f1 dµ · · ·


X

fk dµ in L2.

The notion of joint ergodicity was introduced in [4], where the authors gave the following
necessary and sufficient conditions for a tuple of invertible commuting transformations to be
jointly ergodic.

Theorem 7.8 ([4]). Let k ∈ N and let T1, . . . , Tk be invertible measure preserving
transformations on the same probability space (X, B, µ). Then T1, . . . , Tk are jointly ergodic
if and only if all the transformations Ti T

−1
j and T1 × · · · × Tk are ergodic.

Later, in [24], the definition of joint ergodicity was (somewhat modified and) extended to
actions of more general groups. Let G be a countable group6 and let (T g

1 )g∈G , . . . , (T g
k )g∈G

be measure preserving actions of G on a probability space (X, B, µ). We say that these actions
commute if for any g, h ∈ G and i ≠ j we have T g

i T h
j = T h

j T g
i . Note that when G is non-

commutative, this equality may fail for i = j .
In the above setting, whenever 1 ≤ i ≤ j ≤ k, we denote by T g

[i, j] the measure preserving

map T g
[i, j] = T g

i T g
i+1 · · · T g

j . Observe that the commutativity assumption implies that

T g

[i, j]


g∈G

is an action of G.

5 The ultrafilter ℓp is defined by A ∈ ℓp ⇐⇒ A/ℓ ∈ p (where, in turn, A/ℓ is defined by x ∈ A/ℓ ⇐⇒ ℓx ∈ A).
6 In [24] the setup is that of general locally compact amenable groups.
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Definition 7.9. Let G be a countable amenable group, let (FN )N∈N be a Følner sequence in
G, let k ∈ N and let (T g

1 )g∈G , . . . , (T g
k )g∈G be commuting measure preserving actions of G

on a probability space (X, B, µ). The actions T1, . . . , Tk are called jointly ergodic if for every
f1, . . . , fk ∈ L∞(X)

lim
N→∞

1
|FN |


g∈FN

k
i=1

T g
[1,i] fi =

k
i=1


X

fi dµ in L2(X).

One has the following theorem.

Theorem 7.10 (Cf. [24, Theorems 2.4 and 2.6]). Let G be a countable amenable group, let
(FN )N∈N be a Følner sequence in G, let k ∈ N and let (T g

1 )g∈G , . . . , (T g
k )g∈G be commuting

measure preserving actions of G on a probability space (X, B, µ). Then the actions T1, . . . , Tk
are jointly ergodic if and only if

T g
[i, j]


g∈G are ergodic for every i ≤ j

and T1 × T[1,2] × · · · × T[1,k] is ergodic on (X k, B⊗k, µ⊗k).

One can show that when G = Z, Theorem 7.10 implies Theorem 7.8.
In this subsection we establish necessary and sufficient conditions, analogous to those

obtained in [4,24], for joint p-mixing.

Definition 7.11. Let G be a countable group, let p ∈ βG be an idempotent ultrafilter, let
k ∈ N and let (T g

1 )g∈G , . . . , (T g
k )g∈G be commuting measure preserving actions of G on a

probability space (X, B, µ). The actions T1, . . . , Tk are called jointly p-mixing if for every
f1, . . . , fk ∈ L∞(X)

p-lim
g

k
i=1

T g
[1,i] fi =

k
i=1


X

fi dµ weakly in L2(X). (7.3)

Theorem 7.12. Let G be a countable group, let p ∈ βG be an idempotent ultrafilter, let k ∈ N
and let (T g

1 )g∈G , . . . , (T g
k )g∈G be commuting measure preserving actions of G on a probability

space (X, B, µ). Then the actions T1, . . . , Tk are jointly p-mixing if and only if
T g

[i, j]


g∈G are p-mixing for every i ≤ j. (7.4)

Proof. We first prove that (7.4) implies joint p-mixing, i.e., (7.3). We proceed by induction on
k ∈ N. When k = 1, (7.3) reduces to the very definition of p-mixing.

Assume now that the result has been proved for k − 1 transformations. Since both sides of
(7.3) are linear on each fi , and for constant fk the result follows by induction, we can reduce the
statement to the case when


X fk dµ = 0. Now the right hand side of (7.3) vanishes, so all we

need to show is that p-limgug = 0, where ug =
k

i=1 T g
[1,i] fi . In order to obtain this we will

resort to DT, in the form of Proposition 7.2. Let h ∈ G be an arbitrary element different from the
identity.

⟨ugh, ug⟩ =


X

k
i=1

T gh
[1,i] fi · T g

[1,i] fi dµ
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=


X

k
i=1

T g
[1,i]


T h

[1,i] fi · fi


dµ

=


X

T g
1


T h

1 f1 · f1 ·

k
i=2

T g
[2,i]


T h

[1,i] fi · fi


dµ

=


X

T h
1 f1 · f1 ·

k
i=2

T g
[2,i]


T h

[1,i] fi · fi


dµ.

Putting T̃i = Ti+1 and f̃i = T h
[1,i+1]

fi+1 · fi+1 for each i = 1, . . . , k − 1, observe that

T̃[i, j] = T[i+1, j+1]. In particular, by induction we obtain that

p-lim
g

k
i=2

T g
[2,i]


T h

[1,i] fi · fi


= p-lim

g

k−1
i=1

T̃ g
[1,i] f̃i =

k−1
i=1


X

f̃i dµ

and hence we deduce that

p-lim
g

⟨ugh, ug⟩ =


X

T h
1 f1 · f1 ·

k−1
i=1


X

f̃i dµ =

k
i=1


X

T h
[1,i] fi · fi dµ.

Finally, taking the p-lim in h we conclude that

p-lim
h

p-lim
g

⟨ugh, ug⟩ =

k
i=1


X

fi dµ

2

= 0

and the result follows from Proposition 7.2.
Now we prove that joint p-mixing implies (7.4). It follows directly from (7.3), putting all

functions but one equal to the constant 1, that for any i one has p-limgT g
[1,i] f =


X f dµ.

In particular T[1,i] is p-mixing for every i . Next, let 1 < i ≤ j ≤ k and let f ∈ L∞(X).
We can assume, without loss of generality, that


X f dµ = 0, and we need to show that

f̃ := p-limgT g
[i, j] f is equal to 0 (where the limit is in the weak topology of L2(X)).

Take f j = f , fi−1 = f̃ and fr = 1 for all the other r . Then from (7.3) we obtain

0 =


X

f dµ


X

f̃ dµ = p-lim
g

k
r=1

T g
[1,r ]

fr = p-lim
g

T g
[1,i−1]


f̃ · T g

[i, j] f


=


X


f̃
2 dµ.

We conclude that indeed f̃ = 0. Observe that in order to invoke (7.3) we used implicitly the
(easily checkable) fact that f̃ ∈ L∞. �

8. A topological variant of the difference theorem

As we have seen in previous sections, several versions of DT are useful in the study of multiple
recurrence in ergodic theory. The phenomenon of (multiple) recurrence can also be studied from
a topological standpoint. In this setting there is no good analog of ergodic averages, and hence the
Hilbertian DT (Theorem 2.12) does not apply. Nevertheless, one can still adapt the fundamental
idea of complexity reduction present in DT to this setup. This method was developed in [16],
with a somewhat related ideas appearing earlier in [27].
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Definition 8.1. Let F denote the family of all finite non-empty subsets of N. Given an increasing
sequence (nk)k∈N we define the IP-set generated by (nk) to be the (image of the) map n : F → N
defined by nα =


k∈α nk . A set A ⊂ N is called an IP∗ set if it has nonempty intersection with

every IP-set.

A famous theorem of Hindman [46] states that for any finite partition of an IP-set, one of the
cells of the partition contains an IP-set. Equivalently, it states that a finite intersection of IP∗ sets
is still an IP∗ set.

In this section we will deal with topological dynamical systems, namely with pairs (X, T )

where X is a compact Hausdorff space and T : X → X is a homeomorphism. The system
(X, T ) (or the map T ) is called minimal if there is no non-empty compact subset Y ⊂ X such
that T −1Y ⊂ Y .

Definition 8.2. A family of sequences A = {a1(n), . . . , ak(n)} of integers is a family of multiple
IP topological recurrence if for any minimal system (X, T ), any non-empty open set U ⊂ X and
any IP set (nα)α∈F , there exists α ∈ F such that

U ∩ T −a1(nα)U ∩ · · · ∩ T −ak (nα)U ≠ ∅.

Equivalently, A is a family of multiple IP topological recurrence if the set

{n ∈ Z : U ∩ T −a1(n)U ∩ · · · ∩ T −ak (n)U ≠ ∅}

is an IP∗ set.

Remark 8.3. It is an easy consequence of Hindman’s theorem that whenever {a1(n), . . . , ak(n)}

and {b1(n), . . . , bℓ(n)} are families of multiple IP topological recurrence, (X, T ), (Y, S) are
minimal systems and U ⊂ X , V ⊂ Y are open sets, there exists n ∈ N such that

U ∩ T −a1(n)U ∩ · · · ∩ T −ak (n)U ≠ ∅ ≠ V ∩ Sb1(n)V ∩ · · · ∩ S−bℓ(n)V .

In fact, the set of such n is IP∗.

Multiple IP topological recurrence has strong connections with combinatorics. This
connection between topological dynamics and Ramsey theory was established by Furstenberg
and Weiss in [41]. Using the methods developed in [41] one can show that if {a1(n), . . . , ak(n)} is
a family of multiple IP topological recurrence, then for any finite partition of the natural numbers
N = C1 ∪ · · · ∪ Cr there exist i ∈ {1, . . . , r}, x ∈ Ci and n ∈ N such that x + a j (n) ∈ Ci for
every j = 1, . . . , k. Moreover, n can be chosen from any prescribed IP-set.

Definition 8.4. A subset S ⊂ N is syndetic if it has bounded gaps7; in other words if for some
n ∈ N, the union S ∪ (S − 1) ∪ · · · ∪ (S − n) = N. A set T ⊂ N is thick if it contains arbitrarily
long intervals. A set A ⊂ N is called piecewise syndetic if it is the intersection A = S ∩ T of a
syndetic set S and a thick set T .

For any finite partition of a piecewise syndetic set, one of the cells is piecewise syndetic. More
generally, for any semigroup G, a set S ⊂ G is called (left) syndetic if there exists a finite set
F ⊂ G such that F−1S := {g ∈ G : ∃x ∈ F s.t. xg ∈ S} = G. A set T ⊂ G is called (right)
thick if it has non-empty intersection with every syndetic set and a set A ⊂ G is called piecewise
syndetic if it equals the intersection of a syndetic set and a thick set.

7 Note that a set S ⊂ N is syndetic if and only if it has positive lower Banach density (cf. Definition 4.1).
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One can show that if {a1(n), . . . , ak(n)} is a family of multiple IP topological recurrence
and A ⊂ N is a piecewise syndetic set, then there exist x ∈ A and n ∈ N such that

x, x + a1(n), . . . , x + ak(n)


⊂ A. Moreover, n can be chosen from any prescribed IP-set.
The family {a(n)} consisting the single degenerated sequence a(n) ≡ 0 is trivially a family of

multiple IP topological recurrence. The following key lemma, which is the analog of DT in this
setting, will allow us to quickly obtain some interesting applications:

Lemma 8.5 (Reduction of Complexity (IP Version)). Let {a1(n), . . . , as(n)}, n ∈ N be a finite
family of sequences of positive integers and put aℓ(0) = 0 for all ℓ = 1, . . . , s. If for any finite
set F ⊂ N ∪ {0} the family of sequences

n → aℓ(n + h) − a1(n) − aℓ(h) | h ∈ F, ℓ ∈ {1, . . . , s}


is a family of multiple IP topological recurrence, then so is the family {a1(n), . . . , ak(n)}, n ∈ N.

Proof. Let X be a compact Hausdorff space, let T : X → X be a minimal homeomorphism and
let U ⊂ X be a non-empty open set. Since the system is minimal, there exists some r ∈ N such
that U ∪ T −1U ∪ T −2U ∪· · ·∪ T −r U = X . Let (nα)α∈F be an arbitrary IP-set in N. Let α1 ∈ F
be arbitrary, let U1 = U and t1 = 0. For each k ∈ N we will construct inductively αk ∈ F ,
tk ∈ {0, . . . , r} and Uk ⊂ T −tk U a non-empty open set such that

T −aℓ(nα j+1∪α j+2∪···∪αk )U j ⊃ Uk for each j < k and ℓ ∈ {1, . . . , s}. (8.1)

For simplicity, whenever j ≤ k, denote nα j+1∪α j+2∪···∪αk by m j,k , with the understanding
that mk,k = 0. Assume we have already chosen αi , ti , Ui for i < k. Consider the family of
sequences of the form n → aℓ(n + m j,k−1) − a1(n) − aℓ(m j,k−1) for each j ∈ {1, . . . , k − 2}

and ℓ ∈ {1, . . . , s}. By hypothesis this is a family of multiple IP topological recurrence, so there
exists some αk ∈ F , disjoint from


i<k αi and such that

Vk :=

s
ℓ=1

k−1
j=1

T −


aℓ(nαk +m j,k−1)−a1(nαk )−aℓ(m j,k−1)


Uk−1 ≠ ∅. (8.2)

Next choose tk ∈ {0, . . . , r} such that Uk := T −a0(nαk )Vk ∩T −tk U ≠ ∅. To see how (8.1) follows
from (8.2), let x ∈ Uk , let ℓ ∈ {1, . . . , s} and let j < k. If j = k − 1 then the first inclusion
below degenerates to a trivial equality. In any case we have:

T −aℓ(m j,k )U j = T −a1(nαk )T −


aℓ(m j,k )−a1(nαk )−aℓ(m j,k−1)


T −aℓ(m j,k−1)U j

⊃ T −a1(nαk )T −


aℓ(m j,k )−a1(nαk )−aℓ(m j,k−1)


Uk−1

⊃ T −a1(nαk )Vk

⊃ Uk .

Finally, take k > j such that tk = t j =: t (such a pair must exist since each ti belongs to the
finite set {0, . . . , r}). From (8.1) it follows that T −aℓ(m j,k )U j ⊃ Uk for each ℓ ∈ {1, . . . , s},
which implies that Uk ⊂ (T −tU ) ∩ T −aℓ(m j,k )(T −tU ) = T −t (U ∩ T −aℓ(m j,k )U ) and therefore

∅ ≠ T t (Uk) ⊂ U ∩

s
ℓ=1

T −aℓ(m j,k )U. �
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Remark 8.6. One can state and prove the previous lemma (using the same method) for the case
of regular (i.e., not IP) recurrence, weakening both the assumptions and the conclusion.

We now present some applications of Lemma 8.5.

Theorem 8.7 (Topological IP Van der Waerden Theorem (Cf. [41, Theorem 3.2])). Let (X, T )

be a minimal system and let U ⊂ X be a non-empty open set. Then for any k ∈ N and any IP-set
(nα)α∈F there exists α ∈ F such that

U ∩ T −nαU ∩ T −2nα ∩ · · · ∩ T −knαU ≠ ∅.

Proof. We prove the claim by induction on k. The case k = 0 is vacuously true. Next assume the
result is true for k − 1. We want to show that the family of sequences {n, 2n, . . . , kn} is a family
of multiple IP topological recurrence. Letting aℓ(n) = ℓn we see that aℓ(n+h)−a1(n)−aℓ(h) =

(ℓ − 1)n for any h ∈ N ∪ {0}. Therefore for any finite subset F ⊂ N ∪ {0} we have
n → aℓ(n + h) − a1(n) − aℓ(h) | h ∈ F, ℓ ∈ {1, . . . , s}


⊂ {0, n, 2n, . . . , (k − 1)ℓ}.

By the induction hypothesis, this is a family of multiple IP topological recurrence. It follows
from Lemma 8.5 that {n, 2n, . . . , kn} is also a family of multiple IP topological recurrence,
which finishes the proof. �

As a corollary we obtain van der Waerden’s celebrated theorem [62] stating that for any finite
partition N = C1 ∪ · · · ∪ Cr , one of the cells Ci contains arbitrarily long arithmetic progressions
(Theorem 8.7 actually implies that any piecewise syndetic set contains arbitrarily long arithmetic
progressions). Moreover, the common difference can be chosen from any prescribed IP-set.

Theorem 8.8 (Topological IP Sárközy Theorem (Cf. Section 1.3 in [16])). Let (X, T ) be a
minimal system and let U ⊂ X be a non-empty open set. Then for any IP-set (nα)α∈F there
exists α ∈ F such that

U ∩ T −n2
αU ≠ ∅.

Proof. We need to show that the family {n2
} consisting of a single sequence a1(n) = n2, n ∈ N

is a family of IP topological recurrence; we will use Lemma 8.5 to that end. Let F ⊂ N ∪ {0} be
an arbitrary finite set and let k = 2 max F . One can easily check that

n → a1(n + h) − a1(n) − a1(h) | h ∈ F


⊂ {0, n, 2n, . . . , kn}.

It follows from Theorem 8.7 that this is a family of multiple IP topological recurrence. Applying
Lemma 8.5 we conclude that {n2

} is a family of IP topological recurrence as desired. �

A combinatorial corollary of Theorem 8.8 states that any piecewise syndetic set A ⊂ N
contains a pair of the form {x, x + n2

} (this result also follows from a stronger statement first
obtained independently by Furstenberg [38] and Sárközy [57], which involves sets of positive
upper density in N). In addition, n can be chosen from any prescribed IP-set.

A finitistic analog of IP-sets is IPs-sets, defined as follows: let s ∈ N and denote by
Fs the family of non-empty subsets of {1, . . . , s}. Given an increasing sequence (nk)

s
k=1

of natural numbers, define the map n : Fs → N by the formula nα =


k∈α nk . The
IPs-set generated by (nk) is the set {nα : α ∈ Fs}. A set A ⊂ N that intersects non-trivially
any IPs set is called an IP∗

s set. There exists an analog of Hindman’s theorem, stating that the
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intersection of two IP∗
s -sets contains an IP∗

r -subset, for some r which depends only on s (and in
particular the intersection is non-empty; for a proof of this fact see, for instance, [25]).

Using the PET induction scheme and applying Lemma 8.5 repeatedly, one can prove the
general IP polynomial van der Waerden theorem, i.e., the fact that any family {a1(n), . . . , ak(n)}

where each ai ∈ Z[x] and ai (0) = 0 is a family of multiple IP topological recurrence (see [16]).
One actually has the following ostensibly stronger theorem (see [16] and [18, Theorem 7]).

Theorem 8.9. Let X be a compact Hausdorff space, let k ∈ N, let T1, . . . , Tk : X → X be
commuting minimal homeomorphisms, and let U ⊂ X be a non-empty open set. Then for any
p1, . . . , pk ∈ Z[x] with pi (0) = 0 there exists s ∈ N such that the set

n ∈ N : U ∩ T −p1(n)

1 U ∩ · · · ∩ T −pk (n)
k U ≠ ∅


is IP∗

s

On the other hand, even the family consisting of the single function a(n) = ⌊nα
⌋ where

α ∈ (0, 1) is not a family of multiple IP topological recurrence. In order to study recurrence
along such sequences we will make use of the notion of central∗ sets in a semigroup. We refer
the reader to [12, Definition 3.1 (b)] for a definition of central sets. A subset of a semigroup is
called a central∗ set if it has non-empty intersection with every central set. The only properties
of central∗ sets that we will need are listed in the following proposition.

Proposition 8.10. (1) If A, B are central∗, then so is the intersection A ∩ B.
(2) If φ : S → R is a semigroup isomorphism and C ⊂ S is central∗, then so is φ(C) ⊂ R.
(3) [13, Theorem 3.5] If A ⊂ N is an IP∗

s set, then A is central∗ in the semigroup (N, ×).

We prove below the following theorem:

Theorem 8.11. Let k, m ∈ N, let X be a compact Hausdorff space, let k ∈ N, let T1, . . . , Tk :

X → X be commuting minimal homeomorphisms, let U ⊂ X be a nonempty open set and, for

each i ∈ {1, . . . , k} let ai ∈ Z[x] with ai (0) = 0 and let bi (n) =


ai


n1/m


. Then the set

n : U ∩ T −b1(n)
1 U ∩ · · · ∩ T −bk (n)

k U ≠ ∅


is central∗ in the semigroup of mth powers,

{nm

: n ∈ N}, ×

.

Corollary 8.12. Let k, t, m ∈ N. For each j ∈ {1, . . . , t} let X j be a compact Hausdorff space,
let T j,1, . . . , T j,k : X j → X j be commuting minimal homeomorphisms, let U j ⊂ X j be open

and, for each i ∈ {1, . . . , k} let a( j)
i ∈ Z[x] with a( j)

i (0) = 0 and let b( j)
i (n) =


a( j)

i


n1/m


.

Then there exists n ∈ N such that for each j ∈ {1, . . . , t} we have

U j ∩ T
−b( j)

1 (n)

j,1 U j ∩ · · · ∩ T
−b( j)

k (n)

j,k U j ≠ ∅.

Here is a combinatorial application of Corollary 8.12.

Corollary 8.13. Let k, t, m ∈ N. For each j ∈ {1, . . . , t} let A j ⊂ Nk be a piecewise syndetic set

and, for each i ∈ {1, . . . , k} let a( j)
i ∈ Z[x] with a( j)

i (0) = 0 and let b( j)
i (n) =


a( j)

i


n1/m


.
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Then there exists n ∈ N such that for each j ∈ {1, . . . , t} there exists x j ∈ Nk such that
x j + b( j)

i (n) · ei : i ∈ {1, . . . , k}


⊂ A j

where {e1, . . . , ek} form the canonical basis for Nd .

Proof of Theorem 8.11. Let

Ra :=


n :

k
i=0

T −ai (n)U ≠ ∅


and Rb :=


n :

k
i=0

T −bi (n)U ≠ ∅


.

It follows from Theorem 8.9 that Ra is an IP∗
s set for some s ∈ N. Hence, by [13, Theorem 3.5]

we deduce that Ra is central∗ in the semigroup (N, ×). Let R = {nm
: n ∈ Ra}.

It is clear that R ⊂ Rb. It thus suffices to show that R is a central∗ subset of the semigroup
{nm

: n ∈ N}, ×

. Indeed, the map n → nm is a semigroup isomorphism between (N, ×) and

{nm
: n ∈ N}, ×


, and hence the image of any central∗ set is again a central∗ set in the image

semigroup. �

We conclude this section (and the paper) with a concrete example illustrating Corollary 8.13.

Example 8.14. For any piecewise syndetic sets A, B ⊂ N there exist x, y, n ∈ N such that
x, x + ⌊

√
n⌋, x + ⌊n7/2

⌋


⊂ A


y, y + ⌊n5/2
⌋, y + ⌊n7/2

⌋


⊂ B.
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