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It is possible to formulate the polynomial Szemerédi theorem as follows: Let
qi(x) ∈ Q[x] with qi(Z) ⊂ Z, 1 ≤ i ≤ k. If E ⊂ N has positive upper density
then there are a, n ∈ N such that {a, a+q1(n)−q1(0), a+qk(n)−qk(0)} ⊂ E.
Using methods of abstract ergodic theory, topological algebra in βN, and
some recently-obtained knowledge concerning the relationship between trans-
lations on nilmanifolds and the distribution of bounded generalized poly-
nomials, we prove, among other results, the following extension, valid for
generalized polynomials (functions obtained from regular polynomials via
iterated use of the floor function). Let qi(x) be generalized polynomials,
1 ≤ i ≤ k, and let p ∈ βN be an idempotent ultrafilter all of whose mem-
bers have positive upper Banach density. Then there exist constants ci,
1 ≤ i ≤ k, such that if E ⊂ Z has positive upper Banach density then the
set

{

n ∈ N : ∃ a ∈ Z with {a, a+ q1(n)− c1, a+ qk(n)− ck} ⊂ E
}

belongs to
p. As part of the proof, we also obtain a new ultrafilter polynomial ergodic
theorem characterizing weak mixing.

1. Introduction.

1.1. In this paper we establish new results concerning multiple mixing for weakly mixing
measure preserving systems. These results, in turn, lead to new extensions of Szemerédi’s
theorem on arithmetic progressions, while at the same time allowing for simplified pre-
sentations of some known extensions. We employ methods introduced in [BM3] involving
idempotent ultrafilters and IP systems; here, however, we shall concern ourselves with poly-
nomial structures as well, specifically VIP systems and generalized polynomials. Because
some of this material (the methods, not the results) is semi-esoteric, we offer a brief review
of it in this introductory section.

Furstenberg’s ergodic-theoretic approach to Szemerédi’s theorem.

1.2. Given a set E ⊂ N, its upper Banach density is given by (Definition 2.20 below)

d∗(E) = lim sup
N−M→∞

|E ∩ {M,M + 1, . . . , N − 1}|
N −M

.

Szemerédi’s theorem ([S]) states that if d∗(E) > 0 then E contains arbitrarily long arith-
metic progressions. Furstenberg gave a new proof of this result based on a correspondence
principle linking density combinatorics with (multiple) recurrence for measure preserving
systems and the following theorem.

Convention: All measure preserving systems we consider in this paper will be assumed to
be invertible probability measure preserving systems.
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1.3. Theorem ([F1]). For any k ∈ N, any measure preserving system (X,A, µ, T ) and
any A ∈ A with µ(A) > 0, one has

lim inf
N−M→∞

1

N −M

N−1
∑

n=M

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

Combining the above theorem with a correspondence principle of Furstenberg, one
gets the (at the time new) fact that if d∗(E) > 0 then the set of difference of progressions
in E, that is, the set of n for which there exists a for which {a, a+ n, . . . , a+ kn} ⊂ E, is
syndetic (meaning it intersects any long enough interval).

Weakly mixing transformations and polynomial extensions.

1.4. Furstenberg’s proof of Szemerédi’s theorem utilized a new structure theorem for mea-
sure preserving systems based on weak mixing and its complementary notion, compactness.
(An invertible probability measure preserving system (X,A, µ, T ) is weakly mixing if the
unitary operator T : L2(X) → L2(X) defined by Tf(x) = f(Tx) has no non-constant
eigenfunctions.) The following theorem is representative of the important contribution
weak mixing makes to proofs of this kind.

Theorem ([F1]). Let (X,A, µ, T ) be an invertible weakly mixing measure preserving
system. For any f0, f1 . . . , fk ∈ L∞(X), one has

lim
N−M→∞

1

N −M

N−1
∑

n=M

∫

f0T
nf1T

2nf2 · · ·T knfk dµ =
k

∏

i=0

∫

fi dµ.

Indeed, as an important extreme case of Theorem 1.3, one can derive from the above
result that for A0, A1, . . . , Ak ∈ A, one has

lim
N−M→∞

1

N −M

N−1
∑

n=M

|µ(A0 ∩ T−nA1 ∩ · · · ∩ T−knAk) −
k

∏

i=0

µ(Ai)| = 0,

which in turn implies that for any ǫ > 0 the set

R = {n ∈ Z : |µ(A0 ∩ T−nA1 ∩ · · · ∩ T−knAk) −
k

∏

i=0

µ(Ai)| < ǫ}

has uniform Banach density one (meaning its complement has upper Banach density zero).
An extension was proved in [B2]:

1.5. Theorem. Let (X,A, µ, T ) be a weakly mixing system, let k ∈ N and let pi ∈ Z[n]
be polynomials such that no pi and no pi − pj is constant, 1 ≤ i 6= j ≤ k. Then for any
f1, . . . , fk ∈ L∞(X),

lim
N−M→∞

∣

∣

∣

∣

∣

∣

1

N −M

N−1
∑

n=M

T p1(n)f1T
p2(n)f2 · · ·T pk(n)fk −

k
∏

i=1

∫

fi dµ
∣

∣

∣

∣

∣

∣
= 0.
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The above theorem again provided a proof for a key extreme case of a polynomial
extension of Szemerédi’s theorem obtained in [BL1]. (We mention that results of [BL1]
actually extend the multidimensional Szemerédi theorem obtained in [FK1]. In this paper,
we are limiting ourselves to configurations in Z.) A refinement of a special case of [BL1]
is given by the following formulation, from [BM1]:

1.6. Theorem. For any invertible measure preserving system (X,A, µ, T ), any k ∈ N,
polynomials qi ∈ Z[n] with qi(0) = 0, 1 ≤ i ≤ k, and any A ∈ A with µ(A) > 0, one has

lim inf
N−M→∞

1

N −M

N−1
∑

n=M

µ(A ∩ T q1(n)A ∩ · · · ∩ T qk(n)A) > 0.

The conclusion of Theorem 1.6 implies in particular that the set

R =
{

n ∈ Z : µ(A ∩ T q1(n)A ∩ · · · ∩ T qk(n)A) > 0
}

is syndetic. It is natural now to ask how much of the “largeness” of sets having the form of
R is captured by the predicate “syndetic.” At first blush, perhaps quite a bit; upon further
reflection, however, one sees that the family of syndetic sets lacks the filter property, which
the family of sets R can be checked to have quite easily (consider product systems). In
this paper, we upgrade Theorem 1.6 first of all by making it apply to a wider class of
functions qi; even more significantly, however, we obtain, for a natural portion of this
class, an improvement (having the filter property) upon syndeticity for the set R.

Generalized polynomials and weak mixing.

1.7. We denote the floor function by [·]; that is, [x] is the greatest integer not exceeding
x. We write {·} for fractional part; that is, {x} = x− [x], and 〈x〉 = |x− [x+ 1

2 ]| for the
distance from x to the nearest integer. We denote by G the smallest family of functions
N → Z containing Z[n] that forms an algebra under addition and multiplication and
having the property that for every f1, . . . , fr ∈ G and c1, . . . , cr ∈ R, [

∑r
i=1 cifi] ∈ G. (In

other words, G contains all functions that can be obtained from regular polynomials with
the help of the floor function and the usual arithmetic operations.)

The members of G are called generalized polynomials, and they appear quite naturally
in diverse mathematical situations, from symbolic dynamics to Diophantine approxima-
tion to the theory of mathematical games. Unlike conventional polynomials, generalized
polynomials needn’t be eventually monotone (consider [[nα]nβ] − [n2αβ]), may take only
finitely many values (for example, [(n + 1)α] − [nα] − [α] takes on only the values 0 and
1), and may vanish on sets of positive density while growing without bound on other such
sets (multiply the previous example by n).

Comment. Alternatively, one could consider functions Z → Z; we are restricting the
domain of our generalized polynomials to N, in part because it is convenient for us to
deal with βN rather than with βZ (see below). However, any results we obtain for N can
be extended to Z by considering the reflected functions g(n) = f(−n) for n < 0. More
generally, it is possible to define generalized polynomials to be functions Zr → Zt, and
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obtain results for configurations in positive density subsets of Zt, with largeness conditions
on the set of parameters in Zr. This is done at essentially no extra cost in [Mc2], where
a non-classical IP structure theory must be used whether one restricts to the Z case or
not. We are choosing not to do it here, as the classical Furstenberg structure theory for
Z actions, which we do use, is simpler than the structure theory for general Zt actions.
(A similar choice for economy was made in [BM1], which like the present paper sought to
present a new technique while avoiding minutiae where possible.)

1.8. Despite the oddities canvassed in the previous subsection, exciting new evidence has
begun to emerge that generalized polynomials do possess certain strong regularities, as the
following sample from [BL3] attests.

Theorem.

1. For any unitary operator U on a Hilbert space H, any f ∈ H and any g ∈ G,
limN−M→∞

1
N−M

∑N−1
n=M Ug(n)f exists in the norm topology.

2. There exists a unique invariant mean on the algebra of bounded generalized polynomials.

3. For any bounded generalized polynomial g ∈ G, there exists a translation T on a
nilmanifold X (that is, X = N/Γ, where N is nilpotent Lie group and Γ a cocompact
lattice), and a Riemann integrable (actually, piecewise polynomial) function f : X → R
such that g(n) = f(Tnx) for all n ∈ Z.

Encouraged by 1. in the previous theorem, one may naturally hope for a version
of Theorem 1.5 for generalized polynomials. However, one notices immediately that the
situation with G is more complicated; indeed it is easy to show that a necessary condition
on generalized polynomials {q1, . . . , qk} satisfying the conclusion of the theorem is that
no qi nor qi − qj be constant on a set of positive upper Banach density. (Non-trivial
generalized polynomials that vanish on sets of positive density are abundant; e.g. q(n) =
[2(πn− [πn])]n.) A serious attempt to obtain a satisfactory extension was undertaken in
[BK], and for many special classes of generalized polynomials, was met with success. In the
course of these investigations, no examples emerged showing that the obvious necessary
condition is not also sufficient. This led to the following conjecture.

1.9. Conjecture. If pi are generalized polynomials, 1 ≤ i ≤ k, such that no pi and no
pi − pj , 1 ≤ i 6= j ≤ k, is constant on a set of positive upper Banach density, then for any
weakly mixing system (X,A, µ, T ) and any Ai ∈ A, 0 ≤ i ≤ k, one has

lim
N−M→∞

1

N −M

N−1
∑

n=M

∣

∣µ(A0 ∩ T p1(n)A1 ∩ · · · ∩ T pk(n)Ak) −
k

∏

i=0

µ(Ai)
∣

∣ = 0.

Moreover, for any ǫ > 0, the set

{

n :
∣

∣µ(A0 ∩ T p1(n)A1 ∩ · · · ∩ T pk(n)Ak) −
k

∏

i=0

µ(Ai)
∣

∣ < ǫ
}

has uniform upper Banach density one.
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Unfortunately, we are unable to resolve the foregoing conjecture at this time. However,
as we will show, a counterpart of the conjecture, in which uniform Cesàro convergence
is replaced by convergence along certain types of ultrafilters, is true for weakly mixing
systems. This result, in addition to enhancing our knowledge about weak mixing, also
opens the door to new extensions of Szemerédi’s theorem.

Ultrafilters: topological algebra in βN.

1.10. In the next few subsections, we develop needed facts concerning βN. For more
information, see e.g. [HS] or [Be2].

A filter on N is a family p ⊂ P(N) satisfying the following conditions.

(i) ∅ 6∈ p,

(ii) If A ∈ p and A ⊂ B then B ∈ p,

(iii) If A ∈ p and B ∈ p then (A ∩B) ∈ p.

If also

(iv) If N = A ∪B and A 6∈ p then B ∈ p,

then p is an ultrafilter. We denote the family of ultrafilters on N by βN. (By a routine
application of Zorn’s lemma, any filter is contained in an ultrafilter; however, one cannot
construct non-principal (see below) ultrafilters without using some form of the axiom of
choice.)

Comment. We find it intuitively useful to identify p ∈ βN with the {0, 1}-valued, finitely
additive probability measure µp on the power set of N, defined by µp(A) = 1 if and only
if A ∈ p.

1.11. Given A ⊂ N, let A = {p ∈ βN : A ∈ p}. The family {A : A ⊂ N} forms a basis
for a compact Hausdorff topology on βN having the following properties:

1. Identify each n ∈ N with the principal ultrafilter pn = {A ⊂ N : n ∈ A}. This gives an
embedding for which one has N = βN.

2. For A ⊂ N and n ∈ N, put A− n = {m ∈ N : m + n ∈ A}. Define a binary operation
+ on βN by the rule A ∈ p+ q if and only if {n : (A− n) ∈ p} ∈ q. (When ultrafilters are
viewed as measures, this is just convolution.) Then +, so defined, is associative (though
not commutative), and is an extension of addition on N.

3. For fixed p ∈ βN, the map q → p + q is continuous. Thus we say that (βN,+) is a
compact left topological semigroup.

1.12. By a theorem of Ellis ([El]), any compact Hausdorff left topological semigroup has
an idempotent p = p + p. Note that A ∈ p if and only if {n : (A − n) ∈ p} ∈ p. In other
words, µp has a sort of shift-invariance property: µp(A) = 1 if and only if for p-many n,
µp(A − n) = 1. Coupling this observation with iterated use of the Poincaré recurrence
theorem (which holds for finitely additive measures), one obtains a simple proof of the
following theorem of N. Hindman (the original proof was quite involved; see [H]).

1.13. Theorem. Let r ∈ N and let N =
⋃r

i=1 Ci. Then for some i, 1 ≤ i ≤ r, Ci

contains the set of finite sums of an infinite sequence (xj), namely a set of the form

FS
(

{xj}
)

= {xj1 + xj2 + · · · + xjk
: j1 < j2 < · · · < jk, k ∈ N}.
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What the ultrafilter proof of Hindman’s theorem shows is that any cell Ci that belongs
to any idempotent ultrafilter (an IP-set, for short), contains a finite-sums set. In this
paper, however, we will be dealing with idempotent ultrafilters satisfying further properties;
properties that guarantee an even richer combinatorial structure for their members.

The most well-studied such sub-class of idempotents are the minimal idempotents, that
is, idempotent ultrafilters that are members of the smallest 2-sided ideal of βN (I ⊂ βN
is a 2-sided ideal if p + q belongs to I whenever either p or q does; the smallest being
simply the intersection of all such), whose members are called central sets. (Central sets
were introduced in [F2] under a different, dynamical definition. For equivalence to the
characterization we have given, see [BH].) One indication of the combinatorial richness
of central sets is that they are piecewise syndetic, that is, they are the intersection of a
syndetic set with a set containing arbitrarily long intervals. Further evidence is given by
Furstenberg’s “central sets theorem”. This theorem (see [F2, Proposition 8.21]) says, very
roughly, that any central set contains an IP-set of arithmetic progressions of any finite
length; among its many corollaries is the fact that so-called Rado systems (see [F2, Section
8.7]) are solvable in any central set. (For a combinatorial characterization of central sets,
see [HMS]. Being a characterization, this account captures, in some sense, all of their
combinatorial richness.)

1.14. In this paper, we will be dealing with a broader class of idempotent ultrafilters
whose importance has more lately become apparent, namely those all of whose members
have positive upper Banach density, called essential idempotents in [BD]. In [BBDF] it
is shown that members of essential idempotents, called D-sets, share much in the way of
combinatorial richness with central sets (including satisfaction of the central sets theorem
and solvability of Rado systems).

Notice that, since any piecewise syndetic set clearly has positive upper Banach density,
every minimal idempotent is essential. On the other hand, one has the following (cf. [BM3],
[BD]):

Theorem. There exist essential idempotents p ∈ βN that are not minimal.

Proof. First, observe that for any set E having positive upper Banach density, there are
ultrafilters q containing E and having the property that every member of q has positive
upper Banach density. To see this, just consider the family I = {E \F : d∗(F ) = 0}. One
easily checks that I is a filter containing E, and one may let q be any ultrafilter containing
I. Next, it is easy to show that the family D of ultrafilters all of whose members have
positive upper Banach density forms a compact semigroup. We now proceed with the
proof.

It is not difficult to construct a sequence (xj) having the property that for every N ,
SN = FS

(

{xj}∞j=N

)

has positive upper density but is not piecewise syndetic. (Such a

construction is carried out in [A].) Assuming this has been done, let S =
⋂∞

N=1 SN . S is
a non-empty compact subsemigroup of βN, and by the foregoing paragraph SN ∩D 6= ∅
for every N . This implies that S ∩ D is a non-empty compact semigroup and therefore
contains an idempotent p. p is essential, being an idempotent member of D, but contains
the non-piecewise syndetic sets SN , and so is not minimal.
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It is the essential idempotents that will allow us to formulate and prove a version of
Theorem 1.5 for generalized polynomials. We use the following notion of limit along an
ultrafilter:

1.15. Definition. Given a sequence (xn) in a topological space and an ultrafilter p ∈ βN,
we write p - limn xn = x if for any neighborhood U of x, {n : xn ∈ U} ∈ p. Note that for
sequences (xn) in compact Hausdorff spaces, p - limn xn always exists.

We are now in a position to formulate the aforementioned analogue of Theorem 1.5:

1.16. Theorem. (X,A, µ, T ) is a weakly mixing system if and only if whenever k ∈ N,
p is an essential idempotent and v1, . . . , vk ∈ G such that neither vi nor vi − vj is constant
on any member of p, 1 ≤ i 6= j ≤ k. If f0, . . . , fk ∈ L∞(X),

p - lim
n

∫

f0T
v1(n)f1 · · ·T vk(n)fk dµ =

k
∏

i=0

(

∫

fi dµ
)

.

1.17. The foregoing theorem suggests the question: for which v ∈ G are there no essential
idempotents p such that v is constant on a member of p? A ready class of these are
those v ∈ G having “non-zero leading coefficient” (the leading coefficient of a generalized
polynomial g(n) is the coefficient of the highest power of n in a formal expansion of g,
treating greatest integer brackets as parentheses; for example, the leading coefficient of
[an][bn] + [cn2] is ab+ c). Somewhat more generally: it is easy to check (see Proposition

3.4 below) that every v ∈ G can be written as v(n) =
∑k

i=0Bi(n)ni, where each Bi is a
bounded real-valued generalized polynomial. If Bk is bounded away from zero, then v will
not be constant on any infinite set.

However, even for generalized polynomials v having zero leading coefficient, very
strong algebraic conditions must typically be met in order for v to be constant on a
member of an idempotent ultrafilter, as the following result from [MQ] attests.

Notation. We write [[x]] = [x+ 1
2
] for the integer nearest to x. For a, b real, we denote by

a⊗ b the tensor product of a and b over the rationals. (So that a⊗ b+ c⊗ b = (a+ c)⊗ b,
a⊗ b+ a⊗ c = a⊗ (b+ c) and r(a⊗ b) = ra⊗ b = a⊗ rb for r ∈ Q.) R ⊗ Q denotes the
span of tensors a⊗ 1 (over Q).

1.18. Theorem. Let

F (n) =

n1
∑

i=1

[[ain[[bin]]]] +

n2
∑

i=1

[[cin]][[din]] +

n3
∑

i=1

[[ein]] +

n4
∑

i=1

[[pin
2]].

There is an IP-set R on which F is constant if and only if the following three conditions
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are satisfied:

(1)

n1
∑

i=1

aibi +

n2
∑

i=1

cidi +

n4
∑

i=1

pi = 0;

(2)

n3
∑

i=1

ei = 0;

(3)

n1
∑

i=1

ai ⊗ bi +

n2
∑

i=1

(ci ⊗ di + di ⊗ ci) ∈ R ⊗ Q.

Notice that (1) simply says that the leading coefficient of F is zero. So, if (1) holds
but (2) and/or (3) fails, F is an example of a generalized polynomial having zero leading
coefficient that is nevertheless not constant on any member of any idempotent p.

For degrees greater than 2, it appears to be very difficult to give necessary and suffi-
cient conditions analogous to those of the foregoing theorem. On the other hand, it should
in principle be possible to give (at least some) non-trivial necessary conditions, leading to
broad classes of families of generalized polynomials for which the conclusion of Theorem
1.16 can be ensured. (Namely, those for which vi and vi−vj fail the conditions.) We make
only one minor contribution to this project here (see Theorem 3.58 below), however we do
think the question is an interesting one.

1.19. We also remark that, because of dependence on the ultrafilter p, Theorem 1.16
applies to many generalized polynomials that are nevertheless constant on sets of positive
density (and hence do not satisfy the hypotheses of Conjecture 1.9). For example, let
q(n) = [2{

√
2n}]n. The set

{

n : {
√

2n} > 1
2

}

is a central set (see, e.g. [HMS]), and in
particular belongs to essential idempotents p. But for n belonging to this set, q(n) = n,
so for such ultrafilters p, Theorem 1.16 may apply to families containing q. On the other
hand, q takes on the constant value zero on the (again central) set

{

n : {
√

2n} < 1
2

}

,
which has density one-half.

Generalized polynomials, VIP systems and Szemerédi’s theorem.

1.20. Recall that proofs of polynomial Szemerédi theorems (such as Theorem 1.6), gener-
ally have a mixing-of-all-orders component (such as Theorem 1.5). In like manner, here an
appropriate version of Theorem 1.16 provides one piece of a proof of a general Szemerédi
theorem for a class of functions that includes the generalized polynomials.

If q is a (conventional) polynomial of degree d, then for distinct integers x0, x1, . . . , xd

one has
∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| q

(

∑

i∈D

xi

)

= −a0,

where a0 is the constant term of q. More generally, if v is a generalized polynomial of
degree d and p is an idempotent ultrafilter, then

p - lim
x0,...,xd

∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| v

(

∑

i∈D

xi

)

= −lv,p, (1.1)
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where lv,p is some constant. (See Theorem 2.42 below.)
If v : N → Z is an arbitrary function satisfying (1.1) with lv,p = 0, we say v is a

p -VIP system. In this case, the p-degree degp v of v is the least d satisfying (1.1). Thus
generalized polynomials are (up to a shift) p -VIP systems. However, there are many others.
(By Proposition 3.48 below, for example, there exist p -VIP systems of superpolynomial
growth.)

1.21. p -VIP systems are ultrafilter versions of VIP systems (see [BFM]), which are in turn
polynomial variants of IP-systems (see, e.g., [FK2]). Briefly, an IP system is a function n
taking finite subsets of n to a commutative group Γ in such a way that n(α∪β) = n(α)n(β)
whenever α ∩ β = ∅. Furstenberg and Katznelson proved:

Theorem. Let (X,A, µ) be a probability space and suppose Ti, 1 ≤ i ≤ k, are IP systems
into a commutative group Γ of measure preserving transformations of X . If µ(A) > 0 then
for some finite non-empty subset α ⊂ N, one has

µ
(

A ∩ T1(α)A ∩ · · · ∩ Tk(α)A
)

> 0.

1.22. It is a long-standing conjecture that Theorem 1.20 holds for VIP systems as well.
(Some progress has been made in [BM2] and [Mc2].) In our current context of p -VIP
systems in Z, a version of this conjecture is as follows.

Conjecture. Let (X,A, µ, T ) be an invertible measure preserving system, let p ∈ βN be
idempotent and let v1, . . . , vk be p -VIP systems. If µ(A) > 0 and B ∈ p then for some
n ∈ B one has

µ
(

A ∩ T v1(n)A ∩ · · · ∩ T vk(n)A
)

> 0.

Although we are unable to settle this conjecture here, we do confirm it for essential
ultrafilters p and a broad class of p -VIP systems containing, in particular, generalized
polynomials v (more precisely, their shifts by the appropriate constants lv,p). Restricting
to the class of generalized polynomials, this leads to the following combinatorial application
(see Corollary 3.41 below).

1.23. Theorem. Let E ⊂ Z with d∗(E) > 0 and let g1, . . . , gk be generalized polynomials.
Suppose p is an essential idempotent ultrafilter and A ∈ p. Then there exists n ∈ A such
that

d∗
(

E ∩ (E + g1(n) − lg1,p) ∩ · · · ∩ (E + gk(n) − lgk,p)
)

> 0.

(In other words, the set of such n belongs to p.)

1.24. Discussion. To illustrate the dependence of lv,p on p, let v(n) = [πn]. The sets
E =

{

n : {πn} ∈ [0, 1
2)

}

and E′ =
{

n : {πn} ∈ [ 12 , 1)
}

support essential idempotents p
and p′, respectively (they are central sets, again by the combinatorial characterization in
[HMS]). An easy calculation now shows that lv,p = 0 and lv,p′ = −1.

A natural class of generalized polynomials considered in [BKM] does not exhibit this
dependence on p. As a first approximation, this class consists of all those generalized
polynomials formed from polynomials of zero constant term via iterated use of the closest
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integer function [[·]]. More precisely (and more inclusively), the admissible generalized
polynomials N → Z consist of the smallest subgroup Ga of the generalized polynomials
that includes n → n, is an ideal in the ring of all generalized polynomials, i.e. is such
that if p ∈ Ga and q is a generalized polynomial then pq ∈ Ga, and has the property that
for all m ∈ N, c1, . . . , cm ∈ R, p1, . . . , pm ∈ Ga, and 0 < k1, . . . , km < 1, the mapping
n→ [

∑m
i=1 cipi(n) + ki] is in Ga. For example, p(n) = [

√
3[
√

2n2]n5 +
√

17n3 + 1
2
][
√

5n] is
admissible.

One can exploit the fact that lv,p = 0 for v admissible to show that, for an ar-
bitrary generalized polynomial g, lg,p can take only finitely many values as p ranges
over the idempotents. Indeed, one can write down an expression for lg,p depending
only on which cell of a given finite partition lies in p; here the partition is expressed
in terms of inequalities involving fractional parts of generalized polynomials. For exam-
ple, let g(n) = 17[

√
2[
√

3n2] +
√

5] + [
√

7n]. Putting C1 =
{

n : 0 ≤ {
√

3n2
}

< 1
2
} and

C2 =
{

n : 0 ≤ {
√

7n
}

< 1
2
}, one has

g(n) =17
[
√

2[
√

3n2 +
1

2
] + e1(n) +

√
5
]

+ [
√

5n+
1

2
] + e2(n)

=17
(

[
√

2v1(n) + (
√

5 − 2)
]

+ 2 + e1(n)
)

+ v2(n) + e2(n)

=17v3(n) + 17
(

2 + e1(n)
)

+ v2(n) + e2(n),

where ei(n) = 0, n ∈ Ci, ei(n) = −1 otherwise, and each vi is admissible. Therefore:

lg,p=

{
16 if (C1 ∩ C2) ∈ p
17 if (C1 ∩ Cc

2) ∈ p
33 if (Cc

1 ∩ C2) ∈ p
34 if (Cc

1 ∩ Cc
2) ∈ p

If one restricts to admissible generalized polynomials, Theorem 1.23 admits of a sim-
pler formulation.

Notation. We denote the family of essential idempotents by D (Definition 2.21 a. below).
We call a subset E of N a D-set if it belongs to some p ∈ D; E is a D∗ set if it belongs to
every p ∈ D (equivalently, if E ∩ F 6= ∅ for every D-set F ). Notice that, since all minimal
idempotents are essential, all central sets are D sets and all D∗-sets are central∗ (intersect
every central set non-trivially). On the other hand, there are central∗ sets that are not D∗

(for example, the complements of the sets SN appearing in the proof of Theorem 1.14).

1.25. It is easily verified that the family of D∗ sets possesses the filter property. The
following theorem, therefore (modulo Furstenberg correspondence), makes good on the
promise of subsection 1.6.

Theorem. Let E ⊂ Z with d∗(E) > 0 and let g1, . . . , gk ∈ Ga. Then

{

n ∈ N : d∗
(

E ∩
(

E + g1(n)
)

∩ · · · ∩
(

E + gk(n)
)

)

> 0
}

is D∗ in N.
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Comments. (a) It follows immediately (by the consideration of reflected functions), that
the set of n ∈ Z satisfying d∗

(

E ∩
(

E + g1(n)
)

∩ · · · ∩
(

E + gk(n)
))

> 0 is D∗ in Z
(see [BD]). Indeed, by keeping track of constants and just a bit better than we have
(again, we don’t do it in the interest of economy), one can find a > 0 such that

{

n ∈ Z :

d∗
(

E∩
(

E+g1(n)
)

∩· · ·∩
(

E+gk(n)
))

> a
}

is D∗ (this is implicit in [Mc2]–see Definition 4.2
there). Here a depends on E, k and maxdeg gi; we do not see how to replace dependence
on E by dependence on d∗(E).

(b) If one is only interested in existence of “admissible generalized polynomial progres-
sions”, this can be achieved by finding “initial polynomial configurations” inside the ranges
of admissible generalized polynomials. Indeed in [BH̊a], such a trick is used to show that
the ranges of various generalized polynomials are good for single recurrence. For example,
to see that {[αn2] : n ∈ N} is a set of recurrence, where α is an irrational number, it
suffices by Sárközy’s theorem ([Sá]) and the uniformity of recurrence (see e.g. [BHMP]) to
establish that it contains a configuration of the form {i2m : 1 ≤ i ≤ L} for every L. Fixing
L, choose n with {αn2} less than 1

L2 . Then {[α(in)2] : 1 ≤ i ≤ L} will have the required
form with m = [αn2]. Though we will not supply details, a natural embellishment of this
technique is sufficient to establish existence of the configurations guaranteed by Theorem
1.25. (That one only gets in this way that the set of good n has positive density provides
part of the impetus for our more involved approach.)

1.26. As mentioned above, our methods actually allow one to obtain multiple recurrence
for a class of p -VIP systems larger than the generalized polynomials. Indeed, what makes
the methods work for generalized polynomials is, very roughly, the fact that once an
essential idempotent p is fixed, any generalized polynomial g that is p-linear in the sense
that p - limx,y

(

g(x+ y)− g(x)− g(y)
)

= 0 must also be p-linear in the stronger sense that

p - limx

(

g(x) − [αx+ 1
2 ]

)

= 0, for some real α. (See Theorem 3.8 (a) below.) The reason

this is significant is that our methods require d∗
(

g(A)
)

> 0 for every A ∈ p when g is linear
(in the first sense).

Generally speaking, then, once an essential idempotent p is fixed, our multiple re-
currence conclusions will hold for any class of p -VIP systems that is closed under the
difference and differentiation operations that occur in the various stages of the proof and
whose linear members g have the property that d∗

(

g(A)
)

> 0 for every A ∈ p. Although
our efforts surely don’t begin to characterize the class of systems having this property, at
the end of the paper (see subsections 3.43 to 3.67) we do discuss the construction of two
natural examples, so-called well spaced and densely packed systems, not coming from gen-
eralized polynomials. These constructions are quite complicated, so we shall not attempt
to summarize them here.

On a simpler note, a class to which our methods can easily be seen to apply is given
by those p -VIP systems that are equivalent to generalized polynomials in their highest
degree terms, i.e., systems of the form g− lg,p +v, where g is a generalized polynomial and
v is an arbitrary p -VIP system satisfying degp v < degp(g− lg,p). This yields the following
application (see Corollary 3.58 below), which can already be compared somewhat more
favorably to Conjecture 1.21.

1.27. Theorem. Let E ⊂ Z with d∗(E) > 0 and let g1, . . . , gk be generalized polynomials.
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Suppose p is an essential idempotent ultrafilter. Let v1, . . . , vk be any p-VIP systems with
degp vi < degp(gi − lgi,p) and degp(vi −vj) < degp

(

(gi − lgi,p)− (gj − lgj ,p)
)

1 ≤ i 6= j ≤ k.
If A ∈ p then there exists n ∈ A such that

d∗
(

E ∩ (E + g1(n) − lg1,p + v1(n)) ∩ · · · ∩ (E + gk(n) − lgk,p + vk(n))
)

> 0.

1.28. The structure of the paper is as follows. In Section 2, we develop the general
theory of p -VIP systems, introducing in particular the special subclasses mentioned in
the previous paragraphs and proving, for those that are linear, a Hilbert space projection
theorem (Theorem 2.25). This theorem is then used to prove Theorem 2.48, the multiple
mixing result for weakly mixing systems upon which both Theorem 1.16 and the weakly
mixing component of the proof of our multiple recurrence theorem are based. In Section
3, we give these two applications. First, the multiple mixing theorem for generalized
polynomials (Theorem 3.9), then the multiple recurrence theorem (Theorem 3.10), the
proof of which uses a “polynomialized” version of Theorem 2.25 (Theorem 3.11, which
may also be seen as a version of the main result from [BFM]). This proof is carried out in
subsections 3.11 through 3.40, its principal ingredients being a relativized version of the
multiple mixing result (Theorem 3.20) and a VIP multiple recurrence theorem for distal
measure preserving systems (Theorem 3.29). Finally, at the end of Section 3, we give the
aforementioned further examples of p -VIP systems to which our results apply.

1.29. Acknowledgement: The authors express their gratitude to N. Frantzikinakis and to
I. J. H̊aland-Knutson for helpful discussion and commentary.

2. p-VIP systems and multiple weak mixing.

In this section we develop the general theory of p-VIP systems, concluding with a general
“weak mixing of all orders” result (Theorem 2.48 below) for essential idempotents p.

2.1. Notation. Let H : Nr → X be a function, where X is a locally compact topological
space. For an ultrafilter p ∈ βN, we shall write p - limx1,...,xr

H(x1, . . . , xr) for

p - lim
x1

p - lim
x2

p - lim
x3

· · · p - lim
xr

H(x1, . . . , xr).

2.2. Convention. In equations involving p - lim expressions on both sides, we interpret
the “=” sign as meaning that if either side exists, so does the other and they are equal.

2.3. Lemma. Let p ∈ βN be idempotent, let X be a locally compact topological space
and let f : N → X . Then

p - lim
x,y

f(x+ y) = p - lim
x
f(x).

Proof. Suppose the right hand side exists and is equal to the value a. Let V be a
neighborhood of a. Choose a pre-compact open set U containing a with U ⊂ V . Now
A = {x : f(x) ∈ U} ∈ p, which implies by idempotence of p that {x : (A − x) ∈ p} ∈ p,
which is to say {x : {y : f(x + y) ∈ U} ∈ p} ∈ p. But this says precisely that {x :
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p - limy f(x+y) ∈ U} ∈ p. Hence {x : p - limy f(x+y) ∈ V } ∈ p. Since V was an arbitrary
neighborhood of a, p - limx,y f(x+ y) = a.

Suppose now that the left hand side exists and is equal to a. Let V be a neighborhood
of a and let B = {x : f(x) ∈ V }. One has {x : p - limy f(x + y) ∈ V } ∈ p. Notice that
p - limy f(x+ y) ∈ V implies B−x = {y : f(x+ y) ∈ V } ∈ p. Hence {x : (B−x) ∈ p} ∈ p,
which implies B ∈ p.

2.4. Corollary. Let p ∈ βN be idempotent and let X be a locally compact topological
space. Let d < r ∈ N and let H : Nd+1 → X be a function. Let S0, S1, . . . , Sd be non-
empty subsets of N with

⋃d
i=0 Si = {1, 2, . . . , r} and such that if 0 ≤ i < j ≤ d, x ∈ Si

and y ∈ Sj , then x < y. Then

p - lim
y0,...,yd

H(y0, . . . , yd) = p - lim
x1,...,xr

H
(

∑

i∈S0

xi,
∑

i∈S1

xi, . . . ,
∑

i∈Sd

xi

)

.

Proof. This is a routine induction using the previous lemma. Details are left to the
reader.

2.5. Definition. Let p ∈ βN be an idempotent and let (G,+) be a discrete commutative
group with identity e. A function v : N → G is a p -VIP system if for some d ∈ N one has

p - lim
x0,...,xd

∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| v

(

∑

i∈D

xi

)

= e. (2.1)

If v is a p -VIP system then the least d for which (2.1) holds is the p-degree of v, denoted
degp v.

2.6. Remarks. (a) It is easy to show that if q(x) ∈ R[x] with q(0) = 0 then q is a p -VIP
system having p-degree equal to deg q. Also, if v satisfies identity (2.1) for some d, then it
satisfies the corresponding identity for any d′ > d.

(b) The above definition should be construed as applying to any commutative group
(even ones for which the usual topology is not discrete); however, the limit appearing in
(2.1) must be construed as existing in the discrete topology. (For example, if G = R,
the sum appearing in the limit must actually be equal to zero for appropriately filtered
(x0, x1, . . . , xd); it is not sufficient for this sum to tend to zero in the usual topology.)

2.7. Definition. Let (G,+) be a commutative group. For f : N → G and h ∈ N,
we define the derivative of f with step h to be the function Dhf : N → G given by
Dhf(n) = f(n+ h) − f(n) − f(h).

2.8. Theorem. Let p ∈ βN be idempotent, let (G,+) be a commutative group and let
v : N → G be a p -VIP system of degree d. Then for p -many h, Dhv is a p -VIP system,
and {h : degpDhv = d− 1} ∈ p.

Proof. For notational convenience we extend v to N ∪ {0} by setting v(0) = e. One has
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the identity

∑

∅6=D⊂{0,1,2,...,t}
(−1)|D| v

(

∑

i∈D

xi

)

= − v(x0) +
∑

∅6=D⊂{1,2,...,t}
(−1)|D|

(

v
(

∑

i∈D

xi

)

− v
(

x0 +
∑

i∈D

xi

)

)

=
∑

D⊂{1,2,...,t}
(−1)|D|

(

v
(

∑

i∈D

xi

)

− v
(

x0 +
∑

i∈D

xi

)

+ v(x0)

)

= −
∑

∅6=D⊂{1,2,...,t}
(−1)|D| Dx0

v
(

∑

i∈D

xi

)

,

from which it follows immediately that v is p -VIP of degree at most t if and only if for
p -many x0, Dx0

v is p -VIP of degree at most t− 1.

In the following lemma, 1A is the characteristic function of A.

2.9. Lemma. Let p ∈ βN be an idempotent and suppose that A ∈ p. Then

p - lim
x0,...,xd

1A(x0 + x1 + x2 + · · ·+ xd) = 1. (2.2)

Proof. This is a special case of Corollary 2.4.

We will use the next lemma often, usually without explicit mention. We omit the
proof.

2.10. Lemma. Let p ∈ βN be idempotent, let X be a topological space, let f : Nr → X
and suppose that p - limx1,...,xr

f(x1, . . . , xr) = a. Then for any 1 ≤ i1 < i2 < · · · < ir ≤ t,
one has p - limx1,...,xt

f(xi1 , . . . , xir
) = a.

2.11. Proposition. Let p ∈ βN be idempotent and let (G,+) be a Hausdorff topo-
logical commutative group with identity e. If v : N → G is a p -VIP system for which
p - limn v(n) = g, then g = e.

Proof. Suppose not. Let U be a closed neighborhood of g not containing e. Choose a
neighborhood V of g such that 2dV − (2d − 1)V ⊂ U . Let A = {n : v(n) ∈ V }. Then
A ∈ p so that (2.2) holds, contradicting (2.1).

2.12. Remark. It follows that when G is compact, p - limn v(n) = e for every p -VIP
system v : N → G.

2.13. Proposition. Let p ∈ βN be idempotent, let π : G → H be a homomorphism of
commutative groups, and let v : N → G be a p -VIP system. Then π ◦ v : N → H is a
p -VIP system into H.

2.14. Corollary. Let p ∈ βN be idempotent and suppose that v : N → R is p -VIP.
Then {v} is a p -VIP system into T.
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2.15. Definition. Let G be a commutative group and suppose φ, ψ : N → G are func-
tions. For p ∈ βN, we write φ ≈p ψ if {n : φ(n) = ψ(n)} ∈ p.

2.16. Proposition. ≈p is an equivalence relation.

2.17. Definition. Given an idempotent ultrafilter p ∈ βN, we denote by Vp the set of
equivalence classes of p -VIP systems N → Z under ≈p.

2.18. Remark. Clearly, Vp is a group under addition. Often we may speak of a p -VIP
system f : N → Z as being a member of Vp. Obviously we mean by this the equivalence
class of f under ≈p.

2.19. Proposition. Let f ∈ Vp and let p ∈ βN be idempotent. The map πf : N → Vp

defined by πf (h) = Dhf is a p -VIP system into Vp. Moreover degp πf = degp f − 1.

Proof. Let d = degp f . To show that degp πf ≤ d− 1, we must show that

p - lim
x0,...,xd−1

∑

∅6=E⊂{0,1,...,d−1}
(−1)|E|DΣi∈Exi

f ≈p 0. (2.3)

(The 0 on the right here is of course a function, not a number.) To establish (2.3), one
must show that

p - lim
x0,...,xd−1

p - lim
xd

∑

∅6=E⊂{0,1,...,d−1}
(−1)|E|DΣi∈Exi

f(xd) = 0,

which is equivalent to

p - lim
x0,...,xd

∑

∅6=E⊂{0,1,...,d−1}
(−1)|E|(f

(

xd +
∑

i∈E

xi

)

− f
(

∑

i∈E

xi

)

− f(xd)
)

= 0.

However, this is just

p - lim
x0,...,xd

∑

∅6=E⊂{0,1,...,d}
(−1)|E|+1f

(

∑

i∈E

xi

)

= 0.

We leave the very similar verification degp πd ≥ d− 1 to the reader.

2.20. Definition. Let A ⊂ N. The upper Banach density of A is the number

d∗(A) = lim sup
N−M→∞

|A ∩ {M,M + 1, . . . , N − 1}|
N −M

.

2.21. Definitions.

a. We denote by D the set of all idempotent ultrafilters p ∈ βN having the property that
for every A ∈ p, one has d∗(A) > 0.

15



b. Let p ∈ βN be idempotent. We denote by Bp,1 the set of equivalence classes, under
≈p, of the family of p -VIP systems ϕ : N → Z satisfying degp ϕ = 1 and such that

d∗
(

ϕ(A)
)

> 0 for all A ∈ p.

2.22. Remark. Typically, we will be interested in the case p ∈ D, where any p-VIP
system ϕ with degp ϕ = 1 and d∗

(

ϕ(A)
)

> 0 whenever d∗(A) > 0 is a member of Bp,1.

2.23. Definition. Let H be a separable Hilbert space and let T be a unitary operator
on H. We let

KT = {f ∈ H : {Tnf : n ∈ Z} is precompact in the norm topology}.

2.24. Theorem. Let (X,A, µ, T ) be an invertible measure preserving system.
1. The map f → Tf is unitary on L2(X).
2. KT is the closed linear subspace of L2(X) generated by the eigenfunctions of T (that
is, by those f for which there is λ ∈ C such that Tf(x) = f(Tx) = λf(x) a.e.).
3. T is weakly mixing if and only if KT is spanned by the constant functions.

2.25. Theorem. Let H be a separable Hilbert space and let T be a unitary operator on
H. Suppose p ∈ βN is idempotent, let ϕ ∈ Bp,1 and for f ∈ H write p - limn T

ϕ(n)f = Pf ,
where the limit is taken in the weak topology. Then P is the orthogonal projection onto
KT .

Proof. The limit in question exists because, restricted to closed bounded subsets of H,
the weak topology is compact and metrizable. It is well known that any continuous linear
self-map P of a Hilbert space with ||P || ≤ 1 and P 2 = P is an orthogonal projection. We
show now P 2 = P . Let f ∈ H with ||f || ≤ 1, let ǫ > 0 and let ρ be a metric for the weak
topology on the unit ball of H.

Let A =
{

x : {y : ϕ(x+ y) = ϕ(x) + ϕ(y)} ∈ p
}

∈ p. Let A1 = {n : ρ(Pf, Tϕ(n)f) <

ǫ} ∈ p and A2 = {n : ρ(P 2f, Tϕ(n)Pf) < ǫ} ∈ p. Fix x ∈ A∩A2 ∩
{

n : (A1 − n) ∈ p
}

. Let

Ax = (A1 − x) ∩
{

y : ρ
(

Tϕ(y)Tϕ(x)f, PTϕ(x)f
)

< ǫ
}

∩ {y : ϕ(x+ y) = ϕ(x) + ϕ(y)} ∈ p.

Now choose y ∈ Ax. One has

ρ(P 2f, Pf) ≤ ρ(P 2f, Tϕ(x)Pf) + ρ(PTϕ(x)f, Tϕ(y)Tϕ(x)f) + ρ(Tϕ(x+y)f, Pf) ≤ 3ǫ,

where we have used the facts that P commutes with T (an easy exercise), x ∈ A2, x+y ∈ A1

and y ∈ Ax. Since ǫ and f were arbitrary, this shows that P 2 = P and hence that P is an
orthogonal projection.

Since range P is closed (another easy exercise), in order to show that KT ⊂ range P
it suffices to show that linear combinations of eigenfunctions are in range P . Let ci be
constants and suppose we are given eigenfunctions fi for T , 1 ≤ r. Let αi be the eigenvalue
corresponding to fi, so that Tfi = αifi, and let α = (α1, α2, · · · , αr) ∈ Tr. Tr is compact
so p - limn α

ϕ(n) exists. By Proposition 2.11, the limit must be (0, 0, . . . , 0). From this it
easily follows that p - limn ||Tϕ(n)

(
∑r

i=1 cifi

)

− ∑r
i=1 cifi|| = 0.
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Finally we show that range P ⊂ KT . Let f ∈ range P and put B = {n : ||Tϕ(n)f −
f || < ǫ} ∈ p. Since ϕ ∈ Bp,1, one has d∗

(

ϕ(B)
)

> 0. In particular,
(

ϕ(B) − ϕ(B)
)

is
syndetic. Choose R ∈ N such that every n ∈ Z can be written as n = ϕ(b1) − ϕ(b2) + r,
where b1, b2 ∈ B and 0 ≤ r < R. We claim that {f, Tf, T 2f, . . . , TR−1f} is a 2ǫ-net for
{Tnf : n ∈ Z}. To see this, let n ∈ Z and write n = ϕ(b1)−ϕ(b2)+r, where b1, b2 ∈ B and
0 ≤ r < R. Then ||Tnf−T rf || = ||Tϕ(b1)f−Tϕ(b2)f || ≤ ||Tϕ(b1)f−f ||+||f−Tϕ(b2)f || < 2ǫ.

From now on, we will assume that functions in L2(X), L∞(X), etc. are real valued.

2.26. Corollary. Let (X,A, µ, T ) be a weakly mixing measure preserving system, let
p ∈ βN be idempotent and let ϕ ∈ Bp,1. Then for any f, g ∈ L2(X), one has

p - lim
n

∫

fTϕ(n)g dµ =
(

∫

f dµ
)(

∫

g dµ
)

.

Proof. Since (X,A, µ, T ) is weakly mixing, KT consists of the constant functions. Hence

p - lim
n

∫

fTϕ(n)g =

∫

f
(

p - lim
n
Tϕ(n)g

)

dµ

=

∫

f
(

Pg
)

dµ =

∫

f
(

∫

g dµ
)

dµ =
(

∫

f dµ
)(

∫

g dµ
)

.

2.27. Definition. We denote by S the smallest family of functions N → Z, containing
the integer-valued constants and the inclusion map n→ n, that is closed under products,
and having the property that for every f ∈ S and c ∈ R, [cf ] ∈ S. The members of S will
be called simple generalized polynomials.

2.28. Definition. We define a function Deg on S inductively as follows. Deg 0 = −∞,
Deg k = 0, where 0 and 0 6= k ∈ Z are constant functions, Deg (n→ n) = 1, Deg (f1f2) =
Deg f1 + Deg f2, and Deg [cf ] = Deg f for c 6= 0.

2.29. Definition. We denote by G the smallest family of functions N → Z, containing
the integer-valued constants and the inclusion map n → n, that is closed under sums
and products, and having the property that for every f1, . . . , fr ∈ G and c1, . . . , cr ∈ R,
[
∑r

i=1 cifi] ∈ G. The members of G will be called generalized polynomials.

2.30. Theorem. Let p ∈ βN be an idempotent ultrafilter and let f ∈ G. Then there
exist simple generalized polynomials g1, g2, . . . , gk such that f ≈p

∑k
i=1 gi.

Proof. The proof, by induction on the complexity of f , is immediate. Suppose f1, f2, . . .

, fr satisfy the conclusion. Write fj ≈p

∑kj

i=1 gji. Then f1f2 ≈p

∑k1

i=1

∑k2

t=1 g1ig2t,

f1 + f2 ≈p

∑k1

i=1 g1i +
∑k2

i=1 g2i, and for real numbers c1, c2, · · · , cr, [
∑r

i=1 cifi] ≈p K +
∑r

i=1[cifi] for a constant 0 ≤ K < r.

2.31. Definition. For p ∈ βN idempotent and f ∈ G, we let Degp f be the minimum d

for which there exist g1, . . . , gk ∈ S with d = maxi Deg gi and f ≈p

∑k
i=1 gi.
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2.32. Remark. Let p ∈ βN be idempotent. Below, we will show that in fact, up to a
shift, any g ∈ G is a p -VIP system. For such a g, there are therefore two kinds of p-degree.
We believe it can happen that Degp g 6= degp g; see however Theorem 3.8 a. below for an
important case in which they coincide.

2.33. Proposition. Let p ∈ βN be idempotent. If f ≈p g then {h ∈ N : Dhf ≈p Dhg} ∈
p.

Proof. Let A = {n : f(n) = g(n)} ∈ p. For h ∈ (A ∩ {t : (A − t) ∈ p}) ∈ p, one has, for
every n ∈

(

(A− h) ∩ A
)

∈ p, f(h) = g(h), f(n) = g(n) and f(n+ h) = g(n+ h), whence
Dhf(n) = Dhg(n).

2.34. Lemma. Let p ∈ βN be idempotent and let f1, . . . , fr ∈ G. Then Degp (
∑r

i=1 fi) ≤
max1≤i≤r Degp fi.

2.35. Theorem. Let p ∈ βN be idempotent and let f ∈ G. Then {h : Degp Dhf <
Degp f} ∈ p.

Proof. By Theorem 2.30 and Proposition 2.33, it suffices to show this for simple f , which
we do by induction on f ’s complexity. Suppose the result holds for f1 and f2. Choose a set
A ∈ p such that for all h ∈ A, one has Degp Dhf1 < Degp f1 and Degp Dhf2 < Degp f2.
Now for h ∈ A,

Dh(f1f2)(n) =f1(n+ h)f2(n+ h) − f1(n)f2(n) − f1(h)f2(h)

=
(

Dhf1(n) + f1(n) + f1(h)
)(

Dhf2(n) + f2(n) + f2(h)
)

=Dhf1(n)Dhf2(n) +Dhf1(n)f2(n) +Dhf1(n)f2(h) + f1(n)Dhf2(n)

+ f1(n)f2(h) + f1(h)Dhf2(n) + f1(h)f2(h).

Thus Dh(f1f2) is a sum of terms, each of which has p-Degree less than Degp f1f2 =
Degp f1 + Degp f2. Now apply Lemma 2.34. Next, for c ∈ R and h ∈ A,

Dh[cf1](n) =[cf1(n+ h)] − [cf1(n)] − [cf1(h)]

=[cDhf1(n) + cf1(n) + cf1(h)] − [cf1(n)] − [cf1(h)] = [cDhf1(n)] +B,

where 0 ≤ B < 3 may be considered constant on an appropriate member of p. Hence
Degp Dh[cf1] = Degp [cDhf1] = Degp Dhf1 < Degp f1 = Degp [cf1].

2.36. Definition. Denote by F the family of non-empty, finite subsets of N. For d ∈ N,
let Fd = {α ∈ F : |α| ≤ d}.
2.37. Theorem. Let p ∈ βN be idempotent, let G be an additive, discrete commutative
group with identity e, let v : N → G and d ∈ N. Then v is a p -VIP system of degree at
most d if and only if there exists a function u : Fd → G such that for every r ∈ N, one has

p - lim
x1,...,xr

(

v
(

r
∑

i=1

xi

)

−
∑

{x1,...,xr}⊃γ∈Fd

u(γ)
)

= e. (2.4)
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Proof. Suppose that (2.4) holds. We must show

p - lim
x0,...,xd

∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| v

(

∑

i∈D

xi

)

= e. (2.5)

Applying (2.4) on the inside, what we must show is that

p - lim
x0,...,xd

∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| ∑

{xi:i∈D}⊃γ∈Fd

u(γ) = e,

which in turn may be rewritten as

p - lim
x0,...,xd

∑

∅6=D⊂{x0,x1,x2,...,xd}
(−1)|D|

∑

D⊃γ∈Fd

u(γ) = e. (2.6)

We claim that the expression inside the limit is identically equal to e. To see this, we simply
fix some γ ∈ Fd with γ ⊂ {x0, . . . , xd} and count occurrences of u(γ) in the expression.
Letting |γ| = k, for 1 ≤ t ≤ d + 1 the number of sets D ⊂ {x0, . . . , xd} with |D| = t
and γ ⊂ D is 0 if t < k and

(

d+1−k
t−k

)

otherwise. Therefore the net number of times u(γ)

is counted is
∑d+1

t=k (−1)t
(

d+1−k
t−k

)

. Substituting i = t − k, this is
∑d−k+1

i=0 (−1)i+k
(

d+1−k
i

)

,

which is (1− 1)d+1−k = 0 by the binomial theorem. Thus each u(γ) is counted zero times
(net) and we are done.

Now suppose that v is p -VIP of degree at most d; that is, suppose that (2.5) holds.
We must exhibit a function u : Fd → G such that (2.4) holds. For γ ∈ Fd, we set

u(γ) =
∑

∅6=β⊂γ

(−1)|γ|−|β|v
(

∑

i∈β

i
)

.

First we show that (2.4) holds for r ≤ d, which amounts to showing

p - lim
x1,...,xr

(

v
(

r
∑

i=1

xi

)

−
∑

{x1,...,xr}⊃γ∈Fd

(

∑

∅6=β⊂γ

(−1)|γ|−|β|v
(

∑

i∈β

i
)

))

= 0.

We count occurrences of v
(
∑

i∈β i
)

in the double sum for β ⊂ {x1, . . . , xr}. For β =
{x1, . . . , xr} there is a single occurrence which, being subtracted, cancels the occurrence
of v

(
∑r

i=1 xi

)

. If |β| = k < r, then for any t with k ≤ t ≤ r, there are
(

r−k
t−k

)

sets
γ ⊂ {x1, . . . , xr} containing β with |γ| = t. It follows that the net number of occurrences
of v

(
∑

i∈β i
)

in the double sum is
∑r

t=k(−1)t−k
(

r−k
t−k

)

. Substituting i = t − k, this is
∑r−k

i=0 (−1)i
(

r−k
i

)

= (1 − 1)r−k = 0.
For r > d we use induction. Suppose (2.4) holds when r is replaced by anything

less than r. Let S0, S1, . . . , Sd be the (non-empty) cells of a non-interlacing partition of
{1, 2, . . . , r}: by this we mean that for all x ∈ Si and y ∈ Sj , x < y if i < j. For
x1, . . . , xr ∈ N, we adopt the notation yi =

∑

j∈Si
xj . (In particular, notice that y0 +
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y1 + · · ·+ yd = x1 + x2 + · · ·+ xr.) Our key observation is that for any function H of the
variables y0, y1, . . . , yd, one has by Corollary 2.4 that

p - lim
y0,...,yd

H(y0, . . . , yd) = p - lim
x1,...,xr

H(y0, . . . , yd) = p - lim
x1,...,xr

H(
∑

j∈S0

xj , . . . ,
∑

j∈Sd

xj).

Now, since v is a p -VIP system of degree d, we have

p - lim
x1,...,xr

∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| v

(

∑

i∈D

yi

)

=p - lim
y0,...,yd

∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| v

(

∑

i∈D

yi

)

= e.
(2.7)

On the other hand, we claim that an analog of (2.6) above holds:

p - lim
x1,...,xr

∑

∅6=D⊂{0,1,2,...,d}
(−1)|D|

∑

{xj :j∈
⋃

i∈D
Si}⊃γ∈Fd

u(γ) = e. (2.8)

This can be established in the same way as (2.6), by showing the expression inside the
limit to be identically zero. Some details: fix γ ⊂ {xj : j ∈ ⋃

i∈D Si} = {x1, . . . , xr},
γ ∈ Fd. We count occurrences of u(γ). Let k be the number of partition cells Si for which
{xj : j ∈ Si} ∩ γ) 6= ∅ and proceed from here exactly as in the argument concerning (2.4)
to show that the net number of times u(γ) is counted is zero.

Next, for any non-emptyD properly contained in {0, 1, . . . , d} our induction hypothesis
yields

p - lim
x1,...,xr

(

v
(

∑

i∈D

yi

)

−
∑

{xj :j∈
⋃

i∈D
Si}⊃γ∈Fd

u(γ)
)

= e. (2.9)

Now (2.7), (2.8) and (2.9) combine to give

p - lim
x1,...,xr

(

v
(

d
∑

i=0

yi

)

−
∑

{xj :j∈
⋃

i∈D
Si}⊃γ∈Fd

u(γ)
)

= e.

In other words,

p - lim
x1,...,xr

(

v
(

r
∑

i=1

xi

)

−
∑

{x1,...,xr}⊃γ∈Fd

u(γ)
)

= e,

as required.

A word of warning: although the previous theorem says that any p -VIP system v has
a “generating” function u whose domain is Fd, and also says that any function v that is
generated in the right way by a function u whose domain is Fd is p -VIP, it does not say
that an arbitrary function u whose domain is Fd will generate some v in the right way. In
fact, we shall now see that this is in general not the case.
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2.38. Theorem. Let P ∈ βN be an idempotent and let u : F1 → Z be given by
u({x}) = 2x. There is no function v : N → Z for which

p - lim
x,y

(

v(x+ y) −
(

u({x}) + u({y})
)

)

= 0.

Proof. Suppose there were such a v. For x ∈ N, put Ax = {y : v(x+y) = 2x +2y}. Then
A = {x : Ax ∈ p} ∈ p. Choose x ∈ A such that (A− x) ∈ p and let B = Ax ∩ (A− x) ∈ p.
Pick b ∈ B such that (B − b) ∈ p. Then b ∈ (A− x) and (Ax − b) ∈ p. Put x′ = b+ x ∈ A
(note x′ 6= x). Note

(

Ax′ ∩ (Ax − p)
)

∈ p. Choose some y′ 6= x in this set. Let y = y′ + b ∈
Ax. Then x+ y = x′ + y′, y ∈ Ax, y′ ∈ Ax′ and x is equal to neither x′ nor y′. It follows
that 2x′

+ 2y′

= v(x′ + y′) = v(x+ y) = 2x + 2y, which is a contradiction.

2.39. Lemma. Let (xi)
∞
i=1 ⊂ Z, (yi)

∞
i=1 ⊂ R, 0 < k < 1 and suppose that

∑∞
i=1 |xi|〈y〉 <

min{k, 1 − k}. Then for every n ∈ N, [
∑n

i=1 xiyi + k] =
∑n

i=1 xi[yi + 1
2 ].

Proof.

∣

∣

∣

n
∑

i=1

xiyi −
n

∑

i=1

xi[yi +
1

2
]
∣

∣

∣
≤

n
∑

i=1

|xi| · |yi − [yi +
1

2
]| =

n
∑

i=1

|xi|〈yi〉 ≤ min{k, 1 − k} < 1.

2.40. Corollary. Let p ∈ βN be idempotent, and let v, f : N → Z be p -VIP systems of
degrees d and c respectively. Then fv is a p -VIP system of degree at most d+ c.

Proof. By Theorem 2.37 there exist functions u : Fd → Z and g : Fc → Z such that for
every r ∈ N,

p - lim
x1,...,xr

(

v
(

r
∑

i=1

xi

)

−
∑

{x1,...,xr}⊃γ∈Fd

u(γ)
)

=p - lim
x1,...,xr

(

f
(

r
∑

i=1

xi

)

−
∑

{x1,...,xr}⊃γ∈Fd

g(γ)
)

= 0.

For β ∈ Fd+c, set

h(β) =
∑

γ∈Fd,α∈Fc,γ∪α=β

u(γ)g(α).

One now has

0 =p - lim
x1,...,xr

(

v
(

r
∑

i=1

xi

)

f
(

r
∑

i=1

xi

)

−
(

∑

{x1,...,xr}⊃γ∈Fd

u(γ)
)(

∑

{x1,...,xr}⊃α∈Fc

g(α)
)

)

=p - lim
x1,...,xr

(

v
(

r
∑

i=1

xi

)

f
(

r
∑

i=1

xi

)

−
∑

{x1,...,xr}⊃β∈Fd+c

(

∑

γ∈Fd,α∈Fc,γ∪α=β

u(γ)g(α)
)

)

=p - lim
x1,...,xr

(

v
(

r
∑

i=1

xi

)

f
(

r
∑

i=1

xi

)

−
(

∑

{x1,...,xr}⊃β∈Fd+c

h(β)
)

)

.
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Now apply Theorem 2.37 again, this time in reverse.

2.41. Proposition. Let p ∈ βN be an idempotent, let L ∈ Z and suppose that vi : N →
Z are p -VIP systems, 1 ≤ i ≤ m. Suppose also that c1, . . . , cm ∈ R, and let 0 < k < 1.
Then:

(a) v1 − v2 is a p -VIP system of p -degree at most max{degp v1, degp v2}.
(b) v1(v2 − n) is a p -VIP system of p -degree at most degp v1 + degp v2}.
(c) [k +

∑m
i=1 civi] is a p -VIP system of p -degree at most max{degp vi : 1 ≤ i ≤ m}.

Proof. (a) is an easy consequence of Theorem 2.37, as is (b) with the help of (a) and
Corollary 2.40. As for (c), write f(n) = [k +

∑m
i=1 civi(n)] and note that for each i,

n → {civi(n)} is a p -VIP system into T, from which it follows by Remark 2.12 that

p - limn〈civi(n)〉 = 0. Let d = max degp(vi) and put A = {n : 〈civi(n)〉 < min{k,1−k}
2dm

} ∈ p.
Note that by Lemmas 2.9 and 2.10, for all non-emptyD ⊂ {0, 1, . . . , d} and all i, 1 ≤ i ≤ m,
one has

p - lim
x0,...,xd

1A(
∑

i∈D

xi

)

= 0.

From this it follows that

p - lim
x0,...,xd

∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| f

(

∑

i∈D

xi

)

=p - lim
x0,...,xd

∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| [

k +

m
∑

i=1

civi

(

∑

i∈D

xi

)]

=p - lim
x0,...,xd

[

k +
m

∑

i=1

ci
∑

∅6=D⊂{0,1,2,...,d}
(−1)|D|vi

(

∑

i∈D

xi

)]

= 0.

2.42. Theorem. Let p ∈ βN be idempotent. For every generalized polynomial f : N →
Z there is an lf = lf,p ∈ Z such that one has, for d = Degpf ,

p - lim
x0,...,xd

∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| f

(

∑

i∈D

xi

)

= −lf .

In other words, f − lf is a p -VIP system of p -degree at most Degpf .

Proof. Clearly it suffices to establish the result for simple generalized polynomials. Let
H be the set of generalized polynomials in S for which the conclusion holds. H clearly
contains the constants, the inclusion n→ n and is closed under products (by Proposition
2.41 (b)). Finally, if f ∈ H then [cf ] ∈ H follows by the fact that

∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| [

cf
(

∑

i∈D

xi

)]

=
[

c
∑

∅6=D⊂{0,1,2,...,d}
(−1)|D| f

(

∑

i∈D

xi

)]

− J
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for some 0 ≤ J < 2d. (For appropriately filtered x0, . . . , xd J assumes a constant value,
say J0, so that the right-hand side is the constant [−clf ] − J0.)

From the previous theorem we get that degp(f− lf ) ≤ Degpf . We give a special name
to those f for which equality holds.

2.43. Definition. Let p ∈ βN be an idempotent and let f be a generalized polynomial.
If degp(f − lf ) = Degpf then we will say that f is p-regular.

2.44. Proposition. Let p ∈ βN be idempotent and suppose that f is a p-regular gener-
alized polynomial. Then {h : Dhf is p-regular} ∈ p.

Proof. Note that Dh(f − lf ) = Dhf + lf . According to Theorem 2.42, for p-many h,
Dh(f − lf ) is a p -VIP system. Therefore, by the previous theorem,

{h : degpDh(f − lf ) ≤ DegpDh(f − lf )} ∈ p.

By Theorem 2.8,

{h : degpDh(f−lf ) =
(

Degp(f−lf )
)

−1} = {h : degpDh(f−lf ) =
(

degp(f−lf )
)

−1} ∈ p.

On the other hand, by Theorem 2.35,

{h : Degp

(

Dh(f − lf )
)

< Degp(f − lf )} ∈ p.

For h in the intersection of these three sets, clearly degp

(

Dh(f − lf )
)

= Degp

(

Dh(f − lf )
)

,
which implies that degp(Dhf − lDhf ) = DegpDhf .

2.45. Theorem. (Van der Corput lemma.) Assume that (ug)g∈N is a bounded sequence
in a Hilbert space. Let p ∈ βN be an idempotent. If p - limh p - limg

〈

ug+h, ug

〉

= 0 then
p - limg ug = 0 in the weak topology.

Proof. A bit of notation. Let F denote the family of finite, non-empty subsets of N. For
sets α, β ⊂ F ∪ {∅}, we write β < α if for every b ∈ β and every a ∈ α, one has b < a. If
α = {i1, i2, · · · , ik}, where i1 < i2 < · · · < ik, we will write gα as shorthand for the sum
gik

+ gik−1
+ · · ·+ gi2 + gi1 . Finally we write FS(g1, . . . , gj) =

{

gα : ∅ 6= α ⊂ {1, 2, . . . , j}
}

.
Without loss of generality we will assume that ||ug|| ≤ 1, g ∈ N. Suppose to the

contrary that p - limg ug = ũ 6= 0. Let δ = ||ũ||2
2 and pick k ∈ N and ǫ > 0 such that

1
k

+ ǫ < δ. Inductively choose g1, . . . , gk ∈ N such that for all j, 1 ≤ j ≤ k, one has
(i) for every α, β ⊂ {1, . . . , j} with α 6= ∅, β 6= ∅ and β < α, |

〈

ugα+gβ
, ugα

〉

| < ǫ.

(ii) for every α, β ⊂ {1, . . . , j} with β 6= ∅ and β < α, p - limg |
〈

ug+gα+gβ
, ug+gα

〉

| < ǫ.

(iii) for all r ∈ FS(g1, . . . , gj),
〈

ur, ũ
〉

> δ.

(iv) for all r ∈ {0} ∪ FS(g1, . . . , gj), {g :
〈

ug, ũ
〉

> δ} − r ∈ p.

(v) for all r ∈ FS(g1, . . . , gj), {h : p - limg |
〈

ug+h, ug

〉

| < ǫ} − r ∈ p.

Having done this, we let vi = ugk+gk−1+···+gi
, 1 ≤ i ≤ k, and observe that |

〈

vi, vj

〉

| < ǫ

and
〈

vi, ũ
〉

> δ, 1 ≤ i 6= j ≤ k. From the former it follows that
〈
∑k

i=1 vi,
∑k

i=1 vi

〉

< k +
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k2ǫ < k2δ, which implies that |
〈
∑k

i=1 vi, ũ
〉

| < kδ, contradicting the latter and completing
the proof.

Suppose then that 0 ≤ j < k and g1, . . . , gj have been chosen. By the induction
hypothesis, for an ǫ′ < ǫ one has

B =
(

⋂

r∈{0}∪FS(g1,...,gj)

(

{g :
〈

ug, ũ
〉

> δ} − r
)

)

∩
(

⋂

α,β⊂{1,...,j},∅6=β<α

{g : |
〈

ug+gα+gβ
, ug+gα

〉

| < ǫ′}
)

∩
(

⋂

r∈{0}∪FS(g1,...,gj)

(

{h : p - lim
g

|
〈

ug+h, ug

〉

| < ǫ} − r
)

)

is a member of p. Therefore, we may choose gj+1 ∈ B such that B − gj+1 ∈ p. It is now a
routine (if tedious) matter to check that (i)-(v) hold for j replaced by j + 1.

2.46. Theorem. Let p ∈ D and let f ∈ G with Degpf = 1. Then (f − lf ) ∈ Bp,1.

Proof. We have f ≈p

∑

i fi, where fi ∈ S with Degfi = 1. Each non-constant fi has the
form fi(n) = [ck[ck−1[ck−2[· · · [c2[c1n]] · · ·]]]. It is an easy exercise from here to show that
f(n) ≈p [cn]+const, c 6= 0. This clearly implies that if d∗(A) > 0, then d∗

(

(f−lf )(A)
)

> 0.

We remind the reader of the definition of Bp,1 (see Definition 2.21).

2.47. Definitions. Let p ∈ βN be idempotent.

a. Define families of (equivalence classes of, under ≈p) p -VIP systems N → Z Bp,i, i > 1,
inductively as follows.

Bp,i =
{

v ∈ Vp : 1 ≤ degp v ≤ i and {h : Dhv ∈ Bp,i−1} ∈ p
}

.

Now write Bp =
⋃∞

i=1 Bp,i.

b. A family E ⊂ Bp is said to be p-acceptable if it forms a group under addition and is
essentially closed under taking of deriviatives; that is, if for every v ∈ E with degp v > 1,
{h : Dhv ∈ E} ∈ p.

The next theorem uses an inductive scheme, called “PET-induction”, introduced in
[Be1]. In the present case, it is implemented as follows. Let p ∈ D. Given two p -VIP
systems v and w, we write v ∼p w if degp v = degpw > degp(v − w). One may check
that ∼p is an equivalence relation. Given a finite set A = {v1, . . . , vk} of p -VIP systems,
define the weight of A by w(A) = (w1, w2, . . .), where wi is the number of equivalence
classes under ∼p of degree i p -VIP systems represented in A. Finally for distinct weights
w = (w1, w2, . . .) and u = (u1, u2, . . .), one writes w > u if wd > ud, where d is the largest
j satisfying wj 6= uj . This is a well-ordering of the set of weights, and PET-induction is
simply induction on this ordering.
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2.48. Theorem. Suppose (X,A, µ, T ) is a weakly mixing system, k ∈ N, p ∈ βN is
idempotent and E is a p-acceptable family. Let v1, . . . , vk be distinct members of E . If
f0, . . . , fk ∈ L∞(X) then

p - lim
n

∫

f0T
v1(n)f1 · · ·T vk(n)fk dµ =

k
∏

i=0

(

∫

fi dµ
)

.

Proof. The proof is by induction on the weight vector w(A) of A = {v1, . . . , vk}. By
Corollary 2.26, the conclusion holds when the weight vector is (1, 0, 0, . . .). Suppose for
induction that the result holds for families having weight vector w < w(A).

We consider the case
∫

fa dµ = 0 for some a, 0 ≤ a ≤ k, reducing the general case to
this special one via the identity

k
∏

i=0

ai −
k

∏

i=0

bi = (a0 − b0)

k
∏

i=1

bi + a0(a1 − b1)

k
∏

i=2

bi + · · ·+
(

k−1
∏

i=0

ai

)

(at − bt) (2.10)

under the integral, with ai = T vi(n)fi and bi =
∫

fi dµ, 0 ≤ i ≤ k (we take v0 ≡ 0).
Indeed, by composing through by T−vi(α), if necessary, where vi is of minimal degree (this
does not change the weight vector), we may in fact assume that 1 ≤ a ≤ k. Also without
loss of generality we may assume that ‖fi‖∞ ≤ 1, 0 ≤ i ≤ k.

We shall complete the proof by showing that p - limn

∏k
i=1 T

vi(n)fi = 0 weakly. We

use Theorem 2.45 in the following way. For n ∈ N, set xn =
∏k

i=1 T
vi(n)fi. Then

p - lim
m
p - lim

n
〈xn+m, xn〉

=p - lim
m
p - lim

n

∫ k
∏

i=1

T vi(n+m)fi

k
∏

i=1

T vi(n)fi dµ

=p - lim
m
p - lim

n

∫ k
∏

i=1

T vi(n)fi

k
∏

i=1

T vi(n)+Dmvi(n)(T vi(m)fi) dµ.

(2.11)

By acceptability, for p-many m, Dmvi ∈ E . Also for p-many m, degpDmvi < degp vi,
so that in particular vi + Dmvi ∼ vi for p-many m. By Propositions 2.11 and 2.19, for
p-many m, Dmvi 6= vj − vi for all i 6= j. Similarly, for p-many m, Dm(vi − vj) 6= (vj − vi)
for i 6= j. Also, either for p-many m Dmvi is the identity (as will happen when vi is of
degree one), or for p-many m, Dmvi is not the identity. Let w be the number of indices
for which the former occurs. Permuting indices so that degp vi is non-decreasing with i,
we may assume that for p-many m, Dmvi = I if 1 ≤ i ≤ w and Dmvi 6= I if w < i ≤ k.

We now write Am = {v1, · · · , vk, vw+1 + Dmvw+1, · · · , vk + Dmvk}. By the facts
obtained in the previous paragraph, for p-many m, Am consists of distinct elements of E .
Moreover, w(Am) = w(A).

We now rewrite the last line of (2.11) as
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p - lim
m
p - lim

n

∫ w
∏

i=1

T vi(n)(fiT
vi(m)fi)

k
∏

i=w+1

T vi(n)fiT
vi(n)+Dmvi(n)(T vi(m)fi) dµ. (2.12)

For p-many m, the set

Bm = {v2 − v1, v3 − v1, . . . , vk − v1, vw+1 +Dmvw+1 − v1, · · · , vk +Dmvk − v1}

is contained in E and precedes Am. The reason for this is that v1 is of minimal weight, so
that subtracting throughout by v1 will decrease the p-degree of every system u such that
u ∼p v1, while failing to change the p-degrees of the others. Moreover, if neither vi ∼p v1
nor vj ∼p v1, then vi ∼p vj if and only if (vi − v1) ∼p (vj − v1). These considerations
imply that Bm has one less equivalence class under ∼p of p-degree degp v1 and the same
number of equivalence classes at any p-degree greater than degp v1.

Now by the induction hypothesis and the fact that T is measure preserving, we can
rewrite (2.12) as

p - lim
m
p - lim

n

∫ w
∏

i=1

T vi(n)−v1(n)(fiT
vi(m)fi)

k
∏

i=w+1

T vi(n)−v1(n)fiT
vi(n)+Dmvi(n)−v1(n)(T vi(m)fi) dµ

=p - lim
m

w
∏

i=1

(

∫

fiT
vi(m)fi dµ

)

k
∏

i=w+1

(

∫

fi dµ
)2

=
k

∏

i=1

(

∫

fi dµ
)2

= 0,

as required.

3. Measure-theoretic and combinatorial applications.

In this section we offer applications of Theorem 2.48. First is a sufficient condition (which
is also clearly necessary) on a family of generalized polynomials for multiple p-mixing for
weakly mixing systems, where p is idempotent and all the members of p have positive
upper Banach density (Theorem 3.9). Next, we give a new extension of the polynomial
Szemerédi theorem (restricted for ease of presentation to Z) for p-acceptable families of
p-VIP systems.

3.1. Definition. The set of real valued generalized polynomials is the smallest family RG
of functions N → Z that contains the polynomial ring R[x] and is closed under sums,
products and composition with the floor function.

We omit the proof of the following easy proposition.

3.2. Proposition. RG = {∑k
i=1 cigi : ci ∈ R, gi ∈ G, 1 ≤ i ≤ k}.

3.3. Corollary. Let p ∈ βN be idempotent and suppose g ∈ RG. Then for some constant
α = αg ∈ R, g − α is a p -VIP system.
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3.4. Proposition. Let g ∈ RG. One has a representation

g(n) =
k

∑

i=0

Bi(n)ni, (3.1)

where Bi ∈ RG is bounded, 1 ≤ i ≤ k.

Proof. Anything in R[x] obviously admits of a representation of the form (3.1) (with the
Bis constant). The sum or product of any two things having such representation is clearly
again such. Finally if [g] has such a representation then [g] = g−{g} does as well, as −{g}
may be assimilated to B0.

3.5. Lemma. Let p ∈ βN be idempotent, let G be an commutative group with identity
e, and let v : N → G be a p -VIP system. If

{

m : {n : v(m + n) = v(n)} ∈ p
}

∈ p then
v ≈p e.

Proof. Let d = degp v. Then one has (in the discrete topology)

e =p - lim
x0,...,xd

∑

∅6=D⊂{0,...,d}
(−1)|D|v

(

∑

i∈D

xi

)

=p - lim
x0,...,xd

(

− v(x0) +
∑

∅6=D⊂{1,...,d}
(−1)|D|+1

(

v
(

x0 +
∑

i∈D

xi

)

− v
(

∑

i∈D

xi

)

)

)

=p - lim
x0

v(x0).

3.6. Lemma. Let g ∈ RG and suppose p ∈ D. If |p - limn ng(n)| = L <∞ then g ≈p 0.

Proof. By [BL3, Theorem 3.1], there exists a set L ⊂ R with non-empty interior that
is defined by a system of polynomial inequalities, a polynomial map P : L → R, and a
set E ∈ p such that g|E is well-distributed on S = P(L) with respect to the measure

µ = P∗(λ) on S, defined by µ(A) = λ(P−1(A)∩L)
λ(L) for Borel A ⊂ R. If S = {0}, we are done.

Otherwise µ({0}) = 0; we shall obtain a contradiction. Let C = E ∩ {n : |ng(n)| ≤ 2L}.
Then C ∈ p, so that d∗(C) > 0. Choose ǫ > 0 such that µ([−ǫ, ǫ]) < d∗(C)

2 . Now

d∗
(

{n ∈ E : g(n) ∈ [−ǫ, ǫ]}
)

= d∗(E)µ([−ǫ, ǫ]) < d∗(C)
2 . But C \ {n ∈ E : g(n) ∈ [−ǫ, ǫ]} is

finite.

3.7. Theorem. Let p ∈ D, let B ∈ RG with |B(n)| ≤ T < ∞ for all n ∈ N, and put
f(n) = B(n)nk, where k > 1. If

∣

∣p - lim
m
p - lim

n

f(n+m) − f(n) − f(m)

nk−1

∣

∣ = L <∞ (3.2)

then B ≈p 0.
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Proof. Let

C =
{

m :
∣

∣p - lim
n

(

B(n+m)n+ kmB(n+m) −B(n)n
)
∣

∣ ≤ 2L
}

=
{

m :
∣

∣p - lim
n

B(n+m)nk + kmnk−1B(n+m) −B(n)nk

nk−1

∣

∣ ≤ 2L
}

∈ p.

Notice that
C ⊂

{

m :
∣

∣p - lim
n

n
(

B(n+m) −B(n)
)
∣

∣ ≤ 2L+ knT
}

⊂
{

m : {n : B(n+m) = B(n)} ∈ p
}

.

(The last containment utilizes Lemma 3.6.) Since the set in the final line is a member of
p, and since by Corollary 3.3 B−α is a p -VIP system for some α ∈ R, by Lemma 3.5 one
has B − α ≈p 0, i.e. B ≈p α. But as (4) holds, plainly α = 0.

The above prepares us for the following crucial theorem.

3.8. Theorem. Let p ∈ D.

(a) If g ∈ G with lg,p = 0 and degp g = 1, then there exists α ∈ R such that

g(n) ≈p [αn+ 1
2 ]. In particular, g is p-regular.

(b) Gp = {g − lg,p : g ∈ G} is p-acceptable.

Proof. (a) Write g(n) =
∑k

i=0Bi(n)ni, where Bi are bounded generalized polynomials.
Assuming k > 1, since p - limm,n

(

g(n+m)− g(n)− g(m)
)

= 0 the hypotheses of Theorem
3.7 are met and we can conclude that Bk ≈p 0. Iterating this argument we get Bi ≈p 0 for
all i > 1. Therefore, g(n) ≈p B0(n) +B1(n)n. In order for this to hold, one must have:

∣

∣p - lim
m
p - lim

n

(

B1(n+m)(n+m) −B1(n)n−B1(m)m
)
∣

∣ = L <∞.

Let C =
{

m : |p - limn

(

B1(n+m)(n+m)−B1(n)n−B1(m)m
)

| < 2L
}

∈ p. Then letting
T = sup |B1(n)|,

C ⊂
{

m : |p - lim
n

n
(

B1(n+m) −B1(n)
)

| < 2L+ 2Tm
}

⊂
{

m : {n : B1(m+ n) = B1(n)} ∈ p
}

.

It follows that for m ∈ C,

∣

∣p - lim
n

m
(

B1(n) −B1(m)
)
∣

∣

=
∣

∣p - lim
n

m
(

B1(n+m)(n+m) −B1(n)n−B1(m)m
)
∣

∣ ≤ 2L.

Since this holds for every m in a member of p, letting α = p - limnB1(n) one has

p - lim
m

∣

∣m
(

α−B1(m)
)
∣

∣ ≤ 2L,

which by Lemma 3.6 yields
(

α−B1

)

≈p 0, i.e. B1 ≈p α.
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At this stage we have shown that g(n) ≈p αn + B0(n). Since B0 is bounded, we
quickly see that for some k ∈ Z, g(n) ≈p [αn + 1

2
] + k. Letting E = {n : 〈αn〉 < 1

4
}, one

sees that E ∈ p and g(n+m) − g(n)− g(m) = −k for all n,m ∈ E. Therefore k = 0.

Part (b) now follows easily.

We believe that, for p ∈ D and g ∈ G, g− lg is always p-regular, even when degp g > 1.
However, we don’t require this. At any rate, combining Theorem 3.8 (b) with Theorem
2.48 yields:

3.9. Theorem. Suppose (X,A, µ, T ) is a weakly mixing system, k ∈ N, p ∈ D and let
v1, . . . , vk ∈ G such that neither vi nor vi−vj is constant on any member of p, 1 ≤ i 6= j ≤ k.
If f0, . . . , fk ∈ L∞(X) then

p - lim
n

∫

f0T
v1(n)f1 · · ·T vk(n)fk dµ =

k
∏

i=0

(

∫

fi dµ
)

.

As mentioned in the introduction, it would be useful to develop criteria for verifying
when generalized polynomials of certain forms meet the condition of the foregoing theorem;
i.e. do not vanish on any member of a (perhaps given) idempotent. Theorem 1.18 provides
a satisfactory answer for the degree 2 case, but beyond this our current knowledge is
minimal. (See, however, Theorem 3.68 below.)

We now turn ourselves to the proof of the following multiple recurrence theorem for
p-acceptable families.

3.10. Theorem. Let p ∈ βN be idempotent, let (X,A, µ, T ) be a measure preserving
system, with µ(X) = 1, let A ∈ A with µ(A) > 0 and let E be a p-acceptable family. If
v1, . . . , vk ∈ E then

p - lim
n
µ
(

A ∩ T v1(n)A ∩ · · · ∩ T vk(n)A
)

> 0.

Our method of proof does not give any lower bound on the size of the foregoing
expression (other than that it is positive). However, in the k = 1 case, the optimal lower
bound µ(A)2 can easily be shown to apply. We show this before proceeding.

3.11. Theorem. Let H be a separable Hilbert space, let T be a unitary operator on H,
let p ∈ βN be idempotent and suppose ϕ ∈ Bp. For f ∈ H, write p - limn T

ϕ(n)f = Pf ,
where the limit is taken in the weak topology. P is the orthogonal projection onto KT .

Proof. The proof is by induction on d = degp ϕ. For d = 1, this is just Theorem 2.25.
Suppose then that the conclusion holds for all members of Bp having p-degree less than d.
Letting Pf = p - limn T

ϕ(n)f , we must show that P = P 2.

Let f ∈ H and write f = f1 + f2, where f1 ∈ KT and f2 ∈ K⊥
T . Let A = {m :

degpDmϕ = d − 1} ∈ p, and for m ∈ A and h ∈ L2(X), put Pmh = p - limn T
Dmϕ(n)h.

Then by the induction hypothesis, Pm is the orthogonal projection onto KT , m ∈ A. Hence
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taking xn = Tϕ(n)f2,

p - lim
m
p - lim

n
〈xn, xn+m〉

=p - lim
m
p - lim

n

∫

f2T
ϕ(n+m)−ϕ(n)f2 dµ

=p - lim
m
p - lim

n

∫

T−ϕ(m)f2T
Dmϕ(n)f2 dµ

=p - lim
m

∫

T−ϕ(m)f2Pmf2 dµ = 0.

By Theorem 2.45, one has p - limn xn = 0 weakly; that is, Pf2 = 0. On the other hand,
just as in the proof of Theorem 2.25, one has Pf1 = f1 by Proposition 2.11.

3.12. Corollary. Let (X,A, µ, T ) be a measure preserving system, let p ∈ D, let ϕ ∈ Bp

and suppose µ(A) > 0. Then p - limn µ(A ∩ Tϕ(n)A) ≥ µ(A)2.

Proof. Let f = 1A. One has p - limn µ(A ∩ Tϕ(n)A) = p - limn

〈

f, T−ϕ(n)f
〉

=
〈

f, Pf
〉

=
〈

Pf, Pf
〉

≥ µ(A)2. (For the final inequality, we used the fact that P is the orthogonal
projection onto a space containing the constants.)

3.13. Discussion: Lebesgue spaces. For the proof of Theorem 3.10 in general, we will
make (without loss of generality, for reasons that are quite standard) the assumption that
(X,A, µ, T ) is an ergodic system on a Lebesgue space. We now proceed to collect basic
facts concerning such systems.

Let B ⊂ A be a complete, T -invariant σ-algebra. B determines a factor (Y,B1, ν, S) of
(X,A, µ, T ) in the following way. Let (Bi)

∞
i=1 ⊂ B be a dense (in B as a measure algebra),

T -invariant sequence of sets; let Y be the set of equivalence classes under the equivalence
relation x ≈ y iff x ∈ Bi if and only if y ∈ Bi, i ∈ N. Let π : X → Y be the natural
projection and let B1 = {B ⊂ Y : π−1(B) ∈ B}. For B ∈ B1, let ν(B) = µ(π−1B).
Finally, write Sπ(x) = π(Tx). Then (Y,B1, ν, S) is the desired factor. In a slight abuse of
terminology that has become wholly usual, will simply say that B is a factor of A, or that
A is an extension of B, and will identify B1 with B when referring to the induced system,
which we now write as (Y,B, ν, S). If x ∈ X and y ∈ Y , with y = π(x), we will say that
“x is in the fiber over y.”

If (Y,B, ν) is a factor of (X,A, µ), then there is a uniquely (up to null sets in Y )
determined family of probability measures {µy : y ∈ Y } on X with the property that µy

is supported on π−1(y) for a.e. y ∈ Y and such that for every f ∈ L1(X,A, µ) one has

∫

X

f(x) dµ(x) =

∫

Y

(

∫

X

f(z) dµy(z)
)

dν(y).

Sometimes we write µx for µy when x is in the fiber over y. The decomposition gives, for
any A-measurable function f , the conditional expectation E(f |B):

E(f |B)(y) =

∫

X

f(x)dµy(x) a.e.
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Equivalently, the conditional expectation E(·|B) : L2(X,A, µ) → L2(X,B, µ) is the or-
thogonal projection onto L2(X,B, µ). In particular, E

(

E(f |B)|B
)

= E(f |B).
Let A ⊗ A be the completion of the σ-algebra of subsets of X ×X generated by all

rectangles C ×D, C,D ∈ A. Now define a T × T -invariant measure µ̃ on (X ×X,A⊗A)
by letting, for f1, f2 ∈ L∞(X,A, µ)

∫

X×X

f1(x1)f2(x2) dµ̃ =

∫

Y

∫

X

∫

X

f1(x1)f2(x2) dµy(x1)dµy(x2)dν(y).

We write X ×Y X for the set of pairs (x1, x2) ∈ X × X with x1 ≈ x2. One checks that
X×Y X is the support of µ̃, and we speak of the measure preserving system (X×Y X,A⊗B
A, µ̃, T̃ ), where A⊗BA is the µ̃-completion of the σ-algebra {

(

X×Y X
)

∩C : C ∈ A⊗A}
and T̃ is the restriction of T × T to X ×Y X .

We now procede to introduce the basic elements of the Furstenberg structure theory
as presented in [FKO].

3.14. Definition. Suppose that (Y,B, ν, S) is a factor of an ergodic system (X,A, µ, T )
arising from a complete, T -invariant σ-algebra B ⊂ A, and f ∈ L2(X,A, µ).

(a) We will say that f is almost periodic over Y , and write f ∈ AP , if for every δ > 0
there exist functions g1, · · · , gk ∈ L2(X,A, µ) such that for every n ∈ Z and a.e. y ∈ Y
there exists some s = s(n, y), 1 ≤ s ≤ k, such that ||Tnf − gs||L2(X,A,µy) < δ.

(b) If AP is dense in L2(X,A, µ), we say that (X,A, µ, T ) is a compact extension of
(Y,B, ν, S), or simply that A is a compact extension of B.

(c) If (X×Y X,A⊗BA, µ̃, T̃ ) is ergodic, then (X,A, µ, T ) is said to be a weakly mixing
extension of (Y,B, ν, S), or, A is said to be a weakly mixing extension of B.

3.15. Notation. In the future we will write ||f ||y for ||f ||L2(X,A,µy).

For a proof of the following proposition, see [FKO].

3.16. Proposition. Suppose that (X,A, µ, T ) is a compact extension of (Y,B, ν, S).
Then for every A ∈ A with µ(A) > 0 there exists some A′ ⊂ A with µ(A′) > 0 and
1A′ ∈ AP .

3.17. Remark. The notions of relative weak mixing and relative compactness are mutu-
ally exclusive. Moreover, one may show that (X,A, µ, T ) is a weakly mixing extension of
(Y,B, ν, S) if and only if there is no intermediate factor (Z, C, γ, U) between (X,A, µ, T )
and (Y,B, ν, S) which is a proper compact extension of (Y,B, ν, S). (This is the relativized
version of the fact that a system is weakly mixing if and only if it has no non-trivial
compact factor.)

The structure theorem (see Theorem 6.17 in [F2] and remarks following) we need may
now be formulated.

3.18. Theorem. Suppose that (X,A, µ, T ) is a separable measure preserving system.
There is an ordinal η and a system of T -invariant sub-σ algebras {Aξ ⊂ A : ξ ≤ η} such
that:

(i) A0 = {∅, X}

31



(ii) For every ξ < η, Aξ+1 is a compact extension of Aξ.
(iii) If ξ ≤ η is a limit ordinal, Aξ is the complete σ-algebra generated by

⋃

ξ′<ξ Aξ′ .
(iv) Either Aη = A or else A is a weakly mixing extension of Aη.

3.19. Remark. The factor Aη appearing in the structure theorem is called the maximal
distal factor of A. Our present goal is to use a relativized version of Theorem 2.48 to show
that in order to prove Theorem 3.10 for the system (X,A, µ, T ), it suffices to establish
that the conclusion holds when A is taken from its maximal distal factor.

3.20. Theorem. Let (X,A, µ, T ) be an ergodic system. Suppose B ⊂ A is a T -invariant
σ-algebra such that A is a relatively weakly mixing extension of B. Suppose p ∈ βN is
idempotent and let E be a p-acceptable family. If v1(x), · · · , vk are distinct members of E ,
then writing v0 ≡ 0, for any f0, · · · , fk ∈ L∞(X,A, µ),

p - lim
n

∣

∣

∣

∣

∣

∣

∣

∣

k
∏

i=0

T vi(n)fi −
k

∏

i=0

T vi(n)E(fi|B)

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Proof. Let ai = T vi(n)fi, bi = T vi(n)E(fi|B) and employ (2.10). This allows one to
assume without loss of generality that E(fa|B) = 0 for some a, whereupon one proceeds
exactly as in the proof of Theorem 2.48.

3.21. Remark. The above theorem allows one to assume in the proof of Theorem 3.10
that the system one is working in is a distal system (that is, one that is equal to its maximal
distal factor). However, subject to this restiction, an even more general statement than
that appearing in the conclusion to Theorem 3.10 holds–and, owing to somewhat simpler
notation, is easier to prove. Formulating this statement and proving that it is valid for
distal systems is our next task.

3.22. Definition. Let F denote the family of finite, non-empty subsets of N. Put also
F∅ = F ∪ {∅}. For α, β ∈ F∅, we write α < β if for all x ∈ α and y ∈ β, one has x < y.

Note that ∅ < α < ∅ for α ∈ F .

3.23. Notation. Suppose αi ∈ F , i ∈ N, with α1 < α2 < · · ·. Let F (1) denote the set of

non-empty finite unions of the αi’s. (Also F (1)
∅ = F (1) ∪ {∅}.) F (1) is called an IP ring.

3.24. Definition. Let k ∈ N and let F (1) be an IP ring. We denote by (F (1))k
< (re-

spectively (F (1)
∅ )k

<) the set of all k-tuples (α1, . . . , αk) ∈ (F (1))k (respectively ∈ (F (1)
∅ )k)

satisfying α1 < α2 < · · · < αk.

3.25. Theorem. (Milliken-Taylor Theorem: see [Mi], [T]). Let k ∈ N, let F (1) be an
IP ring and suppose (F (1))k

< =
⋃r

i=1 Ci. Then for some IP ring F (2) ⊂ F (1) and some i,
1 ≤ i ≤ r, one has (F (2))k

< ⊂ Ci.

3.26. Definition. A function v : F → Z is a VIP system if there exists d ∈ N such that
for every (α0, . . . , αd) ∈ Fd+1

< one has

∑

0≤ii<i2<···<ik≤d

(−1)kv(αi1 ∪ · · · ∪ αik
) = 0.
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The least such d is called the degree of the system.

3.27. Definition. Suppose that Ω is a topological space, ω : F → Ω is a function, z ∈ Ω
and F (1) is an IP-ring. We write

IP-lim
α∈F(1)

ω(α) = z

if for any neighborhood U of z, there exists α0 ∈ F (1) such that for all α ∈ F (1) with
α > α0, one has ω(α) ∈ U . Similarly, if g : F t

< → Ω we write

IP-lim
(α1,···,αt)∈(F(1))t

<

g(α1, . . . , αt) = z

if for any neighborhood U of z, there exists α0 ∈ F (1) such that for all (α1, . . . , αt) ∈
(F (1))t

< with α1 > α0, one has g(α1, . . . , αt) ∈ U .

3.28. Remark. Using Hindman’s theorem in place of the pigeonhole principle, one can
prove, by mimicking the proof of the Bolzano-Weierstrass theorem, that if Ω is a compact
metric space and ω : F → Ω is an arbitrary function then one can find an IP ring F (1) such
that IP-lim

α∈F(1)
ω(α) exists. (Similarly for F t

<-valued functions, using the Milliken-Taylor

theorem.)

3.29. Theorem. Let (X,A, µ, T ) be a distal system. For any VIP systems u1, . . . , uk

and any A ∈ A with µ(A) > 0, there exists an IP ring F (1) such that

IP-lim
α∈F(1)

µ
(

k
⋂

i=1

Tui(α)A
)

> 0.

We do not know whether Theorem 3.29 is true for arbitrary systems. At any rate, our
first task is to use its validity for distal systems to derive Theorem 3.10, with the help of
Theorem 3.20.

3.30. Theorem. Let p ∈ βN be idempotent and suppose v1, . . . , vk are p -VIP systems.
There exists an IP system n : F → N such that, writing ui(α) = vi

(

n(α)
)

, each ui is a
VIP system, 1 ≤ i ≤ k.

Proof. Although this result is not deep, notation can be cumbersome. For convenience,
we will give a proof for k = 1 and degp v1 = 1, leaving the more complicated, albeit
uninterestingly so, general case to the reader.

Let E = E0 =
{

x : {y : v1(x + y) = v1(x) + v1(y)} ∈ p
}

∈ p, and for x ∈ E put
Ex = {y > x : v1(x+ y) = v1(x)+ v1(y)} ∈ p. We inductively generate a sequence (xi)

∞
i=1.

Assume that x1, . . . , xt−1 have been chosen such that for every α, β ⊂ {1, 2, . . . , t−1} with
α 6= ∅ and α < β (perhaps β is empty), one has, writing in a small abuse of notation
xγ =

∑

i∈γ xi,
(1) (Exα

− xβ) ∈ p, and
(2) (E − xα) ∈ p.
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Here is how xt is to be chosen. Let

D =
(

⋂

α⊂{1,...,t−1}
(E − xα)

)

∩
(

⋂

α,β⊂{1,...,t−1},∅6=α<β

(Exα
− xβ)

)

∈ p.

Note that α can be empty in the first intersection and β can be empty in the second. Now
choose xt ∈ D ∩ {x : D − x ∈ p}. One checks that the induction hypothesis is carried
forward and that n(α) = xα does the job.

3.31. Remark. In our application of Theorem 3.30 we will need something more, which
is an easy corollary of the proof. Namely, if v1, . . . , vk are p -VIP systems and r : N → R
is a function for which p - limn r(n) = x, then there exists an IP system n : F → N such
that, writing ui(α) = vi

(

n(α)
)

, each ui is a VIP system, 1 ≤ i ≤ k, with the additional

property that IP-lim
α∈F

r
(

n(α)
)

= x.

3.32. Proof of Theorem 3.10. Let B = Aη ⊂ A denote the maximal distal factor of
the system (X,A, µ, T ). Take A ∈ A with µ(A) > 0 and let f = E(1A|B). Choose δ > 0
and B ∈ B such that f ≥ δ on B. By Theorem 3.20 (using just weak convergence),

p - lim
n
µ
(

B ∩ T v1(n)B ∩ · · · ∩ T vk(n)B
)

=p - lim
n
δk+1

∫

1BT
−v1(n)1B · · ·T−vk(n)1B

≤p - lim
n

∫

fT−v1(n)f · · ·T−vk(n)f

=p - lim
n

∫

1AT
−v1(n)1A · · ·T−vk(n)1A

p - lim
n
µ
(

A ∩ T v1(n)A ∩ · · · ∩ T vk(n)A
)

.

Let r(n) = µ
(

B∩T v1(n)B∩· · ·∩T vk(n)B
)

. By the above inequality, it suffices to show
p - limn r(n) > 0. Suppose that p - limn r(n) = 0. We will obtain a contradiction. Choose
by Remark 3.31 an IP system n : F → N such that, writing ui(α) = vi

(

n(α)
)

, 1 ≤ i ≤ k,
each ui is a VIP system, and such that

IP-lim
α∈F

r
(

n(α)
)

= IP-lim
α∈F

µ
(

B ∩ Tu1(α)B ∩ · · · ∩ Tuk(α)B
)

= 0.

This contradicts Theorem 3.29.

We now turn our attention to the proof of Theorem 3.29.

3.33. Definition. Let d ∈ N. Put Fd = {α ∈ F : |α| ≤ d}.
3.34. Theorem. (See [Mc1].) A function v : F → Z is a VIP system if and only
if there exists d ∈ N and a function γ : Fd → Z (the generating function) such that
v(α) =

∑

β⊂α,0<|β|≤d γ(β) for all α ∈ F .

The foregoing characterization motivates the following definition.
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3.35. Definition. Let t ∈ N. A multivariable VIP-system (with t variables) of degree
(at most) d into Z is a function v : (F∅)

t
< → Z of the form

v(α1, . . . , αt) =
∑

γi⊂αi,|γ1∪···∪γt|≤d

f(γ1, . . . , γt),

where f takes on arbitrary values in Z with f(∅, . . . , ∅) = 0.

The following is a standard application of the polynomial Hales-Jewett theorem ([BL2];
cf. [BM1, Corollary 3.2] and [BM2, Theorem 2.12]).

3.36. Lemma. Let k, r, t ∈ N and let vj(α1, . . . , αt) be multivariable VIP systems, 1 ≤
j ≤ k. There exist N,w ∈ N and multivariable VIP systems qj(α1, . . . , αN), 1 ≤ j ≤ w,
such that for any r-cell partition Q = {qj : 1 ≤ j ≤ w} =

⋃r
j=1 Cj , there is some i with

1 ≤ i ≤ r, some q ∈ Q, and sets Sj ⊂ {1, . . . , N}, 1 ≤ j ≤ t, with S1 < S2 < · · · < St, such
that, utlizing the substitution βj =

⋃

n∈Sj
αn, 1 ≤ j ≤ t, one has

{

q(α1, . . . , αN), q(α1, . . . , αN) − v1(β1, . . . , βt), . . . , q(α1, . . . , αN) − vk(β1, . . . , βt)
}

⊂ Ci.

3.37. Definition. Suppose (X,A, µ, T ) is an invertible measure preserving system and
B ⊂ A is a complete T -invariant sub-σ-algebra. B is said to have the VIPSZ property if
for every A ∈ B with µ(A) > 0, t, k ∈ N, and multivariable VIP systems v1(α1, . . . αt), . . . ,
vk(α1, . . . , αt) there is an IP ring F (1) such that, writing v0 ≡ 0,

IP-lim
(α1,···,αt)∈(F(1))t

<

µ
(

k
⋂

j=0

T vj(α1,...,αt)A
)

> 0.

3.38. Discussion. In order to prove Theorem 3.29, it suffices to show that for an arbitrary
distal system (X,A, µ, T ), A has the VIPSZ property. This is accomplished via transfinite
induction through the ordinals appearing in Theorem 3.18. As the trivial algebra A0

plainly has the property, there are two steps: one must show that the property passes to
successor ordinals (compact extensions), and to limit ordinals.

First we handle successor ordinals.

3.39. Theorem. Suppose that (X,A, µ, T ) is an ergodic measure preserving system
and that B ⊂ A is a complete, T -invariant sub-σ-algebra having the VIPSZ property. If
(X,A, µ, T ) is a compact extension of the factor (Y,B, ν, S) determined by B, then A has
the VIPSZ property as well.

Proof. Suppose that A ∈ A, µ(A) > 0. By Proposition 3.16 we may assume without
loss of generality that f = 1A ∈ AP . Suppose that t, k ∈ N and vi(α1, . . . , αt) are
multivariable VIP systems, 1 ≤ i ≤ k. There exists some c > 0 and a set B ∈ B, ν(B) > 0,
such that for all y ∈ B, µy(A) > c. Let ǫ =

√

c
8k

. Since f ∈ AP , there exist functions
g1, . . . , gr ∈ L2(X,A, µ) having the property that for any n ∈ N, and a.e. y ∈ Y , there
exists s = s(n, y), 1 ≤ s ≤ r, such that

∣

∣

∣

∣Tnf − gs

∣

∣

∣

∣

y
< ǫ. For these numbers r, k, t and
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the systems vi, let w,N ∈ N and Q = {qj(α1, . . . , αN) : 1 ≤ j ≤ w} be as guaranteed by
Lemma 3.36.

Write q0 ≡ 0. Since B has the VIPSZ property, there exists an IP ring F (1) such that

IP-lim
(α1,···,αN )∈(F(1))t

<

µ
(

N
⋂

j=0

Sqj(α1,...,αN )B
)

> η > 0.

We may further assume that

IP-lim
(α1,···,αt)∈(F(1))t

<

µ
(

N
⋂

j=0

T vj(α1,...,αt)A
)

(3.1)

exists. It is this limit we wish to show positive. Let D be the number of ways of choosing
t non-empty sets S1, · · · , St ⊂ {1, · · · , N} with S1 < S2 < · · · < St and set δ = cη

2D
.

If the limit (3.1) were equal to zero, then by Milliken-Taylor we could, by passing to a

subring of F (1), assume that µ
(

⋂N
j=0 T

vj(α1,...,αt)A
)

< δ for every (α1, . . . , αt) ∈ (F (1))t
<.

We will show that this assumption is impossible by exhibiting (β1, . . . , βt) ∈ (F (1))t
< for

which µ
(

⋂N
j=0 T

vj(β1,...,βt)A
)

≥ δ. This will complete the proof of Theorem 3.40.

Choose (α1, . . . , αN ) ∈ (F (1))N
< such that

µ
(

N
⋂

j=0

S−qj(α1,...,αN )B
)

> η.

Pick any y ∈ ⋂N
j=0 S

−qj(α1,...,αN )B. Form an r-cell partition of Q, Q =
⋃r

i=1 Ci, by

qj ∈ Ci if and only if s
(

qj(α1, . . . , αN), y
)

= i, 1 ≤ j ≤ w. In particular, if qj ∈ Ci then
∣

∣

∣

∣T qj(α1,...,αN )f − gi

∣

∣

∣

∣

y
< ǫ. For this partition, there exists some i, 1 ≤ i ≤ r, some q ∈ Q,

and sets S1, . . . , St ⊂ {1, · · · , N}, S1 < S2 < · · · < St, such that, utilizing the substitution
βm =

⋃

n∈Sm
αn, 1 ≤ m ≤ t, one has

{

q(α1, . . . , αN), q(α1, . . . , αN) − v1(β1, . . . , βt), . . . , q(α1, . . . , αN) − vk(β1, . . . , βt)
}

⊂ Ci.

(We are exercising a slight abuse of notation here, of course; in the previous display as in
Lemma 3.36 the αi are variables, whereas in the flow of the proof they have been fixed.
This obviously makes no difference.) This implies

∣

∣

∣

∣

∣

∣
T q(α1,...,αN )−vj(β1,...,βt)f − gi

∣

∣

∣

∣

∣

∣

y
< ǫ, 0 ≤ j ≤ k.

Setting ỹ = Sq(α1,...,αN )y, one has

∣

∣

∣

∣

∣

∣
T−vj(β1,...,βt)f − T−q(α1,...,αN )gi

∣

∣

∣

∣

∣

∣

ỹ
< ǫ, 0 ≤ j ≤ k.
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In particular, since this holds for j = 0, by the triangle inequality

∣

∣

∣

∣

∣

∣
T−vj(β1,...,βt)f − f

∣

∣

∣

∣

∣

∣

ỹ
< 2ǫ, 1 ≤ j ≤ k.

It follows that

µỹ

(

A \ T vj(β1,...,βt)A
)

≤
∣

∣

∣

∣

∣

∣
T−vj(β1,...,βt)f − f

∣

∣

∣

∣

∣

∣

2

ỹ
≤ 4ǫ2; 1 ≤ j ≤ k.

Moreover, ỹ ∈ B, so that µỹ(A) ≥ c, therefore, since ǫ =
√

c
8k

,

µỹ

(

k
⋂

i=0

T vi(β1,...,βt)A
)

≥ c− 4kǫ2 =
c

2
.

S1, . . . , St depend measurably on y, therefore β1, . . . , βt are measurable functions of y

defined on the set
(

⋂w
j=0 S

−qj(α1,...,αN )B
)

, which, recall, is of measure greater than η.

Hence, as there are only D choices for S1, . . . , St, we may assume that for all y ∈ H, where
H ∈ B satisfies ν(H) > η

D
, β1, . . . , βt are constant. For this choice of β1, . . . , βt one has

µ
(

k
⋂

j=0

T vi(β1,...,βt)A
)

≥ c

2
ν(H) >

cη

2D
= δ.

Next we handle passage to limit ordinals.

3.40. Theorem. Suppose that (X,A, µ, T ) is a measure preserving system and Aξ is a
totally ordered chain of sub-σ-algebras of A having the VIPSZ property. If

⋃

ξ Aξ is dense
in A then A has the VIPSZ property.

Proof. Suppose A ∈ A, µ(A) > 0, t, k ∈ N and vi(α1, · · · , αt) are VIP systems, 1 ≤ i ≤ k.

There exists an ordinal ξ and a set B ∈ Aξ such that µ
(

(A \ B) ∪ (B \ A)
)

≤ µ(A)
4(k+1) . Let

∫

dµ =
∫

Y

∫

X
dµydν(y) be the decomposition of µ over Aξ. We will speak of the system

(Y,Aξ, ν, S), as usual. Let C = {y ∈ B : µy(A) ≥ 1 − 1
2(k+1)}. It is easy to see that

ν(C) > 0. Since Aξ has the VIPSZ property, there exists an IP ring F (1) such that

IP-lim
(α1,···,αt)∈(F(1))t

<

ν
(

k
⋂

j=0

Svj(α1,···,αt)C
)

> δ > 0.

By passing to a subring if necessary, we may assume that

IP-lim
(α1,···,αt)∈(F(1))t

<

µ
(

k
⋂

j=0

T vj(α1,···,αt)A
)
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exists. We claim that this limit is at least δ
2 . Otherwise, by Milliken-Taylor one could

again pass to an IP subring (continue to call it F (1)) having the property that for all

(α1, . . . , αt) ∈ (F (1))t
<, µ

(

⋂k
j=0 T

vj(α1,···,αt)A
)

< δ
2 . But one may pick (α1, . . . , αt) ∈

(F (1))t
< for which ν

(

⋂k
j=0 S

vj(α1,···,αt)C
)

> δ. Also, for every y ∈ ⋂k
j=0 S

vj(α1,···,αt)C, one

has µy

(

T vj(α1,···,αt)A
)

≥ 1− 1
2(k+1)

, from which it follows that µy

(

⋂k
j=0 T

vj(α1,···,αt)A
)

≥
1
2 , whence µ

(

⋂k
j=0 T

vj(α1,···,αt)A
)

≥ δ
2 .

This completes the proof of Theorem 3.29, and hence also of Theorem 3.10. Combining
this with Furstenberg correspondence, we get the following corollary.

3.41. Corollary. Let E ⊂ Z with d∗(E) > 0 and let g1, . . . , gk ∈ G. Suppose p ∈ D and
A ∈ p. Then there exists n ∈ A such that d∗

(

E∩(E+g1(n)−lg1
)∩· · ·∩(E+gk(n)−lgk

)
)

> 0.

Proof. Recall, we have shown in Lemma 3.8 b. that Gp = {g− lg,p : g ∈ G} is p-acceptable
for p ∈ D. Combining this with Theorem 3.10 and Furstenberg correspondence gives the
desired result.

3.42. Remark. Part (a) of the above theorem is, in effect, a special case of [Mc2, The-
orem B], which essentially gives the same result for Zl-valued generalized polynomials of
finitely many variables, and for (up to an equivalence of formulation) arbitrary idempo-
tents p. (Only “in effect” because [Mc2, Theorem B] is restricted to admissible generalized
polynomials g (see the introduction), for which lg,p = 0 for every idempotent p. However,
one can use [BKM, Theorem 2.8] to pass from these to arbitrary generalized polynomials.)
Apart from the more general formulation (b), an advantage of the proof we have given here
is that it uses the classical structure theory of [FKO], whereas [Mc2] (also [BM2]) employs
a substantially more complicated structure theory analgous to that of [FK2].

However, there are further advantages as well; taking the VIP, degree 2 case as a
paradigm, the methods of [BKM] and [Mc2] apply only to linear combinations of “basic”
systems v(α) =

∑

{i,j}⊂α d{i,j} whose generators (d{i,j}) satisfy a restrictive algebraic

condition, say d{i,j} = nimj , where (ni) and (mj) are sequences of integers. The methods
we employ here are sensitive rather to growth-rate and dependence conditions on the
generators. We now illustrate this by way of two examples.

3.43. Definition. Let (di)
∞
i=0 be a sequence in Z generating an IP system v(α) =

∑

i∈α di. Now, for x ∈ N, write x =
∑∞

i=1 ai(x)2
i, with each ai(x) ∈ {0, 1} (this is of

course just the unique binary expansion of x). We put fv(x) =
∑∞

i=0 ai(x)di.

3.44. Proposition. If p ∈ βN is any idempotent and v is an IP system then fv is a p-IP
system.

Proof. Let x ∈ N and put m(x) = max{i : ai(x) = 1}. One easily checks that fv(x+y) =
fv(x) + fv(y) for any y divisible by 2m+1.

3.45. Definition. An IP system v(α) =
∑

i∈α di, minα ≥ i0 ∈ N is well spaced if for

some M ∈ N, either
∑n−1

i=i0
di < dn < M2n for all n > i0 or

∑n−1
i=i0

di > dn > −M2n for
all n > i0.
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Notice that non-zero multiples of well spaced systems are well spaced, but finite sums
of well spaced systems needn’t be.

3.46. Proposition. Let v(α) =
∑

i∈α di be a well spaced IP system. If E ⊂ N with

d∗(E) = ǫ > 0 then d∗
(

fv(E)
)

> 0.

Proof. We assume for convenience that i0 = 1. Choose a large n and a k such that
∣

∣E ∩ [k2n, (k + 1)2n)
∣

∣ > 1
2
ǫ2n. If M is such that

∑n−1
i=1 di < dn < M2n for all n > 1,

fv

(

[k2n, (k + 1)2n)
)

⊂ [fv(k2
n), fv(k2

n) +M2n).

Moreover, fv is injective, hence

∣

∣fv(E) ∩ [fv(k2
n), fv(k2

n) +M2n)
∣

∣

M2n
>

ǫ

2M
.

Since n was chosen arbitrarily large, d∗
(

fv(E)
)

≥ ǫ
2M

.

Recall that a function g : Fd → Z generates a VIP system by v(α) =
∑

γ⊂α g(γ).

3.47. Definition.
(a) For x ∈ N, write α(x) = {i : ai(x) = 1}.
(b) Let v : F → Z be a VIP system. For x ∈ N, we put fv(x) = v

(

α(x)
)

.

3.48. Proposition. Let v : F → Z be VIP of degree at most d and let p ∈ βN be
idempotent. Then fv is a p -VIP system of degree at most d.

3.49. Definition. Let v be a VIP system. If deg v = d > 1, v is said to be well spaced
if (i) v(α) =

∑

γ⊂α,|γ|=d g(γ) +
∑

γ⊂α,γ∈Fd−1
h(γ), minα ≥ i0, where g is strictly positive;

and (ii) for every α ∈ Fd−1, the sequence di = g(α ∪ {i}), i > maxα, generates a well
spaced IP system. fv is said to be well spaced if v is well spaced.

3.50. Definition. Let v be a VIP system into Z and let α ∈ F . The derivative of v
with step α is the function Dαv : {β ∈ F : minβ > maxα} → Z defined by Dαv(β) =
v(α ∪ β) − v(α) − v(β).

3.51. Proposition. Let x, y ∈ N and let v : F → Z be a VIP system. If α(y) < α(x)
then Dyfv(x) = Dα(y)v

(

α(x)
)

.

We leave the easy proof of the following to the reader.

3.52. Proposition. Let v : F → N be a well spaced VIP system of degree d > 1 and fix
α ∈ F . Then Dαv is well spaced.

3.53. Corollary. Let p ∈ D and let v be a well spaced VIP system. Then fv ∈ Bp.

Combining this with Corollary 3.12, one gets:

3.54. Corollary. Let v : F → Z be a well spaced VIP system and let ǫ > 0.

a. Suppose (X,A, µ, T ) is a measure preserving system. If µ(A) > 0 then there is some
α ∈ F such that µ(A ∩ T v(α)A) ≥ µ(A)2 − ǫ.
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b. If E ⊂ Z with d∗(E) > 0 then there is some α ∈ F such that

d∗
(

E ∩
(

E − v(α)
)

)

> d∗(E)2 − ǫ.

In order to obtain results for multiple recurrence along well spaced VIP systems, we
need some additional conditions. At this stage, notation can become rather cumbersome,
so we will restrict ourselves to the degree 2 case for convenience.

3.55. Theorem. Let (X,A, µ, T ) be a measure preserving system. Let

v(α) =
∑

i<j,{i,j}⊂α

d{i,j} +
∑

i∈α

ci

be a well spaced VIP system of degree 2 with d{i,j} positive. For i < j, put gap(i, j) =

d{i,j} − ∑j−1
k=i+1 d{i,k} > 0, and suppose that for every L,M > 0, there exists N =

N(v, L,M) > 0 such that for every j > i ≥ N ,

gap(i, j) > M
(

L
∑

t=1

gap(t, j)
)

. (∗)

If A ∈ A with µ(A) > 0 then there is some α ∈ F such that µ
(

A∩T v(α)A∩T 2v(α)A
)

> 0.

3.56. Remark. If d{i,j} is negative, simply reverse the inequality in (∗). Notice that
the requirement gap(i, j) > 0 is just the well spacedness condition, whereas (∗) implies
in particular that for any β ∈ F with minβ ≥ N and any α ∈ f with maxα ≤ L,
Dβv +M ′Dαv is well spaced, where |M ′| ≤ M . More generally, if α1 < α2 < · · · < αr−1,

with maxαr−1 ≤ L, Dβv −
∑r−1

i=1 MiDαi
v will be well spaced, where |Mi| ≤M .

Condition (∗) may be less artificial than it at first seems; e.g. degree two polynomials
cx2 + bx can be realized as fv, where v is well spaced and satisfies (∗). Indeed, put
w(α) =

∑

i<j,{i,j}⊂α d{i,j}, where d{i,j} = c2i+j+1, and let u be the IP system defined

by u(α) =
∑

i∈α(c22i + b2i). One may easily check that v = w + u is well spaced,
fv(n) = cn2 + bn and (∗) holds.

Proof of Theorem 3.55. Since well spaced VIP systems satisfying (∗) don’t form a
group, the current result does not follow as a corollary of Theorem 3.20 as stated. Instead,
we must derive the current result as a corollary of its proof (actually, the proof of Theorem
2.48). Notice that the condition in Theorem 2.48 that all of the vi come from a p-acceptable
family E is stronger than necessary: all that is actually required is that the p-linear systems
occuring at the various stages of the induction belong to Bp,1 (the base case of weight vector
(1, 0, . . .) requires this, as does the p - limm assertion in the final display of the proof).

Fix p ∈ D. For the current proof, we start with the family {fv, 2fv}. After a single
application of van der Corput, one gets to {Dxfv, fv, fv+2Dxfv} (this is the derived family,
called Bm in the proof of Theorem 2.48). The linear member of this family is Dxfv, which
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for p-many x will be a member of Bp,1, using just the fact that v is well spaced. Fixing x,
a second application yields the family

{fv −Dxfv, fv +Dxfv, fv +Dyfv −Dxfv, fv +Dyfv +Dxfv}.

There are no linear members here, but we still must be careful about our choice of y. Note
that y is chosen after x is, and can be taken from an arbitrary member of p; in particular,
one may arrange that minα(y) be large enough to guarantee that Dyfv − 2Dxfv is well
spaced (here is where we must utilize (∗)). A third application of van der Corput leads to
the family

{2Dxfv, Dyfv, Dyfv + 2Dxfv, Dzfv, Dzfv + 2Dxfv, Dzfv +Dyfv, Dzfv +Dyfv + 2Dxfv}.

All seven of these systems are linear. It is sufficient for the proof to go through that all of
them, as well as all of their differences (which will occur as linear members of later families
in the induction), be well spaced. Provided we require that minα(z) be large enough to
guaranteed that Dzfv − 2Dyfv − 2Dxfv is well spaced, this condition will be met.

3.57. Remark. We don’t see any obstacle to generalizing the foregoing theorem to
well spaced systems v of arbitrary degree satisfying appropriately formulated versions of
(∗), and to more general configurations (certainly anything like µ

(
∏k

i=1 T
qi(v(α))A

)

> 0
should be okay, where the qi(x) ∈ Z[x] have zero constant term). We haven’t worked out
the details.

A further analysis of the proof of Theorem 2.48 yields the following.

3.58. Corollary. Let E ⊂ Z with d∗(E) > 0, p ∈ D, A ∈ p, let E be a p-acceptable
family and let g1, . . . , gk ∈ E . If h1, . . . , hk are any p-VIP systems with degp hi < degp gi

and degp(hi − hj) < degp(gi − gj), 1 ≤ i 6= j ≤ k, then there exists n ∈ A such that

d∗
(

E ∩ (E + g1(n) + h1(n)) ∩ · · · ∩ (E + gk(n) + hk(n))
)

> 0.

Proof. Let H be the family of finite sets of p-VIP systems {v1, . . . , vk} such that vi =
ei +fi, 1 ≤ i ≤ k, where ei ∈ E , fi is a p-VIP system and degp fi < degp ei, degp(fi−fj) <
degp(ei − ej), 1 ≤ i 6= j ≤ k. What we must show is that Theorem 2.48 holds for families
{v1, . . . , vk} ∈ H.

Since it is obvious that any linear member vi of such a family is in E , and therefore in
Bp,1, all that is required in order for the proof to go through is that for any {v1, . . . , vk} ∈ H,
for p-many m the family

Bm = {v2 − v1, v3 − v1, . . . , vk − v1, vw+1 +Dmvw+1 − v1, · · · , vk +Dmvk − v1}

again belongs to H. We argue in steps:

(1) We have that, for 2 ≤ i ≤ k, vi − v1 = (ei − e1) + (fi − f1), and by hypothesis,
degp(fi − fj) < degp(ei − ej).

(2) For w < i ≤ k,

vi +Dmvi − v1 = (ei +Dmei − e1) + (fi +Dmfi − f1).
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Clearly degp(ei +Dmei−e1) > degp(fi+Dmfi−f1) if ei 6∼p e1, and if ei ∼p e1, for p-many
m one has degp(ei + Dmei − e1) = degp ei − 1 ≥ degp(ei − e1) > degp(fi − f1). On the
other hand, degp(ei +Dmei − e1) = degp ei − 1 > degp fi − 1 = degpDmfi. It follows that
degp(ei +Dmei − e1) > degp(fi +Dmfi − f1).

(3) If w < i ≤ k and 2 ≤ j ≤ k then (vi + Dmvi − v1) − (vj − v1) = (vi + Dmvi − vj);
simply repeat argument (2) with 1 replaced by j.

(4) If 2 ≤ i < j ≤ k then (vi − v1) − (vj − v1) = (vi − vj); repeat argument (1) with 1
replaced by j.

(5) If w < j < i ≤ k then

(vi +Dmvi − v1) − (vj +Dmvj − v1)

=(vi − vj) +Dm(vi − vj)

=
(

(ei − ej) +Dm(ei − ej)
)

+
(

(fi − fj) +Dm(fi − fj)
)

.

But now clearly degp

(

(ei−ej)+Dm(ei−ej)
)

= degp(ei−ej) > degp(fi−fj) = degp

(

(fi−
fj) +Dm(fi − fj)

)

.

Notice that in the foregoing theorem, one can take E to be the set of admissible
generalized polynomials. This yields Theorem 1.27. We now move to the second of the
aforementioned two examples.

3.59. Definition. An IP system v(α) =
∑

n∈α dn, minα ≥ i0 ∈ N, is densely packed if

dn ∈ N, n ≥ i0, and dn = o
(
√

n/ logn
)

.

3.60. We are indebted to P. Balister for the condition dn = o
(
√

n/ logn
)

appearing in
the previous definition (in a prior draft, (dn) was required to be bounded).

3.61. Proposition. Let v(α) =
∑

n∈α dn be a densely packed IP system. If E ⊂ N with

d∗(E) = ǫ > 0 then d∗
(

fv(E)
)

> 0.

Proof. Let Xi be independent random variables with P (Xi = 0) = 1
2 = P (Xi = di).

For N ∈ N, set X = X(N) =
∑N

i=1Xi. Our plan is to give our original proof, under the
assumption (dn) is bounded, then to state Balister’s lemma, which allows the proof of the
general case to go through in a similar fashion.

Choose large N and k such that |E∩[k2N ,(k+1)2N )|
2N > ǫ

10 . The standard deviation of

X = X(N) is at most 1
2
M

√
N and its distribution is approximately normal, hence we may

choose an interval I of length at most 100M
√

N
ǫ

such that P (X ∈ I) > 1 − ǫ
20 . From this

is follows that C = {y ∈ [k2N , (k + 1)2N ) : f(y) ∈ I} satifies |C| ≥ 2N (1 − ǫ
20), hence

|C ∩ E| ≥ 2N ǫ
20

.
Let R = fv(C ∩ E). According to a theorem of Erdös ([Er]; see also Kleitman [K]),

if di are non-zero integers, 1 ≤ i ≤ N , and T is a positive integer then the number of
distinct sets α ⊂ {1, 2, . . . , N} such that

∑

i∈α di = T is at most
(

N
⌊N

2 ⌋
)

. As a consequence

of this theorem, each x ∈ I has at most
(

N
⌊N

2 ⌋
)

preimages under f ; by Stirling’s formula
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this is no more than, say, 100·2N

√
N

. It follows that |R| ≥ ǫ
√

N
2000

. Since I ≈ 100M
√

N
ǫ

, this

yields |R|
|I| ≥ ǫ2

200000M
. We may conclude, since N can be chosen as large as desired, that

d∗
(

fv(E)
)

≥ ǫ2

200000M
.

For the general case, one substitutes the following lemma for the Erdös result, which
changes things only slightly. For the assertion that for large N , X(N) is approximately
normal, one needs, e.g., Liapounov’s theorem. (Also note that Balister’s lemma remains
true when dn = 0 for n less than some i0, though the constant C appearing there will then
depend on i0.)

3.62. Lemma ([Ba]). Let X and (Xn)N
n=1 be as above. There exist absolute constants

c, C > 0 (independent of N) such that if 1 ≤ dn ≤ c
√

n/ logn, 1 ≤ n ≤ N , then

P (X = k) ≤ C(
∑N

n=1 d
2
n)−

1
2 for all k.

3.63. Definition. Let v : F → Z be a VIP system. If deg v = d > 1, v is said to be
densely packed if (i) v(α) =

∑

γ⊂α,|γ|=d g(γ) +
∑

γ⊂α,γ∈Fd−1
h(γ), where g has constant

sign, and (ii) for every α ∈ Fd−1, the sequence di = g(α ∪ {i}), i > maxα, generates a
densely packed IP system. fv is said to be densely packed if v is densely packed.

We leave the easy proof of the following to the reader.

3.64. Proposition. Let v : F → N be a densely packed VIP system of degree d > 1 and
fix α ∈ F . Then Dαv is a densely packed VIP system.

3.65. Corollary. Let p ∈ D and let v be a densely packed VIP system. Then fv ∈ Bp.

3.66. Corollary. Let v : F → Z be a densely packed VIP system and let ǫ > 0.

a. Suppose (X,A, µ, T ) is a measure preserving system. If µ(A) > 0 then there is some
α ∈ F such that µ(A ∩ T v(α)A) ≥ µ(A)2 − ǫ.

b. If E ⊂ Z with d∗(E) > 0 then there is some α ∈ F such that

d∗
(

E ∩
(

E − v(α)
)

)

> d∗(E)2 − ǫ.

As was the case with well spaced systems, we need a stronger assumption for multiple
recurrence results along densely packed VIP systems. Again, we give only a special case
but see no obstacle to a more general formulation.

3.67. Theorem. Let (X,A, µ, T ) be a measure preserving system. Let

v(α) =
∑

i<j,{i,j}⊂α

d{i,j} +
∑

i∈α

ci

be a densely packed VIP system of degree 2. Suppose that for every L,M > 0, there exists
R = R(L,M) > 0 such that for every j > i ≥ R,

d{i,j} > M
(

L
∑

t=1

d{t,j}
)

. (∗∗)
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If A ∈ A with µ(A) > 0 then there is some α ∈ F such that µ
(

A∩T v(α)A∩T 2v(α)A
)

> 0.

Proof. The proof is wholly analogous to that of Theorem 3.55, in light of the fact that
Comment 3.56 generalizes to densely packed systems. In particular, (∗∗) implies that for
any β ∈ F with minβ ≥ R and any α ∈ f with maxα ≤ L, the IP system Dβv+M ′Dαv,
defined for ξ with min ξ > maxβ, is densely packed, where |M ′| ≤ M . More generally, if

α1 < α2 < · · · < αr−1, with maxαr−1 ≤ L, Dβv−
∑r−1

i=1 MiDαi
v is densely packed, where

|Mi| ≤M .

Lastly, we state the condition (analogous to Theorem 1.18) promised in the introduc-
tion and after the statement of Theorem 3.9.

3.68. Theorem. Let p be an idempotent ultrafilter, let u, v : N → Z be p-VIP systems
(in particular, u and v may be powers of n, or admissible generalized polynomials) having
distinct, non-trivial rates of growth, in the sense that

lim
n→∞

|v(n)| = lim
n→∞

|u(n)| = lim
n→∞

∣

∣

∣

v(n)

u(n)

∣

∣

∣
= ∞.

Put

F (n) =

n1
∑

i=1

[[aiu(n)[[biv(n)]]]] +

n2
∑

i=1

[[civ(n)[[biu(n)]]]] +

n3
∑

i=1

[[eiu(n)]][[div(n)]]

+

n4
∑

i=1

[[giu(n)]] +

n5
∑

i=1

[[hiv(n)]] +

n6
∑

i=1

[[kiu(n)v(n)]].

If p - limn |F (n)| <∞ then the following five conditions are satisfied:

(1)

n1
∑

i=1

aibi +

n2
∑

i=1

cidi +

n3
∑

i=1

eifi +

n6
∑

i=1

ki = 0;

(2)

n5
∑

i=1

hi = 0;

(3)

n4
∑

i=1

gi = 0;

(4)

n2
∑

i=1

ci ⊗ di +

n3
∑

i=1

fi ⊗ ei ∈ R ⊗Q

(5)

n1
∑

i=1

ai ⊗ bi +

n3
∑

i=1

ei ⊗ fi ∈ R ⊗ Q.

In particular, if any of (1)-(5) are not met, then p - limn

∫

fTF (n)g dµ = (
∫

f dµ)(
∫

g dµ)
for any weakly mixing system (X, T ) and f, g ∈ L∞(X).

Proof. The last assertion follows from the first assertion and Theorem 3.9. For the proof
of the body of the theorem, cf. [MQ, Theorem 3.2]. The present result can be obtained
by essentially the same method.
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Ergodic Theory of Zd-actions, M. Pollicott and K. Schmidt, editors, London Mathematical
Society Lecture Notes Series 228 (1996) 273-296.

[BM2] V. Bergelson and R. McCutcheon, An ergodic IP polynomial Szemeré di theorem,
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[S] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression,
Acta. Arith. 27 (1975), 199-245.

[T] A. Taylor, A canonical partition relation for finite subsets of ω, J. Combinatorial Theory
(Series A) 21 (1976), 137-146.

Vitaly Bergelson
Department of Mathematics
The Ohio State University
Columbus, OH 43210 USA
vitaly@math.ohio-state.edu

Randall McCutcheon
Dept. of Math. Sciences
University of Memphis
Memphis, TN 38152 USA
rmcctchn@memphis.edu

46


