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Abstract. We generalize the polynomial Szemerédi theorem to intersective polynomials
over the ring of integers of an algebraic number field, by which we mean polynomials
having a common root modulo every ideal. This leads to the existence of new polynomial
configurations in positive-density subsets of Zm and strengthens and extends recent
results of Bergelson, Leibman and Lesigne [Intersective polynomials and the polynomial
Szemerédi theorem. Adv. Math. 219(1) (2008), 369–388] on polynomials over the
integers.

1. Introduction
Let T be a measure-preserving action of Z on a probability space (X,B, µ) and fix B in
B with µ(B) > 0. Furstenberg’s ergodic Szemerédi theorem [Fur77] implies that the set

{n ∈ Z : µ(B ∩ T n B ∩ · · · ∩ T kn B) > 0}

is syndetic, which means that finitely many of its shifts cover Z. The polynomial ergodic
Szemerédi theorem in [BL96] implies, in particular, that

R = {n ∈ Z : µ(B ∩ T p1(n)B ∩ · · · ∩ T pk (n)B) > 0} (1.1)

has positive lower density, meaning that

lim inf
N→∞

|R ∩ {1, . . . , N }|
N

> 0,

for any p1, . . . , pk ∈ Z[x] each having zero constant term. It was shown in [BM96] that
(1.1) is syndetic under the same assumptions, and the later work [BM00] implies that it is
large in the stronger sense (defined below) of being IP∗.

The task of determining precisely which families p1, . . . , pk of polynomials have the
property that (1.1) is syndetic was undertaken in [BLL08]. There it was shown that
polynomials p1, . . . , pk have the property that (1.1) is syndetic whenever T is an action
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of Z on (X,B, µ) and µ(B) > 0 if and only if the polynomials are jointly intersective,
which means that for any finite-index subgroup 3 of Z, one can find ζ in Z such that
{p1(ζ ), . . . , pk(ζ )} ⊂3.

The polynomial ergodic Szemerédi theorem in [BL96] actually implies the following
multidimensional result: for any action T of Zm on a probability space (X,B, µ) and any
B with µ(B) > 0, the set

{n ∈ Zd
: µ(B ∩ T p1(n)B ∩ · · · ∩ T pk (n)B) > 0} (1.2)

has positive lower density for any polynomial mappings p1, . . . , pk : Zd
→ Zm each

having zero constant term. In (1.2) and below we write T pi (u) for T pi,1(u)
1 · · · T pi,m (u)

m

when pi = (pi,1, . . . , pi,m). As in the m = 1 case above, [BM00] implies that (1.2) is IP∗.
There is no known characterization of those polynomial mappings p1, . . . , pk for which
(1.2) is non-empty. By considering finite systems, one can show that joint intersectivity
(defined below in general) is a necessary condition; it is conjectured in [BLL08] that it is
also sufficient.

Since [Fur77], the sizes of sets such as (1.1) have been studied by considering the
limiting behavior of averages such as

1
|8N |

∑
u∈8N

µ(B ∩ T p1(u)B ∩ · · · ∩ T pk (u)B) (1.3)

where N 7→8N is some sequence of longer and longer intervals in Z. In [BLL08] the
works of Host and Kra [HK05] and Ziegler [Zie07] on characteristic factors are combined
with [Lei05a] to prove that the limiting behavior of the average (1.3) can be approximated
arbitrarily well by replacing (X,B, µ)with quotients G/0 of certain nilpotent Lie groups
by cocompact subgroups on which Z acts via T (g0)= ag0 for some a ∈ G. Upon passing
to this more tractable setting, it is shown in [BLL08] that (1.3) is positive in the limit as
N →∞ when p1, . . . , pk are jointly intersective.

It is not possible to proceed like this when studying (1.2) because there is currently no
general version of the work of Host and Kra [HK05] and Ziegler [Zie07] for actions of
Zm . In this paper we enlarge the class of polynomial mappings p1, . . . , pk for which (1.2)
is known to be non-empty by working with polynomials over rings of integers of algebraic
number fields. As we will see, this is a setting where it is possible to reduce to the case of
commuting translations on homogeneous spaces of nilpotent Lie groups, which will allow
us to show that (1.2) is large. Our techniques also allow us to improve upon the main result
in [BLL08] by strengthening the largeness property of the set (1.1). To describe our results
we recall some definitions.

Definition 1.4. Let R be a commutative ring with identity. Polynomials p1, . . . , pk in
R[x1, . . . , xd ] are said to be jointly intersective if, for any finite-index subgroup 3 of R,
one can find ζ in Rd such that {p1(ζ ), . . . , pk(ζ )} ⊂3. When d = 1 we say that p1 is
intersective.

See §3 for some examples of intersective polynomials. We also need the following
notions of size.
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Definition 1.5. Let G be an abelian group. An IP set in G is any subset of G containing a
set of the form

FS(xn) :=

{∑
n∈α

xn :∅ 6= α ⊂ N, |α|<∞
}

for some sequence xn in G. A subset of G is IP∗ if its intersection with every IP set in G
is non-empty, and IP∗+ if it is a shift of an IP∗ set. The term IP was introduced in [FW78],
the initials standing for ‘idempotence’ or ‘infinite-dimensional parallelepiped’. The upper
Banach density of a subset S of G is defined by

d∗(S)= sup{d∗8(S) :8 a Følner sequence in G}

where
d∗8(S)= lim sup

N→∞

|S ∩8N |

|8N |

and a Følner sequence in G is a sequence N 7→8N of finite, non-empty subsets of G such
that

lim
N→∞

|(g +8N ) ∩8N |

|8N |
= 1

for all g in G. Lastly, S ⊂ G is AIP∗ (with A standing for ‘almost’) if it is of the form A\B
where A is an IP∗ subset of G and d∗(B)= 0, and S is AIP∗+ if it is a shift of an AIP∗ set.

We can now state our main result. Given an algebraic number field L , write OL for its
ring of integers.

THEOREM 1.6. Let L be an algebraic number field and let p1, . . . , pk be jointly
intersective polynomials in OL [x1, . . . , xd ]. For any ergodic action T of the additive
group of OL on a compact metric probability space (X,B, µ) and any B ∈B with
µ(B) > 0, there is c > 0 such that

{u ∈Od
L : µ(B ∩ T p1(u)B ∩ · · · ∩ T pk (u)B)≥ c} (1.7)

is AIP∗+.

In particular, taking L =Q shows that (1.1) is an AIP∗+ subset of Z. We will see in
Example 2.14 that being AIP∗+ is a stronger property than being syndetic, so Theorem 1.6
constitutes a strengthening of [BL96, Theorem 1.1].

The following version of the Furstenberg correspondence principle allows us to use
Theorem 1.6 to find polynomial configurations in large subsets of OL .

THEOREM 1.8. For any E ⊂OL there is an ergodic action T of OL on a compact metric
probability space (X,B, µ) and B ∈B with µ(B)= d∗(E) such that

d∗((E − u1) ∩ · · · ∩ (E − uk))≥ µ(T u1 B ∩ · · · ∩ T uk B) (1.9)

for every u1, . . . , uk in OL .

That one can associate an ergodic action with E was first proved in [BHK05] using
ideas from [Fur81a], and the correspondence principle stated above can be proved exactly
as in [BHK05]. Combining Theorems 1.6 and 1.8 gives the following combinatorial result.
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THEOREM 1.10. Let L be an algebraic number field and let E ⊂OL have positive upper
Banach density. For any jointly intersective polynomials p1, . . . , pk in OL [x1, . . . , xd ],
there is a constant c > 0 such that the set

{u ∈Od
L : d

∗(E ∩ (E − p1(u)) ∩ · · · ∩ (E − pk(u)))≥ c} (1.11)

is AIP∗+.

Whenever OL is finitely partitioned, one of the partitions has positive upper Banach
density. As a result, Theorem 1.10 yields new examples of the polynomial van der Waerden
theorem, extending [BLL08, Theorem 1.5].

COROLLARY 1.12. Let L be an algebraic number field. For any finite partition E1 ∪ · · · ∪

Ek of OL there is E = Ei such that, for any jointly intersective polynomials p1, . . . , pk ∈

OL [x1, . . . , xd ], the set (1.11) is AIP∗+.

So far, such polynomial van der Waerden results have only been proved via multiple
recurrence of measure-preserving dynamical systems. It would be interesting to have a
proof that only used topological dynamics, or a purely combinatorial proof.

Upon fixing a basis e1, . . . , em for OL as a Z module, defining actions T1, . . . , Tm of
Z by T n

i = T nei , and writing

pi (u)= pi,1(u)e1 + · · · + pi,m(u)em (1.13)

for some polynomials pi, j in Z[x1, . . . , xdm], we see that Theorem 1.6 implies that{
u ∈ Zmd

:

∫
1B

k∏
i=1

T pi,1(u)
1 · · · T pi,m (u)

m 1B dµ > 0
}

is AIP∗+, extending [BL96, Theorem A] to certain families of intersective polynomials.
Indeed, if, for some polynomials pi, j from Z[x1, . . . , xd ], one can find an algebraic
number field L , jointly intersective polynomials p1, . . . , pk in OL [x1, . . . , xd ], and a
basis e1, . . . , em for OL over Z such that (1.13) holds, then the polynomial mappings
(p1,1, . . . , p1,m), . . . , (pk,1, . . . , pk,m) : Zd

→ Zm are good for recurrence.
It would be interesting to know whether (1.7) is AIP∗+ without the ergodicity

assumption. We show that it is syndetic.

THEOREM 1.14. Let L be an algebraic number field and let p1, . . . , pk be jointly
intersective polynomials in OL [x1, . . . , xd ]. For any action T of the additive group of
OL on a compact metric probability space (X,B, µ) and any B ∈B with µ(B) > 0,
there is c > 0 such that

{u ∈Od
L : µ(B ∩ T p1(u)B ∩ · · · ∩ T pk (u)B)≥ c} (1.15)

is syndetic.

Our proof of Theorem 1.6 consists of two main steps. First we show, by combining
Leibman’s polynomial convergence result [Lei05a] with Griesmer’s description [Gri09]
of characteristic factors for certain actions of Zm , that upon restricting our attention to
a very large subset of Od

L—one whose complement has zero upper Banach density—it
suffices to consider (1.7) when (X,B, µ) has the structure of a nilrotation, the definition
of which we now recall.
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Definition 1.16. By a nilmanifold we mean a homogeneous space G/0 where G is a
nilpotent Lie group and 0 is a discrete, cocompact subgroup of G. A nilrotation is
an action T of Zm on a nilmanifold G/0 of the form T u(g0)= φ(u)g0 for some
homomorphism φ : Zm

→ G. The nilpotency degree of a nilrotation is the length of a
shortest central series for G.

The second step in the proof of Theorem 1.6 is to use results from [BLL08] about
polynomial orbits of nilrotations to show that, within the very large subset of OL

mentioned above, we can achieve the desired multiple recurrence.
It is natural to ask how large the intersection in (1.7) can be. When k = 1 we show it is

as large as can be expected, extending results in [Fur81b, KMF78, Sár78].

THEOREM 1.17. Let L be an algebraic number field and let p ∈OL [x1, . . . , xd ] be an
intersective polynomial. For any action T of the additive group of OL on a probability
space (X,B, µ) and any B in B, the set

{u ∈Od
L : µ(B ∩ T p(u)B) > µ(B)2 − ε} (1.18)

is AIP∗+ for any ε > 0.

When p has zero constant term one can use [BFM96, Theorem 1.8] to show that
(1.18) is IP∗. It follows immediately that (1.18) is IP∗+ when p has a zero in Od

L , but
it is unknown whether (1.18) is IP∗+ if one only assumes that p is intersective, even
in the case L =Q. More generally, one could ask whether a version of Theorem 1.17
holds for a given intersective polynomial p over an arbitrary integral domain R. Under
the additional assumption that p has zero constant term, it was shown in [BLM05] that
{u ∈ R : µ(B ∩ T p(u)B) > 0} has positive density with respect to some Følner sequence
in R, but whether this set is syndetic is unknown. We cannot proceed as in the proof
of Theorem 1.17, or apply [BFM96, Theorem 1.8], at such a level of generality due to
complications that arise when the additive group of the ring is not finitely generated.
However, if the ring is a countable field then we have proved in [BR14] the following
version of Theorem 1.10.

THEOREM 1.19. Let W be a finite-dimensional vector space over a countable field F and
let T be an action of the additive group of W on a probability space (X,B, µ). For any
polynomial mapping φ : Fn

→W with φ(0)= 0, any B ∈B and any ε > 0, the set

{u ∈ Fn
: µ(B ∩ T φ(u)B) > µ(B)2 − ε} (1.20)

is AIP∗ in Fn .

Actually, it is shown that (1.20) has the stronger property of being AIP∗r . See [BR14]
for the details.

The rest of the paper is organized as follows. In the next section we discuss some
preliminary results from ergodic theory necessary for proving our results. Theorem 1.17
is proved in §3. In §4 we recall the definition of Gowers–Host–Kra seminorms for actions
of Zm , and we show in §5 that, in our setting, they control the averages (1.3). The proof of
Theorem 1.6 is given in §6.
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2. Preliminaries
In this section we recall some relevant facts about notions of largeness in countable abelian
groups and about idempotent ultrafilters that we will need in order to prove our main result.
We also give a version of the well-known ergodic decomposition of T × T for an ergodic
action T of Zm . Recall that a subset S of an abelian group G is syndetic if there is a finite
set F such that S − F = G.

LEMMA 2.1. Let G be a countable abelian group and let S ⊂ G. Then S is syndetic if and
only if d∗8(S) > 0 for every Følner sequence 8 in G.

Proof. First suppose that S is not syndetic. Fix a Følner sequence 9 in G. Since S is not
syndetic we can find for each N ∈ N some hN in G such that (9N + hN ) ∩ S =∅. With
8N =9N + hN we have d∗8(S)= 0.

On the other hand, if S is syndetic then S − F = G for some finite, non-empty subset
F of G, so for any Følner sequence 8 we have

1=
|G ∩8N |

|8N |
≤

∑
x∈F

|(S − x) ∩8N |

|8N |

for every N ∈ N and therefore d∗8(S)≥ 1/|F |. �

This lets us prove that all AIP∗+ sets are syndetic. As we will see in Example 2.14, there
are syndetic sets that are not AIP∗+.

LEMMA 2.2. Let G be a countable, abelian group. Then every AIP∗+ subset of G is
syndetic.

Proof. Every IP∗ subset of G is syndetic, for if S ⊂ G is not syndetic then for every finite
subset F of G we have S − F 6= G. This allows us to inductively construct an IP set in
G\S. Indeed, assuming that we have found x1, . . . , xn ∈ G\S such that

FS(x1, . . . , xn) :=

{∑
n∈α

xn :∅ 6= α ⊂ {1, . . . , n}
}

is disjoint from S, choose xn+1 outwith S − FS(0, x1, . . . , xn).
Let A ⊂ G be IP∗+ and let B ⊂ G have zero upper Banach density. Shifts of syndetic sets

are themselves syndetic so A is syndetic by the above argument, and therefore has positive
upper density with respect to every Følner sequence. Now d∗8(B)= 0 for every Følner
sequence, so d∗8(A\B) > 0 for every Følner sequence. It now follows from Lemma 2.1
that A\B is syndetic. �

We will also need the following result, which states that if the average of a non-
negative sequence is positive along every Følner sequence, then the averages along Følner
sequences are uniformly bounded away from zero.

LEMMA 2.3. Let G be a countable abelian group. If φ : G→ [0,∞) has the property
that

lim inf
N→∞

1
|8N |

∑
u∈8N

φ(u) > 0 (2.4)
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for every Følner sequence 8 in G, then there is some c > 0 such that

lim inf
N→∞

1
|8N |

∑
u∈8N

φ(u)≥ c

for every Følner sequence 8 in G.

Proof. If not, then for every k ∈ N there is a Følner sequence 8k such that

0≤ lim inf
N→∞

1
|8k,N |

∑
u∈8k,N

φ(u) <
1
k
,

and defining 8N =8kN ,N with kN →∞ sufficiently quickly gives a Følner sequence 8
for which (2.4) does not hold. �

LEMMA 2.5. Let G be a countable amenable group. If φ : G→ [0,∞) is bounded and
(2.4) holds for every Følner sequence then there is a constant c > 0 such that {u ∈ G :
φ(u)≥ c} is syndetic.

Proof. Choose c as in the conclusion of Lemma 2.3. We claim that A = {u ∈ G : φ(u)≥
c/2} is syndetic. If not, then d∗8(A)= 0 for some Følner sequence 8 by Lemma 2.1. But

c ≤ lim sup
N→∞

1
|8N |

∑
u∈8N

φ(u)1A(u)+ lim sup
N→∞

1
|8N |

∑
u∈8N

φ(u)1X\A(u)≤
c
2

makes this impossible. �

LEMMA 2.6. Let G be a countable abelian group and let H ⊂ G be a finite-index
subgroup. Then

lim
N→∞

|H ∩8N |

|8N |
=

1
[G : H ]

for all Følner sequences 8 in G.

Proof. Let g1, . . . , gk be coset representatives for H . We have

lim
N→∞

|H ∩8N |

|8N |
−
|(g + H) ∩8N |

|8N |
= 0

for any g ∈ G, so

1= lim sup
N→∞

|(g1 + H) ∩8N |

|8N |
+ · · · +

|(gk + H) ∩8N |

|8N |
= k lim sup

N→∞

|H ∩8N |

|8N |

with the same holding for the limit inferior. �

Given a Følner sequence 8 in a countable abelian group G and a sequence g 7→ φ(g)
from G to a normed vector space (X, ‖ · ‖), write

C-lim
g→8

φ(g)= x⇔ lim
N→∞

1
|8N |

∑
g∈8N

φ(g)= x

and
D-lim
g→8

φ(g)= x⇔ lim
N→∞

1
|8N |

∑
g∈8N

‖φ(g)− x‖ = 0.

If D-limg→8 φ(g)= x we say that φ(g) converges along8 in density to x . The following
lemma is immediate.
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LEMMA 2.7. Let g 7→ φ(g) be a sequence from a countable abelian group G to a normed
vector space (X, ‖ · ‖) and let 8 be a Følner sequence in G. If

D-lim
g→8

φ(g)= x

then d∗8({g ∈ G : ‖φ(g)− x‖ ≥ ε})= 0 for every ε > 0.

Variations of the van der Corput trick play a role in most polynomial ergodic theorems.
We will make use of the following version.

PROPOSITION 2.8. Let G be an abelian group and H be a Hilbert space over C, and let
g : G→H be a bounded map. Then

lim sup
N→∞

∥∥∥∥ 1
|8N |

∑
u∈8N

g(u)
∥∥∥∥2

≤
1
|8H |2

∑
h,l∈8H

lim sup
N→∞

1
|8N |

∑
u∈8N

〈g(u + h), g(u + l)〉

for any Følner sequence 8 in G and any H in N.

Proof. [Lei05a, Lemma 4(i)]. �

Recall that an ultrafilter on a non-empty set X can be defined as a filter that is maximal
with respect to containment. We will make use of the following characterization of distal
systems in terms of limits along idempotent ultrafilters. This characterization is briefly
described below. For more details, see [Ber03] and [HS12].

Definition 2.9. Given an ultrafilter p on a group G, a map φ from G to a topological space
X and a point x ∈ X , write

lim
g→p

φ(g)= x (2.10)

if {g ∈ G : φ(g) ∈U } ∈ p for all neighborhoods U of x .

When X is compact and Hausdorff, for any φ : G→ X there is a unique x ∈ X such
that (2.10) holds.

Given a group G, one can define an associative binary operation on the set βG of
ultrafilters on a group G by

p ∗ q= {A ⊂ G : {g : Ag−1
∈ p} ∈ q}

for all ultrafilters p, q on G. An ultrafilter p on G is idempotent if p ∗ p= p. It follows
from an application of Ellis’s lemma (see [Ell58, Lemma 1]) that every semigroup has
idempotent ultrafilters.

Let (X, d) be a compact metric space and let T be an action of a group G on (X, d).
Points x, y ∈ X are said to be proximal if

inf{d(T gx, T g y) : g ∈ G} = 0

and the action is distal if no two distinct points are proximal. As the next lemma shows,
for distal systems limits along idempotent ultrafilters are always the identity.



1362 V. Bergelson and D. Robertson

LEMMA 2.11. Let G be a group and let T be a distal action of G on a compact metric
space (X, d) by continuous maps. Then

lim
g→p

T gx = x (2.12)

for every x ∈ X and every idempotent ultrafilter p on G.

Proof. Fix x ∈ X and an idempotent ultrafilter p in βG. We have

lim
g→p

T g
(

lim
h→p

T h x
)
= lim

g→p
lim
h→p

T gh x = lim
g→p

T gx =: y

because p ∗ p= p, so x and y are proximal. By distality they must be equal. �

COROLLARY 2.13. Let G be a group and let T be a distal action of G on a compact metric
space (X, d). For every x ∈ X and every neighborhood U of x, the set {g ∈ G : T gx ∈U }
is IP∗.

Proof. Fix x ∈ X and let U be a neighborhood of x . Since T is distal we have {g ∈ G :
T gx ∈U } ∈ p for every idempotent ultrafilter p on G. But any set that belongs to every
idempotent ultrafilter is IP∗ (see [HS12] for details). �

One can use minimal idempotent ultrafilters to exhibit syndetic sets that are not AIP∗+.
Recall that an idempotent ultrafilter p ∈ βG is minimal if it is minimal with respect to the
order p≤ q defined by the relation p ∗ q= q ∗ p= p. A set S ⊂ G is central or a C set if
it belongs to some minimal idempotent ultrafilter, a C∗ set if its intersection with every C
set is non-empty, and a C∗+ set if it is a shift of a C∗ set.

Example 2.14. Following the proof of [Ber03, Theorem 2.20] one can construct a C∗+
subset of Zm that is not syndetic. Therefore, in order to produce a syndetic set that is not
AIP∗+, it suffices to show that every AIP∗ subset of Zm is a C∗ set. Let S be an AIP∗ set
and write S = A\B where A is IP∗ and d∗(B)= 0. Certainly A is C∗. But every central
set has positive upper Banach density by [Ber03, Theorem 2.4(iii)], so A\B remains C∗.

The last result about ultrafilters in this section is about limits along polynomials having
zero constant term. We will use it in the proof of Lemma 3.2.

LEMMA 2.15. Let R be a commutative ring and let G be an abelian, compact, Hausdorff
topological group. Fix an additive homomorphism ψ : R→ G. For any k ∈ N, any
polynomial p ∈ R[x1, . . . , xk] with p(0)= 0, and any idempotent ultrafilter p on the
additive group of Rk , we have limr→p ψ(p(r))= 0.

Proof. The proof is by induction on the degree of p. When p has degree one the map
r 7→ ψ(p(r)) is an additive homomorphism, so we have

lim
r→p

ψ(p(r))= lim
r→p

lim
s→p

ψ(p(r + s))

= lim
r→p

lim
s→p

ψ(p(r))+ ψ(p(s))= 2 lim
r→p

ψ(p(r))
(2.16)

by idempotence, so the limit in question is zero.
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For the induction step, writeψ(p(r + s))= ψ(p(r))+ ψ(p(s))+ ψ(q(r, s)) for some
polynomial q with twice as many indeterminates as p and zero constant term. By induction
we have

lim
r→p

lim
s→p

ψ(q(r, s))= 0,

so we again have (2.16) and the limit in question is zero. �

We conclude this section with the following well-known result about the ergodic
decomposition of T × T when T is an ergodic action of Zm on a compact metric
probability space (X,B, µ). By a Zm-system we mean a tuple X= (X,B, µ, T ) where
(X,B, µ) is a compact metric probability space and T is an action of Zm on (X,B, µ)
by measurable, measure-preserving transformations.

Recall that the Kronecker factor of an ergodic system (X,B, µ, T ) is the factor
corresponding to the closed subspace of L2(X,B, µ) spanned by the eigenfunctions of T .
Since T is ergodic [Mac64, Theorem 1] implies that the Kronecker factor (Z ,Z ,m, T )
has the structure of a compact abelian group equipped with Haar measure on which T
corresponds to a rotation determined by a homomorphism Zm

→ Z with dense image.

THEOREM 2.17. Let X= (X,B, µ, T ) be an ergodic Zm system with Kronecker factor
Z= (Z ,Z ,m, T ). For each s in Z, define a measure µs on (X × X,B ⊗B) by∫

f1 ⊗ f2 dµs =

∫
E( f1|Z)(z) · E( f2|Z)(z − s) dm(z)

for all f1, f2 in L∞(X). Then µs is the ergodic decomposition of µ⊗ µ.

Proof. The Kronecker factor (X,Z ,m) has the structure of a compact abelian group.
Let α : Zm

→ Z be a homomorphism with dense image that determines T on (Z ,Z ,m).
Write π for the factor map X→ Z.

Write X× X for the system (X2,B ⊗B, µ⊗ µ, T × T ). If F in L2(X× X) is
invariant then F is π−1Z ⊗ π−1Z measurable. This is because any T × T -invariant
function can be approximated by linear combinations of products of eigenfunctions of T .
It follows that F is of the form 9 ◦ π for some 9 in L2(Z× Z). Thus we can write 9 as

9 =
∑
i, j

ci, jχi ⊗ χ j

where χi is an orthonormal basis of L2(Z) consisting of characters. Invariance of 9 gives

9 = (T × T )n9 =
∑
i, j

ci, jχi (n · α)χ j (n · α)χi ⊗ χ j (2.18)

for all n in Zd . Thus ci, j (1− χi (n · α)χ j (n · α))= 0 for all n in Zd and all i, j . If ci, j

is non-zero for some i, j , we have χi (n · α)χ j (n · α)= 1 for all n in Z, and the character
χiχ j takes the value 1 on the orbit of α, so it is constant. Thus if ci, j is non-zero we have
χi = χ j , leading to the simplification

9 =
∑

i

ci · χi ⊗ χ i (2.19)
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of (2.18). For any i and any subset U of C we have

(χi ⊗ χ i )
−1U = {(z1, z2) : χi (z1 − z2) ∈U } = {(z1, z2) : z1 − z2 ∈ χ

−1
i U },

so χiπ ⊗ χ iπ is measurable with respect to the sub-σ -algebra

I = σ({(x1, x2) : πx1 − πx2 ∈ A} : A ∈Z )

of B ⊗B. Since F was an arbitrary invariant function in L2(X× X) and every set in I

is invariant under T × T , we have that I is the sub-σ -algebra of T × T -invariant sets.
This suggests that for each s ∈ Z there is a measure on

{(x1, x2) : πx1 − πx2 = s}

that is ergodic for T × T . To make this precise, fix s ∈ Z and let ms be the measure on Z2

obtained by pushing m forward using the map z 7→ (z, z − s). Then let µs be the measure
on (X2,B2) defined by∫

f1 ⊗ f2 dµs =

∫
E( f1|Z)⊗ E( f2|Z) dms

for all f1, f2 in L∞(X,B, µ). By definition of µs we have∫
f1 ⊗ f2 dµs =

∫
E( f1|Z)(z) · E( f2|Z)(z − s) dm(z)

for all f1, f2 in L∞(X,B, µ). This proves that µs depends measurably on s. It is
immediate that each of the measures µs is T × T -invariant. Moreover, our description
of I implies that if C is T × T -invariant then µs(C) must be either 0 or 1, so each of the
measures µs is ergodic. Lastly, note that∫ ∫

f1 ⊗ f2 dµs dm(s)=
∫ ∫

E( f1|Z)(z) · E( f2|Z)(z − s) dm(z) dm(s)

=

∫
E( f1|Z)(z)

∫
E( f2|Z)(z − s) dm(s) dm(z)

=

∫
f1 ⊗ f2 d(µ⊗ µ)

by Fubini’s theorem, so µs is the ergodic decomposition of µ⊗ µ. �

3. Single polynomial recurrence
In this section we prove Theorem 1.17, which relies on the following lemmas.

LEMMA 3.1. Let L be an algebraic number field. If p ∈OL [x1, . . . , xd ] and the induced
map Od

L →OL is a non-zero homomorphism of abelian groups then p(Od
L) is a finite-

index subgroup of OL .

Proof. Write p(x1, . . . , xd)= a1x1 + · · · + ad xd . Certainly the image of p is a subgroup
of OL . Since some ai is non-zero, p(Od

L) contains the ideal generated by ai , which is non-
zero. But every non-zero ideal in the ring of integers of an algebraic number field has finite
index (see [Jan96, §I.8]). �
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LEMMA 3.2. Let G be an abelian group and let H be a finite-index subgroup. If T is
an action of G on a probability space (X,B, µ) and f ∈ L2(X,B, µ) is invariant under
T |H then f is a finite sum of eigenfunctions of T .

Proof. Let g1, . . . , gn be coset representatives for H with g1 = 0. Writing any g ∈ G as
h + gi for some i and some h ∈ H , we see that T g f = T gi f . Thus the subspace K of
L2(X,B, µ) spanned by { f, . . . , T gn f } is T -invariant. The unitary representation of G
on K decomposes as a direct sum of one-dimensional representations because G is abelian.
In particular, f is a finite sum of eigenfunctions. �

Proof of Theorem 1.17. Let T be an action of the additive group of OL on a probability
space (X,B, µ). Fix B ∈B and ε > 0. Let P be the orthogonal projection in
L2(X,B, µ) onto the closed subspace Hc spanned by the eigenfunctions of T . Put
f = 1B − P1B .

We begin by proving that

C-lim
u→8

|〈φ, T p(u) f 〉|2 = 0 (3.3)

for every Følner sequence 8 in Od
L and every φ that is orthogonal to Hc and satisfies

‖φ‖ ≤ 1. Since Hc is T -invariant we can assume that p(0)= 0. In terms of the product
system we have

lim sup
N→∞

(
1
|8N |

∑
u∈8N

|〈φ, T p(u) f 〉|2
)2

≤ lim sup
N→∞

∥∥∥∥ 1
|8N |

∑
u∈8N

(T × T )p(u)( f ⊗ f )
∥∥∥∥2

≤
1
|8H |2

∑
h,l∈8H

lim sup
N→∞

1
|8N |

∑
u∈8

|〈 f, T p(u+l)−p(u+h) f 〉|2

for every H ∈ N by Cauchy–Schwarz and an application of the van der Corput trick (see
Lemma 2.8) to the sequence g(u)= (T × T )p(u)( f ⊗ f ). For all but a density-zero set
of (h, l) ∈O2d

L the polynomial u 7→ p(u + l)− p(u + h) is non-constant and has degree
smaller than that of p. Taking the lim sup as H →∞ above, it therefore suffices by an
induction argument to prove (3.3) when p has degree one. Thus we may assume that p is
an additive homomorphism Od

L →OL . Lemma 3.1 implies that R := p(Od
L) is a finite-

index subgroup. Applying the mean ergodic theorem to the product system, we see that
the limit

C-lim
u→8

(T × T )p(u)( f ⊗ f )

is invariant under (T × T )|R. By Lemma 3.2 the limit is a finite sum of eigenfunctions of
T × T . Since the eigenfunctions of T × T are spanned by functions of the form φ1 ⊗ φ2

where φ1 and φ2 are eigenfunctions of T , we see that (3.3) is zero as desired.
Since 8 was an arbitrary Følner sequence, Lemma 2.7 implies that

{u ∈Od
L : |〈1B, T p(u)1B〉 − 〈1B, T p(u)P1B〉| ≥ ε}

has zero upper Banach density.
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Let f1, . . . , fr be eigenfunctions of T with eigenvalues χ1, . . . , χr such that ‖ f1 +

· · · + fr − P1B‖ ≤ ε. Define a map ψ :Od
L → Tr by ψ(u)= (χ1(u), . . . , χr (u)) for all

u ∈Od
L . Let e1, . . . , em be a basis for OL as a Z-module and write

p(u)= p1(u)e1 + · · · + pm(u)em

for polynomials p1, . . . , pm in Z[x1, . . . , xdm]. We claim that p1, . . . , pk are jointly
intersective. Indeed, let3= Zλ be a finite-index subgroup of Z. Since p is intersective we
have p(ζ ) ∈ (λ) for some ζ in Od

L , and this implies {p1(ζ ), . . . , pk(ζ )} ⊂3 as desired.
Writing

ψ(p(u))= p1(u)(χ1(e1), . . . , χr (e1))+ · · · + pm(u)(χ1(em), . . . , χr (em)),

we can apply [BLL08, Proposition 3.6] to obtain w in Od
L for which |χi (p(w))|< ε/k for

all 1≤ i ≤ k. The polynomial q(u)= p(u + w)− p(w) has zero constant term. Thus

lim
u→p

Tψ(q(u))= 0

for any idempotent ultrafilter p on Od
L by Lemma 2.15. Combining this with how w was

chosen, Corollary 2.13 implies that

{u ∈Od
L : 〈1B, T p(u+w)P1B〉 ≥ µ(B)2 − ε}

⊃ {u ∈Od
L : 〈1B, T p(u+w)−p(w)P1B〉 ≥ µ(B)2 − 4ε}

is IP∗. Thus the set
{u ∈Od

L : 〈1B, T p(u)P1B〉 ≥ µ(B)2 − ε}

is IP∗+ and (1.17) is AIP∗+ as desired. �

We now turn to some examples. Since every non-zero ideal in OL has finite index,
polynomials p1, . . . , pk in OL [x1, . . . , xd ] are jointly intersective if and only if, for any
non-zero ideal I in OL , one can find ζ in Od

L such that {p1(ζ ), . . . , pk(ζ )} ⊂ I . It was
shown in [BLL08, Proposition 6.1] that when L =Q, polynomials p1, . . . , pk ∈ Z[x] are
jointly intersective if and only if there is an intersective polynomial p ∈ Z[x] such that
p|pi for all 1≤ i ≤ k. The same proof works for intersective polynomials of one variable
over OL .

LEMMA 3.4. Let L be an algebraic number field and let p1, . . . , pk ∈OL [x] be jointly
intersective. Then there is an intersective polynomial p ∈OL [x] such that p|pi for all
1≤ i ≤ k.

Proof. Let p ∈OL [x] be the greatest common divisor of p1, . . . , pk in L[x]. Then
one can find h1, . . . , hk ∈ L[x] such that h1 p1 + · · · + hk pk = p. By clearing
denominators we obtain f1 p1 + · · · + fk pk = dp for polynomials f1, . . . , fk ∈OL [x].
Joint intersectivity of p1, . . . , pk now implies intersectivity of dp and thus of p. �

Example 3.5. Let K be an algebraic number field and fix c ∈OK . Define f in OK [x] by
f (x)= x2

+ c for all x ∈OK . We show that if f is intersective then f has a root in OK .
The converse is immediate.
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Suppose to the contrary that f does not have a root in OK . Put L = K (
√
−c). Then

f is the minimal polynomial of
√
−c. Since f is intersective it has a root modulo every

prime ideal p in OK . Thus f is a product of two linear factors in the ring OK /p[x]. By
Kummer’s theorem [Jan96, p. 37] this implies that pOL is not prime and therefore factors
in OL . This is a contradiction because one can always find prime ideals in OK which
remain prime when lifted to OL . Thus f has a root in OK .

For a specific example, consider f (x)= x2
+ 1 over Z[i] and let T1, T2 be commuting,

measure-preserving actions of Z on a probability space (X,B, µ). Then a + ib 7→ T a
1 T b

2
is an action of Z[i] =OQ[i] on (X,B, µ). Theorem 1.17 tells us that

{u ∈ Z[i] : µ(B ∩ T p(u)B)≥ µ(B)2 − ε}

is AIP∗+ for any B ∈B and any ε > 0. In terms of Z-actions, we see that

{(a, b) ∈ Z2
: µ(B ∩ T a2

−b2
+1

1 T 2ab
2 B)≥ µ(B)2 − ε} (3.6)

is AIP∗+ for any B ∈B and any ε > 0.
In this case we can actually say more. By replacing b with b + 1 in (3.6) we obtain

{(a, b) ∈ Z2
: µ(B ∩ T a2

−b2
−2b

1 T 2ab
2 B)≥ µ(B)2 − ε},

and this set is IP∗ by [BM00]. Thus (3.6) is IP∗+.

Note that any non-constant, monic polynomial can be made intersective by passing to
an extension in which it has a root. Our second example is of an intersective polynomial
over Z[i] without a root. It is based on [BS66, p. 3], which is also discussed in
[BLL08, §6].

Example 3.7. Write L =Q[i] and let α and β be primes in OL = Z[i] distinct from 1+ i
such that α is a quadratic residue modulo (β) and vice versa. Assume also that one of α,
β or αβ is a square modulo (1+ i)5. Then f (x)= (x2

− α)(x2
− β)(x2

− αβ) in OL [x]
is intersective.

It suffices to prove that f has a root modulo every non-zero ideal in OL . Since every
non-zero, proper ideal in OL factors a product of powers of prime ideals, the Chinese
remainder theorem implies that it suffices to prove that f has a root modulo pn for every
prime ideal p in OL and every n ∈ N.

If p= (z) for some prime z distinct from α, β and 1+ i then quadratic reciprocity in
Z[i] implies that one of the factors of f has a root modulo p. Since the root is non-zero
in OL/p, Hensel’s lemma [Jan96, p. 105] implies that the same factor has a root modulo
every power of p.

The same argument shows that f has a root modulo pn when p ∈ {(α), (β)} by our
assumption that α is a residue modulo (β) and vice versa.

Lastly, if p= (1+ i) then one of the factors h of f has a root modulo (1+ i)n for n ≤ 5
by assumption. Suppose by induction that h has a root w modulo (1+ i)n for some n ≥ 5.
If (1+ i)n+1 divides h(w) then there is nothing to prove, so assume otherwise. We claim
that w + (1+ i)n−2 is a root of h modulo (1+ i)n+1. Since

h(w + (1+ i)n−2)= h(w)− iw(1+ i)n + (1+ i)2n−4
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and n ≥ 5, it suffices to prove that (1+ i)n+1 diviedes h(w)− iw(1+ i)n . Note that
1+ i cannot divide w because α and β are primes distinct from 1+ i . Thus h(w) and
−iw(1+ i)n are both divisible by (1+ i)n , but neither is divisible by (1+ i)n+1. Their
sum is therefore divisible by (1+ i)n+1 as desired.

For example, one may take α = 7 and β = 5+ 2i . Indeed (3+ 5i)2 =−16+ 30i is
congruent to 5+ 2i modulo (7) and (2+ i)2 = 3+ 4i is congruent to 7 modulo (1+ i)5 =
(−4− 4i).

4. Gowers–Host–Kra norms for commuting actions
In this section we recall the construction of Gowers–Host–Kra seminorms for a Zm-system
X= (X,B, µ, T ), which is totally analogous to the m = 1 case given in [HK05]. See
[Gri09, §4.3.6] for more on these seminorms.

One defines inductively a sequence X[k] of systems as follows. Put X[0] = X. Assuming
that X[k] = (X [k],B[k], µ[k], T[k]) has been defined, put

X [k+1]
= X [k] × X [k] B[k+1]

=B[k] ⊗B[k] T[k+1] = T[k] × T[k]

and define µ[k+1] to be the relatively independent self-joining of µ[k] over the sub-σ -
algebra I[k] ⊂B[k] of sets invariant under T[k]. Thus for any F0, F1 in L∞(X[k]) we
have∫

F0 ⊗ F1 dµ[k+1]
=

∫
E(F0|I[k]) · E(F1|I[k]) dµ[k] = C-lim

n→8

∫
F0 · T n

[k]F1 dµ[k]

for any Følner sequence 8 in Zm . For example,

X[1] = (X × X,B ⊗B, T × T, µ⊗I[0] µ)

where I[0] is the sub-σ -algebra of T -invariant sets. In particular, µ[1] = µ⊗ µ if T is
ergodic.

Given f in L∞(X), write f [k] for the function

f ⊗ · · · ⊗ f = f ◦ π1 · · · f ◦ π2k

in L∞(X[k]), where π1, . . . , π2k are the coordinate projections X [k]→ X . For each k ≥ 1,
the kth Gowers–Host–Kra seminorm ‖| · ‖|k on L∞(X) is defined by

‖| f ‖|2
k

k =

∫
f [k] dµ[k]

for all f in L∞(X), and ‖| f ‖|0 =
∫

f dµ. Note that

‖| f ‖|21 =
∫

f ⊗ f dµ[1] =
∫

E( f |I[0]) · E( f |I[0]) dµ[0]

for all f in L∞(X), so
‖| f ‖|0 ≤ ‖| f ‖|1 (4.1)

by Cauchy–Schwarz. When k ≥ 1 we have

‖| f ‖|2
k

k =

∫
E( f [k−1]

|I[k−1]) · E( f [k−1]
|I[k−1]) dµ[k−1]



Polynomial multiple recurrence over rings of integers 1369

for all f in L∞(X). For any k ≥ 0 and any Følner sequence 8 in Zm we have

C-lim
u→8

‖| f · T u f ‖|2
k

k = C-lim
u→8

∫
f [k] · T u

[k] f [k] dµ[k]

=

∫
E( f [k]|I[k]) · E( f [k]|I[k]) dµ[k] = ‖| f ‖|2

k+1

k+1 (4.2)

for all f in L∞(X) by the mean ergodic theorem.
The key feature of the seminorms ‖| · ‖|k is that, for ergodic Zm-systems, their kernels

are determined by T -invariant sub-σ -algebras Zk of B that have a strong algebraic
structure. This was proved for m = 1 by Host and Kra [HK05] and generalized to arbitrary
m by Griesmer as follows.

THEOREM 4.3. [Gri09] Let X= (X,B, µ, T ) be an ergodic Zm-system. For each k ∈ N
there is an invariant sub-σ -algebra Zk of B with the property that ‖| f ‖|k = 0 if and only
if E( f |Zk)= 0. Moreover, the factor corresponding to Zk is an inverse limit of of a
sequence of nilrotations of nilpotency degree at most k.

Proof. This is a combination of Lemma 4.4.3 and Theorem 4.10.1 in [Gri09]. �

Using Theorem 2.17, we can relate the Gowers–Host–Kra seminorms of an ergodic Zm-
system (X,B, µ, T ) to those of the systems (X2,B2, T × T, µs)whereµs is the ergodic
decomposition of T × T . Write µ[k]s for (µs)

[k] and ‖| · ‖|s,k for the kth Gowers–Host–Kra
seminorm of the system (X2,B2, T × T, µs).

PROPOSITION 4.4. Let T be an ergodic, measure-preserving action of Zm on a compact
metric probability space (X,B, µ) and let µs be the ergodic decomposition of T × T .
Then

µ[k+1]
=

∫
µ[k]s dm(s) (4.5)

for every k ≥ 0, and

‖| f ‖|2
k+1

k+1 =

∫
‖| f ⊗ f ‖|2

k

s,k dm(s)

for every f in L∞(X).

Proof. The proof is by induction on k. When k = 0 we use ergodicity of µ and
Theorem 2.17 to obtain

‖| f ‖|21 =
∫

f ⊗ f d(µ⊗ µ)=
∫ ∫

f ⊗ f dµs dm(s)=
∫
‖| f ⊗ f ‖|s,0 dm(s)

for any f in L∞(X,B, µ).
Suppose now that (4.5) holds for some k ≥ 0. Fix a bounded, measurable function

F : X [k+1]
→ R. Write 8N = {1, . . . , N }m . In this proof we will denote the measure

with respect to which a conditional expectation is taken using a subscript.
The pointwise ergodic theorem for actions of Zm (see [DS58, VIII.6.9]) tells us that

lim
N→∞

1
|8N |

∑
u∈8N

T u
[k+1]F = E(F |I[k+1])µ[k+1]
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almost surely with respect to µ[k+1]. It also implies that, for m-almost every s, we have

1
|8N |

∑
u∈8N

T u
[k+1]F→ E(F |I[k+1])µ[k]s

almost surely with respect to µ[k]s . Thus (4.5) implies that, for m-almost every s, we have

E( f |I[k+1])µ[k+1] = E( f |I[k+1])µ[k]s

on a set of full µ[k]s measure. But then∫
F0 ⊗ F1 dµ[k+2]

=

∫
E(F0|I[k+1])µ[k+1] · E(F1|I[k+1])µ[k+1] dµ[k+1]

=

∫ ∫
E(F0|I[k+1])µ[k+1] · E(F1|I[k+1])µ[k+1] dµ[k]s dm(s)

=

∫ ∫
E(F0|I[k+1])µ[k]s

· E(F1|I[k+1])µ[k]s
dµ[k]s dm(s)

=

∫ ∫
F0 ⊗ F1 dµ[k+1]

s dm(s)

for any bounded, measurable functions F0, F1 on X [k+1] as desired. �

5. Characteristic factors for some polynomial averages
In this section we describe characteristic factors for multiparameter correlations of the
form ∫

f · T p1(u) f · · · T pk (u) f dµ (5.1)

where T is an ergodic action of OL on a compact metric probability space (X,B, µ),
the function f belongs to L∞(X,B, µ), and p1, . . . , pk are non-constant polynomials in
OL [x1, . . . , xd ]. A characteristic factor for (5.1) is a T invariant sub-σ -algebra C of B

for which∫
f · T p1(u) f · · · T pk (u) f − E( f |C ) · T p1(u)E( f |C ) · · · T pk (u)E( f |C ) dµ→ 0

in L2(X,B, µ) for every f ∈ L∞(X,B, µ) along some averaging scheme. We will be
concerned with characteristic factors for convergence in density. Recall that polynomials
p1, . . . , pk over a ring are said to be essentially distinct if pi − p j is not constant for all
i 6= j . Our main goal in this section is the following theorem.

THEOREM 5.2. Let L be an algebraic number field. Fix polynomials p1, . . . , pk in
OL [x1, . . . , xd ] that are non-constant and essentially distinct. For any ergodic action
T of the additive group of OL on a compact metric probability space (X,B, µ), there is
r ∈ N such that

D-lim
u→8

∫
f · T p1(u) f · · · T pk (u) f − E( f |Zr )

· T p1(u)E( f |Zr ) · · · T pk (u)E( f |Zr ) dµ= 0

for any Følner sequence 8 in Od
L and any f1, . . . , fk in L∞(X,B, µ).
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The remainder of this section constitutes a proof of Theorem 5.2. Essentially, we
follow Leibman’s proof [Lei05a] of convergence of averages of the form (5.1) for Z-
actions to show that the limiting behavior of (5.1) along any Følner sequence is controlled
by a certain Gowers–Host–Kra seminorm, and then apply Theorem 4.3. For this reason
we prove only the results that require some modification for our setting. We then use
Proposition 4.4 to obtain characteristic factors for D-lim convergence from those obtained
for C-lim convergence.

We begin with the following lemma.

LEMMA 5.3. Let p ∈OL [x1, . . . , xd ] be a polynomial of degree one with zero constant
term. There is a constant c ≥ 0 such that

lim
N→∞

∥∥∥∥ 1
|8N |

∑
u∈8N

T p(u) f
∥∥∥∥≤ c‖| f ‖|2 (5.4)

for any f in L∞(X) and any Følner sequence 8 in Od
L .

Proof. Write p(x1, . . . , xd)= a1x1 + · · · + ad xd for some ai in OL , not all of which are
zero. By the mean ergodic theorem we have

lim
N→∞

∥∥∥∥ 1
|8N |

∑
u∈8N

T p(u) f
∥∥∥∥2

= ‖E( f |Ia)‖
2 (5.5)

where Ia is the sub-σ -algebra of sets invariant under T a for all a in the ideal a generated
by {a1, . . . , ad}. By Lemma 3.1 the ideal a is a finite-index subgroup. Thus

lim
N→∞

[OL : a]

|8N |

∑
u∈8N

‖| f · T u f ‖|1 ≥ lim
N→∞

1
|8N ∩ a|

∑
u∈8N∩a

‖| f · T u f ‖|1

≥ lim
N→∞

1
|8N ∩ a|

∑
u∈8N∩a

‖| f · T u f ‖|0 = ‖E( f |Ia)‖
2

for any f in L∞(X) by Lemma 2.6, (4.1), and the mean ergodic theorem. Combining the
above with (5.5) and Cauchy–Schwarz gives us

lim
N→∞

∥∥∥∥ 1
|8N |

∑
u∈8N

T p(u) f
∥∥∥∥2

≤ [OL : a]

(
lim

N→∞

1
|8N |

∑
u∈8N

‖ f · T u f ‖21

)1/2

which, upon applying (4.2), yields (5.4) with c2
= [OL : a]. �

LEMMA 5.6. Let p ∈OL [x1, . . . , xd ] be a polynomial of degree one with zero constant
term. There is a constant c ≥ 0 such that

lim
N→∞

1
|8N |

∑
u∈8N

‖| f · T p(u) f ‖|2
k

k ≤ c‖| f ‖|2
k+1

k (5.7)

for every f in L∞(X), every Følner sequence 8 in Od
L and every k in N.
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Proof. Write p(x1, . . . , xd)= a1x1 + · · · + ad xd for some ai in OL not all of which are
zero, and let a be the ideal in OL generated by {a1, . . . , ad}. Let Ia be the sub-σ -
algebra of B[k] consisting of sets that are invariant under T a

[k] for all a in a. For any
Følner sequence 8 in Od

L and any f in L∞(X) we have

lim
N→∞

1
|8N |

∑
u∈8N

‖| f · T p(u) f ‖|2
k

k

= lim
N→∞

1
|8N |

∑
u∈8N

∫
f [k] · T p(u)

[k] f [k] dµ[k]

=

∫
E( f [k]|Ia)

2 dµ[k]

≤ lim
N→∞

[OL : a]

|8N |

∑
u∈8N

‖| f · T u f ‖|2
k

k = [OL : a]‖| f ‖|2
k+1

k+1

by arguing as in Lemma 5.3. �

The next step is to obtain a version of Lemma 5.6 for multiple recurrence.

THEOREM 5.8. Let p1, . . . , pk ∈OL [x1, . . . , xd ] be non-constant, essentially distinct
linear polynomials with zero constant term. There is a constant c ≥ 0 such that

lim sup
N→∞

∥∥∥∥ 1
|8N |

∑
u∈8N

T p1(u) f1 · · · T pk (u) fk

∥∥∥∥≤ c‖| f1‖|k+1‖ f2‖∞ · · · ‖ fk‖∞

for any f1, . . . , fk in L∞(X) and any Følner sequence 8 in Od
L .

Proof. The proof is by induction of k. When k = 1 this is just Lemma 5.3. Put g(u)=
T p1(u) f1 · · · T pk (u) fk for each u in Od

L and note that in L2(X) we have

〈g(u + h), g(u)〉 =
∫ k∏

i=1

T pi (u)( fi · T pi (h) fi ) dµ

=

∫
fk · T pk (h) fk

k−1∏
i=1

T pi (u)−pk (u)( fi · T pi (h) fi ) dµ,

so for any H in N we have

lim sup
N→∞

∥∥∥∥ 1
|8N |

∑
u∈8N

k∏
i=1

T pi (u) fi

∥∥∥∥2

≤
1
|8H |2

∑
h,l∈8H

‖ fk‖
2
∞ lim sup

N→∞

∥∥∥∥ 1
|8N |

∑
u∈8N

k−1∏
i=1

T pi (u)−pk (u)(T pi (h) fi · T pi (l) fi )

∥∥∥∥
≤

1
|8H |2

∑
h,l∈8H

C‖| f1 · T p1(l−h) f1‖|k‖ f2‖
2
∞ · · · ‖ fk‖

2
∞

by the van der Corput trick (Lemma 2.8) and induction. Applying Cauchy–Schwarz a
number of times and then Lemma 5.6 gives the desired result. �
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Using a PET induction argument exactly as in [Lei05a], one can use Theorem 5.8 to
obtain the following result, which gives characteristic factors for Cesàro averages.

THEOREM 5.9. For any finite collection of non-constant, essentially distinct polynomials
p1, . . . , pk in OL [x1, . . . , xd ], there is r in N such that for any Følner sequence 8 in
Od

L , any action T of OL on a compact metric probability space (X,B, µ) and any f in
L∞(X,B, µ) we have

C-lim
u→8

∫
f · T p1(u) f · · · T pk (u) f − E( f |Zr )

· T p1(u)E( f |Zr ) · · · T pk (u)E( f |Zr )= 0

whenever ‖| f ‖|r = 0.

The next step is to obtain a version of Theorem 5.9 for D-lim convergence. To do
so we use product systems as in [BHK05]. Let p1, . . . , pk be non-constant, essentially
distinct polynomials in OL [x1, . . . , xd ] and let r ≥ 1 be as in Theorem 5.9. Fix an ergodic
action T of OL on a compact metric probability space (X,B, µ) and let µs be the ergodic
decomposition of µ⊗ µ. If f in L∞(X,B, µ) satisfies ‖| f ⊗ f ‖|s,r = 0 then

C-lim
u→8

∫
( f ⊗ f ) · (T × T )p1(u)( f ⊗ f ) · · · (T × T )pk (u)( f ⊗ f ) dµs = 0 (5.10)

for any Følner sequence 8 in Od
L . But from Proposition 4.4, if ‖| f ‖|r+1 = 0 then

‖| f ⊗ f ‖|s,r = 0 for almost every s, so (5.10) holds for almost every s. Integrating over s
concludes the proof of Theorem 5.2.

6. Multiple recurrence for polynomials over rings of integers
Let T be an ergodic action of OL on a compact metric probability space (X,B, µ). In the
previous section we showed that, by neglecting a set of zero Banach density, it suffices to
study the average (5.1) when (X,B, µ) is an inverse limit of nilrotations. The goal of this
section is to prove Theorem 1.6. We do so by exhibiting largeness of the set of multiple
recurrence times for nilrotations.

THEOREM 6.1. Let L be an algebraic number field. For any jointly intersective
polynomials p1, . . . , pk in OL [x1, . . . , xd ], any ergodic action T of OL on a nilmanifold
(G/0,m) determined by a homomorphism a :OL → G, and any B ⊂ G/0 with
m(B) > 0, there is c > 0 for which the set{

u ∈Od
L :

∫
1B · T p1(u)1B · · · T pk (u)1B dm≥ c

}
(6.2)

is AIP∗+.

Proof. Let e1, . . . , em be a basis for OL thought of as a Z-module. Using this basis,
we can identify Od

L with Zdm . For each 1≤ i ≤ k define polynomials pi,1, . . . , pi,m :

Zmd
→ Z by

pi (u)= pi,1(u)e1 + · · · + pi,m(u)em

for each u in Od
L .
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We claim that the polynomials {pi, j : 1≤ i ≤ k, 1≤ j ≤ m} are jointly intersective.
Indeed, fix λ in Z\{0}. Since p is intersective there is ζ in Od

L such that
{p1(ζ ), . . . , pk(ζ )} ⊂ (λ). This means that, for each i , we can find t1, . . . , tm in OL

such that
pi,1(ζ )e1 + · · · + pi,m(ζ )em = λ(t1e1 + · · · + tmem),

from which it follows that λ|pi, j (ζ ).
Next, we show that (6.2) is syndetic following [BLL08]. Fix a nilpotent Lie group

G and a closed, cocompact subgroup 0. Let m be the G-invariant probability measure
on the quotient X := G/0. Fix B ⊂ X with m(B) > 0. Let a :OL → G be a group
homomorphism and let T be the induced action of OL on G/0. Put ai = a(ei ). Then

a(pi (u))= a(pi,1(u)e1 + · · · + pi,m(u)em)= a pi,1(u)
1 · · · a pi,m (u)

m

for each 1≤ i ≤ k and every u in Zdm . Define a polynomial sequence g : Zdm
→ Gk+1 by

g(u)= (1, a p1,1(u)
1 · · · a p1,m (u)

m , . . . , a pk,1(u)
1 · · · a pk,m (u)

m )

for all u in Zdm . Let4 be the diagonal in X k+1 and let m4 be the push-forward of m under
the embedding of X in 4. By [Lei05b], the closure

Y =
⋃
{g(u)4 : u ∈Od

L}

is a finite union of sub-nilmanifolds of X k+1 and the sequence u 7→ g(u)m4 has an
asymptotic distribution µ in its orbit closure that is a convex combination of the Haar
measures on the connected components of Y . Thus we have

C-lim
u→8

∫
f0 · T p1(u) f1 · · · T pk (u) fk dm

= C-lim
u→8

∫
f0 ⊗ T p1(u) f1 ⊗ · · · ⊗ T pk (u) fk dm4

= C-lim
u→8

∫
f0 ⊗ f1 ⊗ · · · ⊗ fk dmg(u)4

=

∫
f0 ⊗ f1 ⊗ · · · ⊗ fk dµ

for any continuous functions f0, f1, . . . , fk : X→ R and any Følner sequence 8 in Zdm .
A density argument proves that the same is true for any f0, f1, . . . , fk in L∞(X). Thus
for any B in B we have

C-lim
u→8

m(B ∩ T−p1(u)B ∩ · · · ∩ T−pk (u)B)= µ(Bk+1)

for every Følner sequence 8 in Zdm . Following the argument in [BLL08, p. 376] and
applying [BLL08, Proposition 2.4] yields

C-lim
u→8

∫
1B · T p1(u)1B · · · T pk (u)1B dm> 0

for every Følner sequence 8 in Zdm . By Lemma 2.3 there is some c > 0 such that

C-lim
u→8

∫
1B · T p1(u)1B · · · T pk (u)1B dm≥ c
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for every 8. Thus {
u ∈Od

L :

∫
1B · T p1(u)1B · · · T pk (u)1B dm≥

c
2

}
(6.3)

has positive density with respect to every Følner sequence and is therefore syndetic by
Lemma 2.5.

It remains to prove that (6.3) is AIP∗+. Fix a continuous function f : X→ [0, 1] with
‖1B − f ‖1 < c/(8(k + 1)). Define ϕ :Od

L → R by

ϕ(u)=
∫

f · T p1(u) f · · · T pk (u) f dm

for every u ∈Od
L . By [Lei14, Theorem 4.3] we can write ϕ as a sum of sequences φ + ψ

where φ is a nilsequence and
D-lim
u→8

ψ(u)= 0

for every Følner sequence. Thus there is a nilmanifold X̃ = G̃/0̃, a homomorphism b :
Od

L → G̃, a continuous function h : X̃→ R, and some x ∈ X̃ such that φ(u)= h(b(u)x)
for all u ∈Od

L . Combining the above, we obtain∣∣∣∣∫ 1B · T p1(u)1B · · · T pk (u)1B dm− h(b(u)x)
∣∣∣∣≤ c

8
+ |ψ(u)|

for every u ∈Od
L . The set {u ∈Od

L : |ψ(u)|> c/8} has zero upper Banach density so
syndeticity of (6.3) and Lemma 2.1 imply that h(b(w)x)≥ c/8 for some w ∈Od

L . The
nilrotation b determines is distal by [Key66, Theorem 2.2], so

lim
v→p

h(b(v + w)x)= h(b(w)x) (6.4)

for every idempotent ultrafilter p in βOd
L by Lemma 2.11. It follows that

{u ∈Od
L : h(b(u)x)≥ c/8}

is IP∗+. Finally, (6.3) is AIP∗+ as desired. �

In order to deduce Theorem 1.6 from Theorem 6.1 we need the following preliminary
result, based on [FKO82, Proposition 7.1].

PROPOSITION 6.5. Fix a countable, commutative ring R and polynomials p1, . . . , pl

in R[x1, . . . , xd ]. Let (X,B, µ) be a compact metric probability space and let T be
an action of the additive group of R on (X,B, µ) by measurable, measure-preserving
maps. Fix B ∈B with µ(B) > 0. For any countably generated T -invariant sub-σ -algebra
D ⊂B and any D ∈D with µ(B4D) < µ(B)/8l we can find E ∈D with µ(E) > 0 such
that ∫

T p1(u)1B · · · T pl (u)1B dµ≥
1
2

∫
T p1(u)1E · · · T pl (u)1E dµ (6.6)

for every u ∈ R.
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Proof. We have µ(D)≥ µ(B)− µ(B)/8l > 0 because |µ(B)− µ(D)| ≤ µ(B4D). Let
x 7→ µx be a disintegration of µ over D . Put

E = {x ∈ D : µx (B) > 1− 1/2l}

and note that

µ(D\B)=
∫ ∫

1D1X\B dµx dµ(x)

=

∫
1D(x)µx (X\B) dµ(x)

≥

∫
1D\E (x)(1− µx (B)) dµ(x)≥

µ(D\E)
2l

implies that µ(D\E) < µ(B)/4, as otherwise µ(B4D) < µ(B)/8l is contradicted. Thus
µ(E)≥ µ(B)/2. Fix u ∈ R. If x ∈ T−pi (u)E then µx (T−p1(u)B) > 1− 1/2l because D

is T -invariant. Thus if x ∈ T−p1(u)E ∩ · · · ∩ T−pl (u)E we have

µx (T−p1(u)B ∩ · · · ∩ T−pl (u)B) > 1
2

and integrating over T−p1(u)E ∩ · · · ∩ T−pl (u)E gives (6.6). �

Here is the proof of Theorem 1.6.

Proof of Theorem 1.6. Let T be an ergodic action of OL on a compact metric probability
space (X,B, µ) and fix B ∈B with µ(B) > 0. Let r be as in Theorem 5.2. Put
h = E(1B |Zr ). We can assume that the polynomials p1, . . . , pk in OL [x1, . . . , xd ] are
distinct. Since distinct, jointly intersective polynomials are always essentially distinct, for
every ε > 0 the set{

u ∈Od
L :

∣∣∣∣∫ 1B · T p1(u)1B · · · T pk (u)1B dµ−
∫

h · T p1(u)h · · · T pk (u)h dµ
∣∣∣∣≥ ε}

has zero upper Banach density by Theorem 5.2. Since h is positive on B we can find
C ∈B and a > 0 such that a1C ≤ h.

The factor corresponding to Zr is an inverse limit of nilrotations by Theorem 4.3.
Thus we can find a Borel subset D of a nilrotation such that µ(C4D)≤ µ(C)/8(k + 1).
Combining Proposition 6.5 with Theorem 6.1 implies there is some c > 0 such that{

u ∈Od
L :

∫
h · T p1(u)h · · · T pk (u)h dµ≥ c

}
is AIP∗+. Picking ε = c/2 proves that (1.7) is also AIP∗+ as desired. �

We conclude by giving a proof of Theorem 1.14.

Proof of Theorem 1.14. Let T be an action of OL on a compact metric probability space
(X,B, µ) and fix B ∈B with µ(B) > 0. Let µx be an ergodic decomposition for µ. For
almost every x ∈ B we have µx (B) > 0, so there is a constant cx > 0 such that

Rx = {u ∈Od
L : µx (B ∩ T p1(u)B ∩ · · · ∩ T pk (u)B)≥ cx }
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is AIP∗+ by Theorem 1.6 and therefore syndetic by Lemma 2.2. Thus for every Følner
sequence 8 in Od

L we have

lim inf
N→∞

1
|8N |

∑
u∈8N

µx (B ∩ T p1(u)B ∩ · · · ∩ T pk (u)B) > 0

for almost every x ∈ B. Integrating over B and applying Fatou’s lemma gives

lim inf
N→∞

1
|8N |

∑
u∈8N

∫
µx (B ∩ T p1(u)B ∩ · · · ∩ T pk (u)B) dµ > 0

so (1.15) is syndetic by Lemma 2.5. �
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progressions. J. Anal. Math. 31 (1977), 204–256.
[Fur81a] H. Furstenberg. Recurrence in Ergodic Theory and Combinatorial Number Theory (M. B. Porter

Lectures). Princeton University Press, Princeton, NJ, 1981.
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