
ISRAEL JOURNAL OF MATHEMATICS 214 (2016), 109–120

DOI: 10.1007/s11856-016-1346-1

POLYNOMIAL RECURRENCE
WITH LARGE INTERSECTION
OVER COUNTABLE FIELDS

BY

Vitaly Bergelson
∗
and Donald Robertson

Department of Mathematics, The Ohio State University

231 West 18th Avenue, Columbus, OH 43210-1174, USA

e-mail: vitaly@math.ohio-state.edu, robertson@math.ohio-state.edu

ABSTRACT

We give a short proof of polynomial recurrence with large intersection for

additive actions of finite-dimensional vector spaces over countable fields

on probability spaces, improving upon the known size and structure of the

set of strong recurrence times.

1. Introduction

Let F be a countable field and let φ ∈ F [x] have zero constant term. Given a

measure preserving action T of the additive group of F on a probability space

(X,B, μ), a set B ∈ B and ε > 0, we will show that, for any ε > 0, the set

{u ∈ F : μ(B ∩ T φ(u)B) ≥ μ(B)2 − ε}
of strong recurrence times is large, in the sense of being IP∗

r up to a set of zero

Banach density. (These notions of size are defined below.) In fact, we prove

a more general result regarding strong recurrence for commuting actions of

countable fields along polynomial powers. This strengthens and extends recent

results from [MW14] regarding actions of fields having finite characteristic. Here

are the relevant definitions.
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Definition 1.1: Let G be an abelian group. An IP set or finite sums set in

G is any subset of G containing a set of the form

FS(x1, x2, . . .) :=

{∑
n∈α

xn : ∅ �= α ⊂ N, |α| <∞
}

for some sequence n �→ xn in G. Given r ∈ N, an IPr set in G is any subset of

G containing a set of the form

FS(x1, x2, . . . , xr) :=

{∑
n∈α

xn : ∅ �= α ⊂ {1, . . . , r}
}

for some x1, . . . , xr in G. A subset of G is IP∗ if its intersection with every IP set

in G is non-empty, and IP∗
r if its intersection with every IPr set is non-empty.

The term IP was introduced in [FW78], the initials standing for “idempotence”

or “infinite-dimensional parallelepiped” and IP∗
r sets were introduced in [FK85].

The upper Banach density of a subset S of G is defined by

d∗(S) = sup{d∗Φ(S) : Φ a Følner sequence in G}
where

d∗Φ(S) = lim sup
N→∞

|S ∩ ΦN |
|ΦN |

and a Følner sequence is a sequence N �→ ΦN of finite, non-empty subsets of

G such that

lim
N→∞

|(g +ΦN ) ∩ ΦN |
|ΦN | = 1

for all g in G. Lastly, S ⊂ G is said to be almost IP∗ (written AIP∗) if it is

of the form A \ B where A is IP∗ and d∗(B) = 0, and said to be almost IP∗
r

(written AIP∗
r) if it is of the form A\B where A is IP∗

r and d∗(B) = 0.

Although when G = Z any IP set with non-zero generators is unbounded,

this is not the case in general. For example, if G = Q then the IP set generated

by the sequence n �→ 1/n2 remains bounded.

To state our result we recall some definitions from [BLM05]. Fix a count-

able field F . By a monomial we mean a mapping Fn → F of the form

(x1, . . . , xn) �→ axd1
1 · · ·xdn

n for some a ∈ F and integers d1, . . . , dn ≥ 0 not

all zero. Let V and W be finite-dimensional vector spaces over F . A mapping

Fn →W is a polynomial if it is a linear combination of vectors with monomial

coefficients. A mapping V → W is a polynomial if, in terms of a basis of V
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over F , it is a polynomial mapping Fn →W . Note that whether a mapping is

polynomial or not is independent of the basis chosen. Here is our main result.

Theorem 1.2: Let W be a finite-dimensional vector space over a countable

field F and let T be an action of the additive group of W on a probability space

(X,B, μ). For any polynomial φ : Fn →W , any B ∈ B and any ε > 0 the set

(1.3) {u ∈ Fn : μ(B ∩ T φ(u)B) > μ(B)2 − ε}
is AIP∗

r for some r ∈ N.

Our result implies in particular that (1.3) is syndetic. In fact, as we will

show in Section 3, we have generalized [MW14, Corollary 5], where, in the finite

characteristic case, the set (1.3) is shown to belong to every essential idempotent

ultrafilter on F . This latter notion of largeness, introduced in [BD08], lies

between syndeticity and AIP∗
r .

We also remark that, by our definition of polynomial above, all polynomials

have zero constant term. Accordingly Theorem 1.2 says nothing about poly-

nomials with non-zero constant term. It would be interesting to know whether

Theorem 1.2 can be extended to a larger class of polynomials, as we have re-

cently done [BR15, Theorem 1.17] for polynomials over rings of integers of

algebraic number fields. A positive answer to this question would constitute

a common generalization of Theorem 1.2 and a theorem of Larick [Lar98] (see

also [BLM05, Theorem 3.10]).

The conclusion of Theorem 1.2 is of an additive nature: the notion of being

AIP∗
r is only related to the additive structure of Fn. It is natural to ask, when

n = 1, whether (1.3) is also large in terms of the multiplicative structure of

F . We address this question in Section 4, proving that in fact (1.3) intersects

any multiplicatively central set that has positive upper Banach density. Multi-

plicatively central sets are defined in Section 4 and upper Banach density is as

defined above.

Theorem 1.2 is proved in Section 3. In Section 2 we prove the facts we will

need about IP∗
r sets. Finally, in Section 4 we relate the largeness of the set (1.3)

to the multiplicative structure of F in the case n = 1.

Acknowledgments. We would like to thank R. McCutcheon for communi-

cating to us his result used at the end of Section 3, and the anonymous referee

for several helpful comments on the exposition.
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2. Finite IP sets

Let F be the collection of all finite, non-empty subsets of N. Write α < β for

elements of F if maxα < minβ. A subset of F is an FU set if it contains a

sequence α1 < α2 < · · · from F and all finite unions of sets from the sequence.

Write Fr for all finite, non-empty subsets of {1, . . . , r}. A subset of Fr (or of

F ) is an FUs set if it contains sets α1 < · · · < αs from Fr (or from F ) and all

finite unions. For any IPr set A ⊃ FS(x1, . . . , xr) in an abelian group G there

is a map Fr → G given by α �→ ∑{xi : i ∈ α}, and for any IP set in G there

is a map F → G defined similarly.

Furstenberg and Katznelson [FK85] showed that any IP∗
r set A in Z satisfies

lim inf
N→∞

|A ∩ {1, . . . , N}|
N

≥ 1

2r−1

so for any r ∈ N one can construct an IP∗ set that is not IP∗
r . The set kN,

with k large enough, is one such example. As the following example shows, by

removing well-spread IPr sets from Z, it is possible to construct a set that is

IP∗ but never IP∗
r .

Example 2.1: Let Ar be the IPr set with generators x1 = · · · = xr = 22
r

so

that Ar = {i · 22r : 1 ≤ i ≤ r}. Let A be the union of all the Ar. We claim

that A cannot contain an IP set, from which it follows that N\A is IP∗. Since

A contains IPr sets for arbitrarily large r we also have that N\A is not IP∗
r for

any r.

Suppose that xn is a sequence generating an IP set in A. If one can find

xi ∈ Ar and xj ∈ As with r < s, then xj + xi does not belong to A because the

gaps in As are larger than the largest element in Ar. On the other hand, if all

xi belong to the same Ar, then some combination of them is not in A because

the gap between Ar and Ar+1 is too large.

A family S of subsets of G is said to have the Ramsey property if S1 ∪S2

belonging to S always implies that at least one of S1 or S2 contains a member

of S . It follows from the reformulation of Hindman’s theorem [Hin74], stated

below, that the collection of all IP subsets of a groupG has the Ramsey property.

A coloring of a set A is any map c : A → {1, . . . , k} for some k ∈ N. Given a

coloring of A, a subset B is then called monochromatic if c is constant on B.

Theorem 2.2 ([Hin74, Corollary 3.3]): For any coloring of F one can find

α1 < α2 < · · · in F such that the collection of all finite unions of the sets αi is

monochromatic.
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Given a family I of subsets of G, the dual family of S is the collection S ∗

of subsets of G that intersect every member of S non-emptily. Taking S to

consist of all IP sets, one can deduce that the intersection of an IP∗ set with an

IP set contains an IP set and that the intersection of two IP∗ sets is again IP∗.
The collection of all IPr sets does not have the Ramsey property, but there is

a suitable replacement that allows one to deduce results about IP∗
r sets similar

to the ones for IP∗ sets mentioned above.

Proposition 2.3: For any s and k in N there is an r such that any k-coloring

of any IPr set yields a monochromatic IPs set.

Proof. Suppose to the contrary that one can find s and k in N such that, for

any r, there is a k-coloring of an IPr set Ar having no monochromatic IPs

subset. This coloring of Ar gives rise to a coloring cr of Fr via the canonical

map Fr → Ar. That no Ar contains a monochromatic IPs set implies that

no Fr contains a monochromatic FUs set. We now use Hindman’s theorem to

reach a contradiction.

Let αi be an enumeration of F . We construct a coloring c : F → {1, . . . , k}
by induction on i. To begin, note that α1 ∈ Fr whenever r > maxα1 so we

can find a strictly increasing sequence r(1, n) in N such that cr(1,n)(α1) takes

the same value for all n. Put c(α1) = cr(1,n)(α1). Now, assuming that we have

found a strictly increasing sequence r(i, n) such that, for each 1 ≤ j ≤ i, the

color cr(i,n)(αj) is constant in n and equal to c(αj), choose a strictly increasing

subsequence r(i + 1, n) of r(i, n) such that cr(i+1,n)(αi+1) is constant and let

this value be c(αi+1). The colors of α1, . . . , αi are unchanged and the induction

argument is concluded.

By Hindman’s theorem we can find β1 < · · · < βs in F such that

B = FU(β1, . . . , βs) is monochromatic, meaning c is constant on B. Choose

i such that B ⊂ {α1, . . . , αi} and then choose n so large that r(i, n) > max βs.

It follows that B ⊂ Fr(i,n) is monochromatic because cr(i,n)(β) = c(β) for all

β ∈ B. Thus Fr(i,n) contains a monochromatic FUs set, which is a contradic-

tion.

With this version of partition regularity for IPr sets we can deduce some facts

about IP∗
r sets.

Proposition 2.4: Given any s ∈ N there is some r ∈ N such that any IP∗
s set

intersects any IPr set in an IPs set.
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Proof. Let A be an IP∗
s set and choose by the previous proposition some r such

that any two-coloring of an IPr set yields a monochromatic IPs set. Let B be an

IPr set. One of B ∩A and B\A contains an IPs set. It cannot be B\A because

A is IP∗
s and disjoint from it. Thus A ∩B contains an IPs set as desired.

Proposition 2.5: Given any r, s in N there is some α(r, s) ∈ N such that if A

is IP∗
r and B is IP∗

s then A ∩B is IP∗
α(r,s).

Proof. Let A be IP∗
r and let B be IP∗

s with r ≥ s. Choose q so large that A∩C
contains an IPr set whenever C is an IPq set. This is possible by the previous

result. Since A ∩ C contains an IPr set and r ≥ s the set (A ∩C) ∩B must be

non-empty. Since C was arbitrary A ∩B is an IP∗
q set. Put α(r, s) = q.

3. Proof of Theorem 1.2

First we note that we may assume, by restricting our attention to the sub-σ-

algebra generated by the orbit of B, that the probability space (X,B, μ) is

separable.

We begin with a corollary of the Hales–Jewett theorem. For any n ∈ N

write [n] = {1, . . . , n}. Write PA for the set of all subsets of a set A. Recall

that, given k,m ∈ N, a combinatorial line in [k][m] is specified by a partition

U0 ∪ U1 of {1, . . . ,m} with U1 �= ∅ and a function ϕ : U0 → [k], and consists

of all functions [m] → [k] that extend ϕ and are constant on U1. With these

definitions we can state the Hales–Jewett theorem.

Theorem 3.1 ([HJ63]): For every d, t ∈ N there is r = HJ(d, t) ∈ N such that

for any t-coloring of [d][r] one can find a monochromatic combinatorial line.

Corollary 3.2: For any d, t ∈ N there is r ∈ N such that any t-coloring

(P{1, . . . , r})d → {1, . . . , t}
contains a monochromatic configuration of the form

(3.3) {(α1 ∪ η1, . . . , αd ∪ ηd) : (η1, . . . , ηd) ∈ {∅, γ}d}
for some γ, α1, . . . , αd ⊂ {1, . . . , r} with γ non-empty and γ ∩ αi = ∅ for each

1 ≤ i ≤ d.

Proof. Let r = HJ(2d, t). Define a map ψ : [2d][r] → (P [r])d by declaring

ψ(w) = (α1, . . . , αd) where αi consists of those j ∈ [r] for which the binary

expansion of w(j)− 1 has a 1 in the ith position. Combinatorial lines in [2d][r]

correspond via this map to configurations of the form (3.3) in (P [r])d.



Vol. 214, 2016 POLYNOMIAL RECURRENCE 115

We use the above version of the Hales–Jewett theorem to derive the following

topological recurrence result. Given n ∈ N and a ring R, by a monomial map-

ping from Rn to R we mean any map of the form (x1, . . . , xn) �→ axd1
1 · · ·xdn

n

for some a ∈ R and some d1, . . . , dn ≥ 0 not all zero.

Proposition 3.4 (cf. [Ber10, Theorem 7.7]): Let R be a commutative ring and

let T be an action of the additive group of R on a compact metric space (X, d)

by isometries. For any monomial mapping φ : Rn → R, any x ∈ X and any

ε > 0, there is r ∈ N such that the set

{u ∈ Rn : d(T φ(u)x, x) < ε}
is IP∗

r .

Proof. Write φ(x1, . . . , xn) = axd1

1 · · ·xdn
n for some a ∈ R and some di ≥ 0 not

all zero. Let d = d1 + · · · + dn. Put e0 = 0 and ei = d1 + · · · + di for each

1 ≤ i ≤ n. Fix x ∈ X and ε > 0. Let V1, . . . , Vt be a cover of X by balls of

radius ε/2d. Let r = r(d, t) be as in Corollary 3.2. Fix u1, . . . , ur in Rn. Given

α ⊂ {1, . . . , r} write uα for Σ{ui : i ∈ α} and uα(i) for the ith coordinate of

uα. By choosing for each (α1, . . . , αd) ∈ (P{1, . . . , r})d the minimal 1 ≤ i ≤ t

such that

T (auα1(1) · · ·uαe1
(1) · · ·uαen−1+1(n) · · ·uαen

(n))x ∈ Vi,

we obtain via Theorem 3.2 sets α1, . . . , αd, γ ⊂ {1, . . . , r} with γ non-empty

and disjoint from all αi which, combined with the expansion

auγ(1)
d1 · · ·uγ(n)dn = a

n∏
k=1

ek∏
i=ek−1+1

uγ(k) + uαi(k)− uαi(k)

and the fact that T is an isometry, yields d(T φ(uγ)x, x) < ε as desired.

Let G be an abelian group. Actions T1 and T2 of G are said to commute if

T g
1 T

h
2 = T h

2 T
g
1 for all g, h ∈ G. As we now show, iterating the previous result

yields a version for commuting actions of rings.

Corollary 3.5: Let R be a commutative ring and let T1, . . . , Tk be commut-

ing actions of the additive group of R on a compact metric space (X, d) by

isometries. For any monomial mappings φ1, . . . , φk : Rn → R, any x ∈ X and

any ε > 0, there is r ∈ N such that

(3.6) {u ∈ Rn : d(T
φ1(u)
1 · · ·T φk(u)

k x, x) < ε}
is IP∗

r .
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Proof. Fix 1 ≤ i ≤ k. By applying Proposition 3.4 to the R action r �→ T r
i , we

can find ri ∈ N such that

Zi = {u ∈ Rn : d(T
φi(u)
i x, x) < ε/k}

is IP∗
ri . By Proposition 2.5, the intersection Z1 ∩ · · · ∩Zk is IP∗

r for some r ∈ N.

Since the Ti are isometries, it follows that (3.6) is IP∗
r as desired.

Combining the preceding lemma with the following facts from [BLM05] will

lead to a proof of Theorem 1.2. Let φ : V → W be a polynomial and let T

be an action of W on a probability space (X,B, μ). Assume that φV spans

W . As in [BLM05], say that f in L2(X,B, μ) is weakly mixing for (T, φ)

if UD-limv〈T φ(v)f, g〉 = 0 for all g in L2(X,B, μ), where UD-lim denotes con-

vergence with respect to the filter of sets whose complements have zero upper

Banach density. This is the same as strong Cesàro convergence along every

Følner sequence in V . Call f ∈ L2(X,B, μ) compact for T if {T vf : v ∈ V } is

pre-compact in the norm topology. Denote by Hwm(T, φ) the closed subspace

of L2(X,B, μ) spanned by functions that are weakly mixing for (T, φ), and let

Hc(T ) be the closed subspace of L2(X,B, μ) spanned by functions compact for

T . We have L2(X,B, μ) = Hc(T )⊕ Hwm(T, φ) by [BLM05, Theorem 3.17].

Proof of Theorem 1.2. Write φ = φ1w1+· · ·+φkwk where the φi are monomials

Fn → F and the wi belong to V . Fix B in B and ε > 0. Let f = P1B be

the orthogonal projection of 1B on Hc(T ). Let Ω be the orbit closure of f

in the norm topology under T . Since f is compact, Ω is a compact metric

space. Applying Lemma 3.5 to the F actions x �→ T xwi and monomials φi for

1 ≤ i ≤ k, we see that

{u ∈ Fn : ||f − T φ(u)f || < ε/2}
is IP∗

r . We have

〈T φ(u)1B, 1B〉 = 〈T φ(u)f, 1B〉+ 〈T φ(u)(1B − f), 1B〉
so the set

{u ∈ Fn : 〈T φ(u)1B, 1B〉 ≥ 〈f, 1B〉 − ε/2 + 〈T φ(u)(1B − f), 1B〉
is IP∗

r . Since 1B − f is weakly mixing for (T, φ) the set

{u ∈ Fn : 〈T φ(u)1B, 1B〉 ≥ 〈f, 1B〉 − ε}
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is AIP∗
r . Thus (1.3) is AIP

∗
r by

〈f, 1B〉 = 〈P1B, P1B〉〈1, 1〉 ≥ 〈P1B, 1〉2 = μ(B)2

as desired.

We obtain as a corollary the following result from [MW14], which uses the

following terminology. Let again G be an abelian group. An ultrafilter p on G

is essential if it is idempotent and d∗(A) > 0 for all A ∈ p. A D set in G is

any subset of G that belongs to an essential ultrafilter on G, and a subset of G

is D∗ if its intersection with any D is non-empty.

Corollary 3.7 ([MW14, Corollary 5]): Let F be a countable field of finite

characteristic and let p : F → Fn be a polynomial mapping. For any action T

of Fn on a probability space (X,B, μ), any B in B and any ε > 0, the set

(3.8) {x ∈ F : μ(B ∩ T p(x)B) ≥ μ(B)2 − ε}

is D∗.

Proof. It follows from the proof of Theorem 1.2 that (3.8) is of the form A \B
where A is IP∗

r for some r ∈ N and B has zero upper Banach density. Any

IP∗
r subset of G is IP∗ and therefore belongs to every idempotent ultrafilter

on G, so A certainly belongs to every essential ultrafilter on G. By the filter

property, removing from A a set of zero upper Banach density does not change

this fact, because every set in an essential idempotent has positive upper Banach

density.

It has recently been shown [MZ14] that there are D∗ subsets of Z that are not

AIP∗. This is also the case in countable fields of finite characteristic [McC14].

Thus our result constitutes a genuine strengthening of Corollary 3.7.

4. Multiplicative structure

According to Theorem 1.2 the set (1.3) is large in terms of the additive structure

of Fn. In this section we connect the largeness of (1.3) when n = 1 to the

multiplicative structure of F by showing that (1.3) is almost an MC∗ subset

of F . Here MC stands for multiplicatively central and a set is MC∗ if its

intersection with every multiplicatively central set is non-empty.
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To define what a multiplicatively central set is, recall that, given a commu-

tative ring R, we can extend the multiplication on R to a binary operation ∗
on the set βR of all ultrafilters on R by

p ∗ q = {A ⊂ R : {u ∈ R : Au−1 ∈ p} ∈ q}

for all p, q ∈ βR. One can check that this makes βR a semigroup. It is also

possible to equip βR with a compact, Hausdorff topology with respect to which

the binary operation is right continuous. See [Ber03] or [HS12] for the details of

these constructions. A subset A of R is then called multiplicatively central

or MC if it belongs to an ultrafilter that is both idempotent and contained in a

minimal right ideal of βR. The following version of [BH94, Theorem 3.5] relates

IPr sets in R to multiplicatively central sets.

Proposition 4.1: Let R be a commutative ring and let A ⊂ R be a multi-

plicatively central set. For every r ∈ N one can find x1, . . . , xr in R such that

FS(x1, . . . , xr) ⊂ A.

Proof. Consider the family T of ultrafilters p on R having the property that

every set in p contains an IPr set for every r ∈ N. We claim that T is a two-

sided ideal in βR. Indeed fix p ∈ T and q ∈ βR. We need to prove that p ∗ q
and q ∗ p belong to T .

For the former, fix B ∈ p ∗ q and r ∈ N. We can find u ∈ R such that

Bu−1 ∈ p so Bu−1 contains FS(x1, . . . , xr) for some x1, . . . , xr in R. This

immediately implies that FS(x1u, . . . , xru) ⊂ B as desired.

For the latter, fix B ∈ q ∗ p and r ∈ N. We can find x1, . . . , xr in R such that

FS(x1, . . . , xr) ⊂ {u ∈ R : Bu−1 ∈ q}. But by the filter property

(4.2) ∩{Bu−1 : u ∈ FS(x1, . . . , xr)} ∈ q

and choosing a from this intersection gives FS(ax1, . . . , axr) ⊂ B.

Our set A is multiplicatively central so it is contained in some idempotent

ultrafilter p that belongs to a minimal right ideal S. Since T is also a right ideal

S ⊂ T and p ∈ T as desired.

Note that it is not possible to prove this way that multiplicatively central

sets contain IP sets, as that would require an infinite intersection in (4.2). In

fact, as shown in [BH94, Theorem 3.6], there are multiplicatively central sets in

N that do not contain IP sets.
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We say that a subset of R is MC∗ if its intersection with every multiplicatively

central set is non-empty. As noted in [Ber10], the preceding result implies that

every IP∗
r set is MC∗. Call a set AMC∗ (with A again standing for “almost”) if

it is of the form A\B where A is MC∗ and B has zero upper Banach density in

(R,+). The following result is then an immediate consequence of Theorem 1.2.

Theorem 4.3: Let F be a countable field and let T be an action of the additive

group of F on a probability space (X,B, μ). For any polynomial φ ∈ F [x], any

B ∈ B and any ε > 0, the set

(4.4) {u ∈ F : μ(B ∩ T φ(u)B) > μ(B)2 − ε}

is AMC∗.

We conclude by mentioning that all AMC∗ sets have positive upper Banach

density in (F,+). This follows from the fact that every MC∗ set belongs to

every minimal multiplicative idempotent, and a straightforward generalization

of [BH90, Theorem 5.6], which guarantees the existence of a minimal idempotent

for ∗ all of whose members have positive upper Banach density in (F,+).
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