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Abstract. Using an ergodic inverse theorem obtained in our previous paper,
we obtain limit formulae for multiple ergodic averages associated with the action
of Fωp = ⊕Fp. From this we deduce multiple Khintchine-type recurrence results
analogous to those for Z-systems obtained by Bergelson, Host, and Kra, and also
present some new counterexamples in this setting.

1 Introduction

The celebrated theorem of Szemerédi [29] stating that any set of positive density
in Z contains arbitrary long progressions has a natural analogue for “large” sets
in the group Fωp = ⊕Fp, the direct sum of countably many copies of a finite field
of prime order p. While the content of Szemerédi’s theorem can be succinctly
expressed by the maxim “large sets in Z are AP-rich” (where AP stands for Arith-
metic Progression), the F

ω
p analogue states that any “large” set in F

ω
p is AS-rich,

that is, it contains arbitrarily large Affine Subspaces. This analogy extends to the
similarity between various proofs of these two theorems and is especially interest-
ing when one studies the F

ω
p analogues of various aspects of the ergodic approach

to Szemerédi’s theorem introduced by Furstenberg in [13].

Given an invertible probability measure preserving system (X,X, μ,T ), a set
A ∈ X with μ(A) > 0, and an integer k ∈ N, let φ(n) = μ(A ∩ T nA ∩ · · · ∩ T knA).
The sequence φ(n) can be viewed as a generalized positive definite sequence. The
analysis of the properties and the asymptotic behavior of φ(n) leads to the proof
and enhancements of Szemerédi’s theorem. Not surprisingly, the study of the
F
ω
p analogue of φ(n) leads to a better understanding and enhancement of the F

ω
p
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analogue of Szemerédi’s theorem. It also throws new light on the various related
facts belonging to the realm of ergodic theory.

In this paper, we describe (in Theorem 1.6 below) the characteristic factor for
certain multiple ergodic averages on measure-preserving systems in the case where
the underlying group G is an infinite-dimensional vector space Fωp over a finite
field; this is the analogue of the well-known description in [23], [40] of charac-
teristic factors for multiple ergodic averages of Z-actions. Using this description,
we obtain explicit formulae for the limit of such multiple ergodic averages. As an
application of these formulae, we establish multiple recurrence theorems of Khint-
chine type in some cases, and exhibit counterexamples to such theorems in other
cases.

The detailed statements of the main results of our paper are formulated at the
end of the introduction.

1.1 Convergence of multiple ergodic averages and limit formulae.
Before we can properly state our main results, we need to set up a certain amount
of notation regarding measure-preserving G-systems and their characteristic fac-
tors.

Let G = (G,+) be a countable abelian group, and let (X,X, μ) be a probability
space, which we always assume to be separable1 in the sense that the σ-algebra X

is countably generated modulo μ-null sets; in most applications, one can reduce to
this situation without difficulty, so this is not a serious restriction in practice. An
invertible measure-preserving transformation on X is an invertible map
T : X → X with T and T −1 both measurable such that μ(Tg(E)) = μ(E) for all
E ∈ X. A measure-preserving G-action on X is a family (Tg)g∈G of invertible
measure-preserving transformations Tg : X → X , such that TgTh = Tg+h and
T0 = id μ-almost everywhere for all g, h ∈ G. We refer to the quadruplet X =
(X,X, μ, (Tg)g∈G) as a measure-preserving G-system, or G-system for short.
We abbreviate the (complex-valued) Lebesgue spaces Lp(X,X, μ) for 1 ≤ p ≤ ∞
as Lp(X). We adopt the usual convention of identifying two functions in Lp(X)
if they agree μ-almost everywhere; in particular, this makes L2(X) a separable
Hilbert space.

A Følner sequence in G is a sequence (�n)∞n=1 of finite nonempty subsets of
G such that

lim
n→∞

|(g +�n)��n|
|�n| = 0

1This assumption is not used explicitly in this paper but is used in the paper [6] on whose results
we rely, in order to perform certain measurable selections (see Appendix C of that paper) as well as
disintegrations of measures.
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for all g ∈ G, where |H | denotes the cardinality of a finite set H . Note that we
do not require the �n to be nested or to exhaust all of G. The class of Følner
sequences is translation-invariant in the sense that if (�n)∞n=1 is a Følner sequence,
then (gn +�n)∞n=1 is also a Følner sequence for any g1, g2, . . . ∈ G. It is a classical
fact that every countable abelian group is amenable [34] and hence has at least one
Følner sequence [12]; for instance, if G = Z, one can take � n := {1, . . . , n}.

The classical Mean Ergodic Theorem2 asserts, among other things, that if
G = (G,+) is a countable abelian group with Følner sequence (�n)∞n=1,
X = (X,X, μ, (Tg)g∈G) is a G-system and f ∈ L2(X), then the limit

(1.1) lim
n→∞Eg∈�n Tg f

converges strongly in L2(X) norm, where we use the averaging notation Eh∈H :=
1

|H |
∑

h∈H for any nonempty finite set H and also write Tg f for f ◦Tg. Since strong
convergence in L2(X) implies weak convergence, we obtain as a corollary that the
limit

(1.2) lim
n→∞Eg∈�n

∫
X

f0Tg f1dμ

exists for all f0, f1 ∈ L2(X).
The Mean Ergodic Theorem not only gives existence of these limits, but pro-

vides a formula for the value of these limits. To describe this formula, we need
some more notation. Define a factor (Y,Y, ν, (Sg)g∈G, π) = (Y, π) of a G-system
(X,X, μ, (Tg)g∈G) to be another G-system Y = (Y,Y, ν, (Sg)g∈G), together with
a measurable map π : X → Y which respects the measure in the sense that
μ(π−1(E)) = ν(E) for all E ∈ Y (or equivalently, π∗μ = ν), and also respects
the G-action in the sense that Sg ◦ π = π ◦ Tg μ-a.e. for all g ∈ G. For in-
stance, if B is a sub-σ-algebra of X which is invariant with respect to the G-action
(Tg)g∈G , then (X,B, μ �B, (Tg)g∈G, id) is a factor of (X,X, μ, (Tg)g∈G), where μ �B
is the restriction of X to B. By abuse of notation, we refer to an invariant sub-σ-
algebra B as a factor of (X,X, μ, (Tg)g∈G). We call two factors (Y,Y, ν, (Sg)g∈G, π),
(Y ′,Y′, ν′, (S ′

g)g∈G, π
′) equivalent if the sub-σ-algebras

{π−1(E) : E ∈ Y}, {(π′)−1(E) : E ∈ Y′}
of X that they generate agree modulo null sets. It is clear that every factor is
equivalent to a unique invariant (modulo null sets) sub-σ-algebra of X, so one may
think of factors as invariant sub-σ-algebras if it is convenient to do so.

2This theorem is usually stated in textbooks for Z-systems, but the proof extends without difficulty
to actions by other amenable groups. See, for example, [3, Theorem 6.4.15].
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For a factor (Y,Y, ν, (Sg)g∈G, π) = (Y, π), we define the pullback map
π∗ : L2(Y) → L2(X) by π∗ f := f ◦ π. We define the pushforward map
π∗ : L2(X) → L2(Y) to be the adjoint of this map. In the case when the factor
arises from an invariant sub-σ-algebra B of X, the pushforward π ∗ f is the same as
the conditional expectation E( f |B) of f with respect to B.

Given a G-system X = (X,X, μ, (Tg)g∈G), we define the invariant factor

(Z0, π0) = (Z0(X), π0) = (Z0,Z0, μ0, (Tg)g∈G, π0)

of X to be (up to equivalence3) the factor associated to the invariant σ-algebra
XT := {E ∈ X : TgE = E for all g ∈ G}. This factor is a characteristic factor

for the averages (1.1), (1.2), in the sense that the limit in (1.1) converges strongly
in L2(X) to 0 whenever (π0)∗ f vanishes, and similarly the limit in (1.2) converges
to 0 when either (π0)∗ f0 or (π0)∗ f1 vanishes (see [16]). As a consequence, to
compute the limits in (1.1), one may freely replace f by (π0)∗ f (and descend from
X to the factor Z0), and similarly for (1.2). On the characteristic factor Z0, the
action of G is essentially trivial; and as a conclusion one obtains the well-known
limit formulae

lim
n→∞Eg∈�n Tg f = (π0)∗(π0)∗ f

and

lim
n→∞Eg∈�n

∫
X

f0Tg f1dμ =
∫

Z0

((π0)∗ f0) ((π0)∗ f1) d(π0)∗μ.

The situation is particularly simple when the G-system X is ergodic, which
means that the invariant σ-algebra XT consists only of sets of full measure or
zero measure, or equivalently that the invariant factor Z0 is a point. In this case,
(π0)∗ f =

∫
X fdμ; and so

lim
n→∞Eg∈�nTg f =

∫
X

fdμ

and

lim
n→∞Eg∈�n

∫
X

f0Tg f1dμ =
(∫

X
f0dμ

)(∫
X

f1dμ
)
.

3One can, of course, define (Z0, π0) canonically actually to be the factor (X,XT , μ �XT

, (Tg)g∈G, id), but it can be convenient to allow Z0 only to be defined up to equivalence, in order to
take advantage of other models of the invariant factor which may be more convenient to compute with.
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This concludes our discussion of the classical ergodic averages. We now con-
sider the more general multiple ergodic averages

lim
n→∞Eg∈�n(Tc1g f1)(Tc2g f2) . . . (Tckg fk)(1.3)

and

lim
n→∞Eg∈�n

∫
X

(Tc0g f0) . . . (Tckg fk)dμ(1.4)

associated to a G-system X = (X,X, μ, (Tg)g∈G), where k ≥ 1 and c0, . . . , ck are
integers, and (to avoid absolute integrability issues) f0, . . . , fk are now assumed
to lie in L∞(X) rather than L2(X). Note that in (1.4) we may collect terms if
necessary and reduce to the case when the c0, . . . , ck are distinct. Similarly, in
(1.3) we may reduce to the case when the c1, . . . , ck are distinct and nonzero (since
zero coefficients can simply be factored out). The reader can keep the model case
ci = i in mind for this discussion, though for technical reasons it is convenient to
consider more general coefficients ci as well.

The convergence and recurrence properties of these averages have been ex-
tensively studied in the literature, particularly in the model case G = Z. For
instance, the celebrated Furstenberg multiple recurrence theorem [13] asserts the
lower bound

lim inf
n→∞ Eg∈�n

∫
X

f (Tg f ) · · · (Tkg f )dμ > c > 0

in the G = Z case whenever k ≥ 1 and f ∈ L∞(X) is nonnegative and not identi-
cally 0, where c does not depend on the choice of (�n)∞n=1. The same result holds
for all countable abelian groups G [15]. On the other hand, the original proofs
of the multiple recurrence theorem did not actually establish the existence of the
limit in (1.3) or (1.4) for general k > 1. In the case of Z-actions, this was first
achieved for k = 2 in [13], for k = 3 in [37] (building upon a sequence of partial
results in [7, 8, 9, 16]). The case k = 4 was established in [21] (see also [22])
and independently in [38]. The methods in [21], [38] were generalized to cover all
k ≥ 1 first in [23] and then in [40]. After the general convergence of (1.3), (1.4)
for G = Z was established, a number of additional proofs of this result (as well as
generalizations thereof) have appeared in the literature [30], [1], [33], [20], [36].
The argument in [36] is extremely general and extends to averages over arbitrary
countable abelian groups G, with the shifts g, . . . , (k−1)g replaced by polynomial
functions of g (see also [42]).

Now we turn to the question of understanding the nature of the limit in (1.3)
or (1.4) for higher values of k than k = 1. For simplicity, we focus on the case of
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ergodic G-systems X = (X,X, μ, (Tg)g∈G); the results discussed here can then be
extended to the nonergodic case by ergodic decomposition (see, e.g., [35]).

The case k = 2 can be analysed by spectral theory. Define an eigenfunction
of an ergodic G-system X to be a nonzero function f ∈ L2(X) such that for each
g ∈ G, one has Tg f = λg f for some complex number λg. Define the
Kronecker factor (Z1, π1) = (Z1(X), π1) = (Z1,Z1, μ1, (T1,g)g∈G, π1) of X to
be the factor (up to equivalence) associated to the sub-σ-algebra of X generated by
the eigenfunctions of X. The Kronecker factor is (up to equivalence) given by an
abelian group rotation Z1 = (U,U,mU , (Sg)g∈G), where U = (U,+) is a compact
abelian group with Borel σ-algebra U and Haar probability measure m U , and each
Sg : U → U is a group translation Sg(x) := x + αg, where g �→ αg is a homomor-
phism from G to U (see [41] for a general form of this theorem). Furthermore, this
factor is ergodic (which is equivalent to the image of the homomorphism g �→ αg

being dense in U). It is known (see, e.g., [6]) that the Kronecker factor Z 1 is char-
acteristic for the k = 2 averages (1.3), (1.4), in the sense that the former average
converges to 0 in L2(X) norm when at least one of (π1)∗ f1, (π1)∗ f2 vanishes, and
the latter average converges to 0 when at least one of (π1)∗ f0, (π1)∗ f1, (π1)∗ f2 van-
ishes. From this, one can effectively replace each function f i by its pushforward
(π1)∗ fi in the limits (1.3), (1.4) (replacing X with Z1). These limits can then be
evaluated by harmonic analysis on U , resulting in the limit formula

(1.5) lim
n→∞Eg∈�n

∫
X

f0(Tg f1)(T2g f2)dμ

=
∫

U

∫
U

(π1)∗ f0(h)(π1)∗ f1(h + t)(π1)∗ f2(h + 2t)dμU(h)dμU(t)

for (1.4) (in the model case ci = i), and hence (by duality, and existence of the
limit) a similar formula for (1.3); similarly for other choices of coefficients ci . We
can rewrite this formula as

(1.6) lim
n→∞Eg∈�n

∫
X

f0(Tg f1)(T2g f2)dμ

=
∫

HP0,1,2(U)
(π1)∗ f0(h0)(π1)∗ f1(h1)(π1)∗ f2(h2)dmHP0,1,2(U)(h0, h1, h2),

where HP0,1,2(U) ⊂ U3 is the closed subgroup

HP0,1,2(U) := {(h, h + t, h + 2t) : h, t ∈ U}

of U3 and mHP0,1,2(U) is the Haar probability measure on HP0,1,2(U). (The reason
for the notation HP0,1,2 will be made clearer later.)
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In the case of Z-actions, the limit of (1.3), (1.4) for higher values of k is also
understood; see [39], [40], [4]. For each value of k, a characteristic factor Z k

associated to the averages (1.3), (1.4) which (up to equivalence) is an inverse limit
of nilsystems of step at most k − 1 was constructed in [23] (see also [40]). By
projecting onto each such nilsystem and using the equidistribution theory on such
nilsystems (see [25], [39]), a limit formula generalizing (1.5), (1.6) (but for Z-
actions) was established; see [40]. A closely related analysis was also performed
in [4], which (among other things) led to the following Khintchine-type recurrence
result: if X = (X,X, μ, (Tg)g∈Z) is an ergodic Z-system and A ∈ X has positive
measure, then for every ε > 0 and all k = 1, 2, 3, the sets4

{n ∈ Z : μ(A ∩ T−nA ∩ · · · ∩ T−knA) ≥ μ(A)k+1 − ε}

are syndetic. Surprisingly, this type of result fails for k > 3; see [4] for details.
The arguments in [4] also give a structural result for the correlation sequences 5

(1.7) Ic0,...,ck ; f0,..., fk (g) :=
∫

X
(Tc0g f0)(Tc1g f1) . . . (Tckg fk)dμ

for k ≥ 1, f0, . . . , fk ∈ L∞(X) and g ∈ Z and distinct integers c1, . . . , ck. To state
these results, recall that a (k − 1)-step nilsequence a uniform limit of sequences
of the form n �→ F (θn) for a (k−1)-step nilmanifold N/, a group element θ ∈ N ,
and a continuous function F : N/ → C; recall also that a bounded sequence
σ : G → C in a countable abelian group G is said to converge to 0 in uniform
density if limn→∞ suph∈G Eg∈h+�n |σ(g)| = 0 for any Følner sequence (�n)∞n=1. It
was shown in [4] that the sequence Ic0,...,ck ; f0,..., fk can be decomposed as the sum of
a (k − 1)-step nilsequence and an error sequence n �→ σ(n) which converges to 0
in uniform density.

1.2 New results. Having reviewed the preceding results, we now proceed
to the description of new results in this paper, in which we focus on a family of
countable abelian groups G at the opposite end of the spectrum to the integers
Z, namely the infinite-dimensional vector space G := Fωp = ⊕Fp over a finite
field Fp of prime order p, with a countable basis e1, e2, . . .. This can be viewed
as the direct limit6 of the finite-dimensional subspaces Fn

p, defined as the span of
e1, . . . , en; and a G-system can be viewed as a probability space with an infinite

4The negative signs here are artifacts of our sign conventions, and can be easily removed if desired.
5Strictly speaking, the results in [4] are only claimed in the case f0 = · · · = fk and ci = i, but it is

not difficult to see that the argument in fact applies in general.
6Note that this limit is distinct from the inverse limit

∏∞
i =1 Fp of the F

n
p; for instance, F

ω
p is a

countable vector space, whereas
∏∞

i =1 Fp is an uncountable (but compact) group.
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sequence Ten : X → X of commuting measure-preserving transformations, each
of period p in the sense that T p

en
= id. Observe that we can view these subspaces Fn

p

as a Følner sequence for Fωp , but this is of course not the only such sequence (for
instance, one can take the affine spaces gn + F

n
p, where g1, g2, . . . is an arbitrary

sequence in Fωp ). One can then ask for a formula for the limits in (1.3), (1.4), as
well as a structure theorem for the correlation sequences (1.7) (now defined for
g ∈ G rather than g ∈ Z).

To state the results, we need to introduce a variant of the concept of nilsystem
that is suitable for Fωp -actions, which we refer to as a Weyl system. To define such
systems, we first need the notion of a polynomial function on a G-system.

Definition 1.3 (Polynomials). Let G = (G,+) be a countable abelian group,
let U = (U,+) be an abelian group, and let X = (X,X, μ, (Tg)g∈G) be a measure
preserving system. For any measurable function ρ : X → U and g ∈ G, let
�gρ : X → U denote the function �gρ(x) := ρ(Tgx) − ρ(x); thus �g can be
viewed as a difference operator on the measurable functions from X to U . If k ≥ 1
is a natural number, we say that ρ is a polynomial of degree less than k if
�g1 · · ·�gkρ(x) = 0 μ-almost everywhere for any g1, . . . , gk ∈ G. We also adopt
the convention that the zero function is the only polynomial of degree less than k

if k ≤ 0.

In a similar vein, a sequence g : Z → U is said to be a polynomial of degree
less than k if �h1 · · ·�hk g(n) = 0 for all h1, . . . , hk, n ∈ Z, where �hg(n) :=
g(n + h) − g(n), with the same convention as before if k ≤ 0.

Note that a measurable function ρ : X → R/Z is a polynomial of degree less
than 2 if and only if the function e2πiρ is an eigenfunction of the system X. Thus we
see that the polynomials of degree less than 2 are closely related to the Kronecker
factor, which in turn controls the k = 2 averages (1.3), (1.4). More generally, we
shall see (in the case G = Fωp ) that the polynomials of degree less than k control
the averages (1.3), (1.4). One can define polynomial maps between more general
groups (not necessarily abelian); see [24]. However, we do not require this more
general concept of a polynomial map here.

For future reference, we observe (by an easy induction using Pascal’s triangle)
that a sequence g : Z → U is a polynomial of degree less than k if and only if it has
a discrete Taylor expansion of the form g(n) =

∑
0≤ j<k

(n
j

)
a j for some coefficients

a j ∈ U , where
(n

j

)
:= n(n−1) · · · (n− j +1)/ j !. We remark that the top coefficient

ak−1 of g(n) can also be computed as ak−1 = �k−1
1 g(n) for any n.

Next, we recall the notion of a cocycle extension.
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Definition 1.4 (Cocycle extension). Let G = (G,+) be a countable abelian
group, let U = (U,+) be a compact abelian group, and let X = (X,X, μ, (Tg)g∈G)
be a measure preserving system. A (G,X,U)-cocycle is a measurable function
ρ : G × X → U that satisfies the cocycle equation

(1.8) ρ(g + g′, x) = ρ(g,Tg′x) + ρ(g′, x)

for all g, g′ ∈ G and μ-almost all x ∈ X . Given such a cocycle, we define the
extension X ×ρ U of X by the cocycle ρ to be the G-system given by the product
probability space (X × U,X × U, μ× mU ), where U is the Borel σ-algebra on U ,
mU is the Haar probability measure on U , and the action (T̃g)g∈G on X ×U is given
by the formula T̃g(x, u) := (Tgx, u + ρ(g, x)). Note that the cocycle equation (1.8)
ensures that X ×ρ U is indeed a G-system. If For a positive integer k, we say that
the cocycle ρ is a polynomial cocycle of degree less than k if, for each g ∈ G,
the function x �→ ρ(g, x) is a polynomial of degree less than k.

Definition 1.5 (Weyl system). Let k ≥ 0 be an integer, and let G = (G,+)
be a countable abelian group. We define a k-step Weyl G-system recursively as
follows:

• A 0-step Weyl G-system is a point.
• If k ≥ 1, a k-step Weyl G-system is any system of the form X ×ρk Uk, where

X is a Weyl G-system of order k − 1, Uk is a compact abelian group7, and ρk

is a polynomial (G,X,Uk)-cocycle of degree less than k.
We define the notion of a continuous k-step Weyl system similarly to a k-step
Weyl system, except now that all the cocycles involved are also required to be
continuous. (Note that a Weyl system is a Cartesian product of compact spaces
and is thus also compact.)

Informally, a Weyl G-system of order k takes the form U1 ×ρ2 U2 ×ρ3 · · ·×ρk Uk

for some compact abelian groups U1, . . . ,Uk (which we refer to as the struc-
ture groups of the system) and polynomial cocycles ρ1, . . . , ρk (the cocycle ρ1

is essentially a homomorphism from G to U1 and is not explicitly shown in the
above notation). In the case k = 1, a Weyl G-system is simply a group rotation
Tg : u0 �→ u0 + ρ1(g) on U1.

Remark. In [6], we defined the notion of an Abramov F
ω
p -system Abr<k(X).

This is is a system where P<k(X) - the polynomials of degree less than k - span
L2(X). We show that in the case where k ≤ char(F), an Abramov system can be
given the structure of a Weyl system.

7In this paper, “compact group” is understood to be short for “compact metrizable group”.



338 VITALY BERGELSON, TERENCE TAO, AND TAMAR ZIEGLER

Example. Let X1 be the product space
∏

Fp of sequences (xn)∞n=1 with
xn ∈ Fp, with the product topology and the Haar probability measure. It becomes
a 1-step Weyl G-system with G := F

ω
p by using the shifts Tg(xn)∞n=1 := (xn + gn)∞n=1

when g =
∑∞

n=1 gnen with gn ∈ Fp (and with all but finitely many of the gn vanish-
ing).

The quadratic polynomial Q :
∏

Fp → Fp defined formally by

Q((xn)∞n=1) =
∞∑

n=1

xnxn+1

need not be well-defined, as the sum may contain infinitely many nonzero terms;
however, the formal derivative for g =

∑∞
n=1 gnen ∈ G

�gQ =
∞∑

n=1

gnxn+1 + xngn+1 + gngn+1

is a well-defined linear polynomial on
∏

Fp since only finitely many of the gn

are nonzero. Setting ρ2(g, x) := �gQ(x), we see that ρ2(g, x) is a polynomial
(G,X1,Fp)-cocycle of degree less than 2. The cocycle extension X 2 := X1 ×2 Fp

is then a 2-step Weyl system with structure groups
∏

Fp and Fp, with shift given
by

Tg((xn)∞n=1, t) = ((xn + gn)∞n=1, t +
∞∑

n=1

gnxn+1 + xngn+1 + gngn+1).

This system can be viewed as a G-system analogue to a 2-step nilsystem arising
from the Heisenberg group.

Our first main result, which is a corollary of our previous work in [6], estab-
lishes the existence of a Weyl system as a characteristic factor for the averages
(1.3), (1.4):

Theorem 1.6 (Characteristic factor). Let p be a prime, and let 1 ≤ k < p be
an integer. Let G := Fωp , and let X = (X,X, μ, (Tg)g∈G) be an ergodic G-system.

Then for each 0 ≤ k < p, there exists a factor (Zk, πk) = (Zk(X), πk) of X, with Zk

an ergodic continuous k-step Weyl system having the following properties.
(i) (Recursive description) Zk = Zk−1 ×ρk Uk for some compact abelian group

Uk and some polynomial (G,Zk−1,Uk)-cocycle ρk of degree less than k. Fur-
thermore, Uk is a p-torsion group (thus puk = 0 for all uk ∈ Uk or, equiva-

lently, Uk is a vector space over Fp).
(ii) (Connection with polynomials) The sub-σ-algebra of X generated by Zk is

generated by the polynomials φ : X → R/Z of degree less than k + 1. (Thus,
for instance, Z1 is the Kronecker factor.)
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(iii) (Zk−1 characteristic for (1.3)) For distinct nonzero c1, . . . , ck ∈ Fp\{0},
the averages (1.3) converge strongly in L2(X) to 0 for any Følner sequence
(�n)∞n=1 of G, whenever f1, . . . , fk ∈ L∞(X) is such that (πk−1)∗ fi = 0 for at

least one i = 1, . . . , k.
(iv) (Zk−1 characteristic for (1.4)) For distinct c0, . . . , ck ∈ Fp, the average

(1.4) converges to 0 for any Følner sequence (� n)∞n=1 of G, whenever
f0, . . . , fk ∈ L∞(X) is such that (πk−1)∗ fi = 0 for at least one i = 0, . . . , k.

(v) (Zk characteristic for (1.7)) For distinct c0, . . . , ck ∈ Fp, whenever
f0, . . . , fk ∈ L∞(X) is such that (πk)∗ fi = 0 for some i = 0, . . . , k − 1,

the sequence Ic0,...,ck ; f0,..., fk : G → C converges to 0 in uniform density.

We prove Theorem 1.6 in Section 3. We now turn to a discussion of some
consequences of this result, starting with a limit formula for the average (1.4). We
need the following construction.

Definition 1.7 (Hall-Petresco groups). Let p be a prime, and let U1, . . . ,Um

be compact p-torsion groups for some 0 ≤ m < p. Let 1 ≤ k < p, and suppose
c0, . . . , ck ∈ Fp are distinct. The Hall-Petresco group HPc0,...,ck (U1, . . . ,Um) is
defined to be the closed subgroup of (U1 × . . . × Um)k+1 consisting of tuples of
the form (P(ci))k

i =0, where P = (P1, . . . ,Pm) : Z → U1 × · · · × Um and for each
1 ≤ j ≤ m, P j : Z → Uj is a polynomial of degree less than j + 1.

If X = U1 ×ρ2 U2 ×ρ3 · · · ×ρm Um is an ergodic m-step Weyl system, we abbre-
viate HPc0,...,ck (U1, . . . ,Um) as HPc0,...,ck (X).

Thus, for instance

HP0,1(U1,U2,U3) =
{

((a1, a2, a3), (a1 + b1, a2 + b2, a3 + b3)) :

a1, b1 ∈ U1; a2, b2 ∈ U2; a3, b3 ∈ U3

}
= (U1 × U2 × U3)2,

and (for p > 2)

HP0,1,2(U1,U2,U3) =
{(

(a1, a2, a3), (a1 + b1, a2 + b2, a3 + b3),

(a1 + 2b1, a2 + 2b2 + c2, a3 + 2b3 + c3)
)

:

a1, b1 ∈ U1; a2, b2, c2 ∈ U2; a3, b3, c3 ∈ U3

}
=
{

(h0, h1, h2) ∈ U1 × U2 × U3 : h01 − 2h11 + h21 = 0
}



340 VITALY BERGELSON, TERENCE TAO, AND TAMAR ZIEGLER

(with the convention hi = (hi1, hi2, hi3)), and (for p > 3)

HP0,1,2,3(U1,U2,U3) =
{(

(a1, a2, a3), (a1 + b1, a2 + b2, a3 + b3),

(a1 + 2b1, a2 + 2b2 + c2, a3 + 2b3 + c3),

(a1 + 3b1, a2 + 3b2 + 3c2, a3 + 3b3 + 3c3 + d3)
)

:

a1, b1 ∈ U1; a2, b2, c2 ∈ U2; a3, b3, c3, d3 ∈ U3

}
=
{

(h0, h1, h2) ∈ U1 × U2 × U3 : h01 − 2h11 + h21

= h11 − 2h21 + h31 = 0, h02 − 3h12 + 3h22 − h32 = 0
}
.

The following lemma, which we prove in Section 5, asserts that the Hall-
Petresco group HPc0,...,ck (Zk−1) controls the equidistribution of progressions
(Tc0gx, . . . ,Tckgx) in X.

Lemma 1.8 (First limit formula). Let p be a prime, let 1 ≤ k < p be an inte-

ger, and let c0, . . . , ck ∈ Fp be distinct. Let G := F
ω
p , and let X = (X,X, μ, (Tg)g∈G)

be an ergodic G-system. Let f0, . . . , fk ∈ L∞(X), and let (�n)∞n=1 be a Følner se-

quence in G. Then

(1.9) lim
n→∞Eg∈�n

∫
X

(Tc0g f0) . . . (Tckg fk)dμ =∫
HPc0 ,...,ck

(Zk−1)
(πk−1)∗ f0 ⊗ . . .⊗ (πk−1)∗ fkdmHPc0 ,...,ck

(Zk−1),

where (Zk−1, πk−1) is the characteristic factor from Theorem 1.6, mHPc0 ,...,ck
(Zk−1) is

the Haar probability measure on HPc0,...,ck (Zk−1), and

(πk−1)∗ f0 ⊗ . . .⊗ (πk−1)∗ fk : Zk+1
k−1 → C

is the tensor product

(πk−1)∗ f0 ⊗ . . .⊗ (πk−1)∗ fk(x0, . . . , xk) := (πk−1)∗ f0(x0) . . . (πk−1)∗ fk(xk).

The right-hand side of (1.9) can also be written more explicitly as

∫
U2

1 ×...×Uk
k−1

k∏
i =0

(πk−1)∗ fi

(( j∑
l =0

(
ci

l

)
a jl

)k−1

j =1

)
,

where the integral is over all tuples (a jl)1≤ j≤k−1;0≤l≤ j with a jl ∈ U j , integrated

using the product Haar measure on U 2
1 × · · · × Uk

k−1, and U1, . . . ,Uk−1 are the
structure groups of Zk−1.
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HPc0,...,ck (Zk−1) contains the diagonal group {(x, . . . , x) : x ∈ Zk−1} and so
surjects onto each of the k + 1 coordinates of (Zk−1)k+1. In particular, the right-
hand side of (1.9) is well-defined even though each of the f i are only defined up
to μ-almost everywhere equivalence.

As examples of the formula (1.9), we have (for p > 2)

lim
n→∞Eg∈�n

∫
X

f0(Tg f1)(T2g f2)dμ

=
∫

U2
1

(π1)∗ f0(x)(π1)∗ f1(x + t)(π1)∗ f2(x + 2t)dmU1 (x)dmU1(t)

and (for p > 3)

lim
n→∞Eg∈�n

∫
X

f0(Tg f1)(T2g f2)(T3g f3)dμ

=
∫

U2
1 ×U3

2

(π2)∗ f0(x1, x2)(π2)∗ f1(x1 + t1, x2 + t2)(π2)∗ f2(x1 + 2t1, x2 + 2t2 + u2)

(π2)∗ f3(x1 + 3t1, x2 + 3t2 + 3u2)

dmU1 (x1)dmU1 (t1)dmU2 (x2)dmU2 (t2)dmU2 (u2).

We also remark that if for G = Z one considers nilsystems instead of Weyl
systems, the analogue of the Hall-Petresco group is the group of Hall-Petresco
sequences [19], [26], as can be seen from the equidistribution theory in [25].

By duality, the above limit formula (1.9) also gives a formula for limits (in
L2(X)) of the form

(1.10) lim
n→∞Eg∈�n (Tc1g f1) . . . (Tckg fk)dμ;

for instance, the limit limn→∞ Eg∈�n(Tg f1)(T2g f2)dμ in L2(X) is the function

x �→
∫

U1

(π1)∗ f1(π1(x) + t)(π1)∗ f2(π1(x) + 2t)dmU1 (t).

The formula in the general case has a similar (but messier) appearance, and is
omitted here. In the above argument, we implicitly used the known result that
the limit (1.10) in L2(X) exists; but, in fact, the arguments in this paper give an
independent proof of this norm convergence result, see Remark 5 below.

We also have an analogous limit formula for the correlation functions
Ic0,...,ck ; f0,..., fk (g), which approximates these functions by a certain integral expres-
sion Jc0,...,ck ; f0,..., fk (g) up to a vanishingly small error in uniform density, in analogy
to a similar result [4, Proposition 6.5] for Z-systems. To state this formula, we need
some additional notation. Let G = Fωp for a prime p, let 1 ≤ k < p, and let Zk
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be the characteristic factor from Theorem 1.6, with structure groups U 1, . . . ,Uk .
For each 1 ≤ i ≤ k, let ui : Zk → Ui be the coordinate function. Observe from
the definition of a Weyl system that �gui = ρi ◦ πi−1 for all 1 ≤ i ≤ k, where
πi−1 is the projection from Zk−1 to Zi−1. In particular, as ρi is a polynomial of
degree less than i , ui is a polynomial of degree less than i + 1. For any g ∈ G, the
derivative �i

gui is a constant function, and can thus be identified with an element
of Ui . Given g ∈ G, we define the tuple θ(g) = (θ1(g), . . . , θk(g)) ∈ U1 × · · · × Uk

by the formula θi(g) := �i
gui . We then define HPc0,...,ck (Zk)θ(g) to be the subset of

HPc0,...,ck (Zk) consisting of tuples (P(c0), . . . ,P(ck)) with P = (P1, . . . ,Pk), where
each Pi : Z → Ui is a polynomial of degree less than i + 1 obeying the additional
constraint �i

1Pi = θi (g) on the leading coefficient of each of the Pi . Note that
HPc0,...,ck (Zk)0 is a closed subgroup of HPc0,...,ck (Zk), and HPc0,...,ck (Zk)θ is a coset
of HPc0,...,ck (Zk)0 for any θ ∈ U1 × · · · × Uk. In particular, HPc0,...,ck (Zk)θ(g) has a
well-defined Haar measure dmHPc0 ,...,ck

(Zk )θ(g) .

Lemma 1.9 (Second limit formula). Let p be a prime, let 1 ≤ k < p be an

integer, and let c1, . . . , ck ∈ Fp be distinct. Let G := F
ω
p and X = (X,X, μ, (Tg)g∈G)

be an ergodic G-system. Let f0, . . . , fk ∈ L∞(X), and let (�n)∞n=1 be a Følner

sequence in G. Define the sequence Jc0,...,ck ; f1,..., fk : G → C by the formula

Jc0,...,ck ; f0,..., fk (g) :=
∫

HPc0 ,...,ck
(Zk )θ (g)

(πk)∗ f0 ⊗ . . .⊗ (πk)∗ fkdmHPc0 ,...,ck
(Zk )θ(g) .

Then the difference Ic0,...,ck ; f0,..., fk − Jc0,...,ck ; f0,..., fk converges to 0 in uniform density.

Let us write I(g) ≈UD J(g) for the assertion that I(g) − J(g) converges to 0 in
uniform density. Then a simple special case of Lemma 1.9 is the approximation

∫
X

f0Tg f1dμ ≈UD

∫
U1

(π1)∗ f0(x)(π1)∗ f1(x +�gu1)dmU1 (x);

similarly, we have (for p > 2)

∫
X

f0Tg f1T2g f2dμ ≈UD

∫
U1×U2

2

(π2)∗ f0(x1, x2)(π2)∗ f1(x1 +�gu1, x2 + t2)

(π2)∗ f2(x1 + 2�gu1, x2 + 2t2 +�2
gu2)

dmU1 (x1)dmU2 (x2)dmU2 (t2)
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and (for p > 3)∫
X

f0Tg f1T2g f2T3g f3dμ

≈UD

∫
U1×U2

2 ×U3
3

(π3)∗ f0(x1, x2, x3)(π3)∗ f1(x1 +�gu1, x2 + t2, x3 + t3)

(π3)∗ f2(x1 + 2�gu1, x2 + 2t2 +�2
gu2, x3 + 2t3 + s3)

(π3)∗ f3(x1 + 3�gu1, x2 + 3t2 + 3�2
gu2, x3 + 3t3 + 3s3 +�3

gu3)

dmU1 (x1)dmU2 (x2)dmU2 (t2)dmU3 (x3)dmU3 (t3)dmU3 (s3).

We prove Lemma 1.9 in Section 6. The sequence Jc0,...,ck ; f0,..., fk can also be
viewed as a “Weyl sequence” (analogous to the concept of a nilsequence, but with
respect to a Weyl system rather than a nilsystem).

Proposition 1.10 (Structure theorem). Let the notation be as in Lemma 1.9.
Then there exists a continuous k-step Weyl system Y = (Y,Y, ν, (Sg)g∈G), a continu-

ous function F ∈ L∞(Y), and a point y0 ∈ Y such that Jc0,...,ck ; f0,..., fk (g) = F (Sgy0)
for all g ∈ G.

We prove this in Section 7. Combining this proposition with Lemma 1.9, we
see that Ic0,...,ck ; f0,..., fk is approximated by a k-step Weyl sequence up to an error
that goes to 0 in uniform density (cf. [4, Theorem 1.9]).

In analogy to [4], we can use the limit formulae to obtain Khintchine type
recurrence theorems.

Definition 1.11 (Khintchine property). Let p be a prime, and let c0, . . . , ck

be distinct elements of Fp. We say that the tuple (c0, . . . , ck) has the Khintchine
property (in characteristic p) if, whenever G = F

ω
p , X = (X,X, μ, (Tg)g∈G) is an

ergodic G-system, A ∈ X, and ε > 0, the set

{g ∈ G : μ(T−c0gA ∩ · · · ∩ T−ckgA) ≥ μ(A)k+1 − ε}

is a syndetic subset of G (i.e., G can be covered by finitely many translates of this
set).

Of course, the negative signs in the subscripts here can be easily deleted if de-
sired. It is trivial that any singleton tuple (c0) has the Khintchine property, and
the classical Khintchine recurrence theorem adapted to general abelian groups
G implies that any pair (c0, c1) has the Khintchine property (in this case, we
do not need to assume the ergodicity of our G-system). It is also clear that the
Khintchine property is preserved if one applies an invertible affine tranformation
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x �→ ax + b to each element ci of a tuple (c0, . . . , ck), i.e., (c0, . . . , ck) has the
Khintchine property if and only if (ac0 + b, . . . , ack + b) has the Khintchine prop-
erty. For longer tuples, we have the following positive results, which are finite
characteristic analogues of results in [4].

Theorem 1.12 (Khintchine for double recurrence). If p > 2 and c 0, c1, c2 are

distinct elements of Fp, then (c0, c1, c2) has the Khintchine property.

Theorem 1.13 (Khintchine for triple recurrence). If p > 3 and c0, c1, c2, c3

are distinct elements of Fp which form a parallelogram in the sense that ci + c j =
ck + cl for some permutation {i, j, k, l} of {1, 2, 3, 4}, then (c0, c1, c2, c3) has the

Khintchine property.

For comparison, a version of the classical Khintchine Recurrence Theorem for
G = F

ω
p implies that for distinct c0, c1 ∈ Fp, a G-system X = (X,X, μ, (Tg)g∈G),

A ∈ X, and ε > 0, the set

{g ∈ G : μ(T−c0gA ∩ T−c1gA) ≥ μ(A)2 − ε}

is syndetic. In this classical setting of single recurrence, no ergodicity hypothesis
is required; but by adapting the construction in [4, Theorem 2.1], one can show
that ergodicity is needed for double or higher recurrence if p is sufficiently large
(this hypothesis is needed to embed a version of the Behrend-type constructions
used in [4]).

We prove these results in Section 8 and Section 9, respectively. We remark that
a finitary analogue of Theorem 1.13, concerning dense subsets of finite-dimensio-
nal vector spaces Fn

p instead of subsets of Fωp -systems (and with the shifts g lying
in a dense subset of Fn

p, rather than a syndetic subset of F
ω
p ), was established in

[17, Theorem 4.1].

We conjecture that the above results exhaust all the possible tuples with the
Khintchine property.

Conjecture 1.14. Let p be a prime, let k < p, and let c0, . . . , ck be distinct
elements of Fp.

(i) If k > 3, then (c0, . . . , ck) does not have the Khintchine property.
(ii) If k = 3, and (c0, c1, c2, c3) does not form a parallelogram, (c0, c1, c2, c3)

does not have the Khintchine property.

In [4, Corollary 1.6], it was shown that the tuple (0, 1, 2, 3, 4) do not have the
analogous Khintchine property for Z-systems; and it is not difficult to modify the
construction there to show that (0, 1, 2, 3, 4) does not have the Khintchine property
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in characteristic p if p is sufficiently large and similarly if (0, 1, 2, 3, 4) is replaced
by (0, 1, . . . , k) for any fixed k ≥ 4, if p is sufficiently large depending on k.

While we were not able8 establish the above conjecture in general, we can do
so for “generic” tuples (c0, . . . , ck).

Theorem 1.15 (Khintchine property generically fails). Let k ≥ 3. Then there

exists a constant Ck depending only on k such that for any prime p, there exist at
most Ckpk tuples (c0, . . . , ck) ∈ Fk+1

p that have the Khintchine property.

In other words, if one selects c0, . . . , ck ∈ Fp uniformly at random, then the
Khintchine property holds with probability at most Ck/p; so for large p, one has
failure of the property for most tuples (c0, . . . , ck).

We prove this in Section 10. It remains open whether a weakened version of
the Khintchine property can hold in which μ(A)k+1 is replaced by a larger power
μ(A)Ck of μ(A). In the case of Z-systems, this was shown in [4, Corollary 1.6] not
to be the case, at least for the model case k = 4 and ci = i . However, that argument
relies on the Behrend construction [2], and it remains an interesting open problem
to adapt this construction to the finite field setting when the characteristic p is fixed.
Note that it follows from the “syndetic” Szemerédi theorem for vector spaces over
finite fields [15] that the Khintchine property does hold if μ(A)k+1 is replaced by
some sufficiently small quantity c(k, μ(A)) > 0 depending only on k and μ(A), if
μ(A) is nonzero.

2 Continuity of polynomials

In this section, we establish a technical lemma which asserts, roughly speaking,
that polynomials in an ergodic Weyl system are automatically continuous.

Lemma 2.1 (Polynomials are continuous). Let G = (G,+) be a countable

abelian group, let k ≥ 0, and let X = (X,X, μ, (Tg)g∈G) be an ergodic k-step Weyl
system.

(i) After modifying the cocycles used to define X on a set of measure zero, if

necessary, X becomes a continuous k-step Weyl system.
(ii) If φ : X → R/Z is a polynomial, then (after redefining φ on a a set of

measure zero, if necessary), φ is continuous.

8By some extremely lengthy computations involving a subdivision into a large number of subcases,
and ad hoc constructions of counterexamples in each case, we have been able to verify this conjecture
in the case when k = 3, c0, c1, c2, c3 are fixed integers that do not form a parallelogram, and p is
sufficiently large depending on c0, c1, c2, c3 (or alternatively, if one considers Z-systems rather than
F
ω
p -systems). We plan to make details of these constructions available elsewhere.
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Proof. Induction on k. The case k = 0 is trivial, so suppose that k ≥ 1 and
that claims (i), (ii) have already been proven for all smaller values of k. The claim
(i) for k then follows by applying the induction hypothesis (ii) to all the cocycles
used to construct X, so now we turn to claim (ii) for k. Write X = Xk−1 ×ρk Uk

for some compact abelian Uk and some polynomial (G,Xk−1,Uk) cocycle ρk of
degree less than k. By claim (i) for k, we may assume without loss of generality
that all cocycles involved in constructing X (including ρk) are continuous.

Let us first handle the case when the compact group Uk is finite (and thus
discrete). For each uk ∈ Uk, φuk : Xk−1 → R/Z defined by φuk (xk−1) := φ(xk−1, uk)
is a polynomial on Xk−1 (see [6, Lemma B.5(iii)]) and can thus be modified on a
set of measure zero to become continuous. Applying this for each u k and gluing,
we obtain the claim.

Now we turn to the general case, in which Uk is not necessarily finite. For
t ∈ Uk, define the vertical derivative�tφ : X → R/Z of φ by the formula

�tφ(xk−1, uk) := φ(xk−1, uk + t) − φ(xk−1, uk).

As φ is a polynomial, �tφ is a polynomial of uniformly bounded degree. On the
other hand, as φ is measurable, � tφ converges to 0 in measure as t → 0 in Uk; in
particular, ‖e(�tφ) − 1‖L2(X) → 0 as t → 0, where e(x) := e2πix is the standard
character on R/Z. By [6, Lemma C.1] and the uniformly bounded degree of � tφ,
we conclude that e(�tφ) must be almost everywhere constant for t sufficiently
close to 0. In particular, for t sufficiently close to 0, there exists χ(t) ∈ R/Z such
that �tφ = χ(t) almost everywhere. The set of all t with this property is easily
seen to form a compact open subgroup U ′

k of Uk, and χ is a homomorphism from
U ′

k to R/Z which is measurable, and hence continuous (Steinhaus lemma). By
Pontryagin duality, χ can then be extended to an additive character from Uk to
R/Z. Defining the function ψ : X → R/Z by

ψ(xk−1, uk) := φ(xk−1, uk) − χ(uk),

we see that ψ is also a polynomial on X, with �tψ = 0 for t ∈ U ′
k; thus, after

modification on a set of measure zero, ψ is constant on all U ′
k-orbits. We can use

U ′
k to form quotient spaces from Uk and ρk by U ′

k and reduce to a Weyl system
Xk−1 ×ρk mod U ′

k
Uk/U ′

k in which the final group Uk/U ′
k is finite. By the case

already treated, the pushdown of ψ can be modified on a set of measure zero to
become continuous on this system. Thus, on applying pullback, the same claim
holds for ψ and hence for φ, giving the claim. �
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3 Gowers-Host-Kra seminorms and characteristic fac-
tors

In this section, we derive Theorem 1.6 from the theory of Gowers-Host-Kra semi-
norms on F

ω
p -systems as developed in [6]. While the material here is standard for

Z-systems (see [23]) and the adaptation of that theory to Fωp -systems routine, we
present it here for the sake of completeness.

We recall the definition of the Gowers-Host-Kra seminorms, introduced in [23]
(and closely related to the combinatorial Gowers uniformity norms from [18]):

Definition 3.1 (Gowers-Host-Kra seminorms). [23] Let G = (G,+) be a
countable abelian group, and let X = (X,X, μ, (Tg)g∈G) be a G-system. For
f ∈ L∞(X), we define the Gowers-Host-Kra seminorms ‖ f ‖Uk(X) recursively
for k ≥ 1 by setting

(3.1) ‖ f ‖U1(X) := lim
n→∞ ‖Eh∈�nTh f ‖L2(X)

and

(3.2) ‖ f ‖Uk (X) :=
(

lim
n→∞ ‖Eh∈�nTh f f ‖2k−1

Uk−1(X)

)1/2k

for any k ≥ 2 and any Følner sequence (�n)∞n=1 of G.

It can be shown that the above definitions are, in fact, independent of the
choice of the Følner sequence and define a sequence of seminorms on L ∞(X); see9

[6, Lemma A.18]. From the Mean Ergodic Theorem, we observe that the U 1 semi-
norm can also be written as

(3.3) ‖ f ‖U1(X) = ‖(π0)∗ f ‖L2(Z0),

where (Z0, π0) is the invariant factor.

The significance of these seminorms for us is that they control the convergence
of expressions such as (1.3). More precisely, we have the following minor variant
of [23, Theorem 12.1].

Lemma 3.2 (Generalized van der Corput lemma). Let G = F
ω
p for a prime p,

and let X = (X,X, μ, (Tg)g∈G) be a G-system. Let 1 ≤ k < p, and let c1, . . . , ck

be distinct elements of Fp\{0}. Let f1, . . . , fk ∈ L∞(X). Let (�n)∞n=1 be a Følner

9Strictly speaking, in that lemma the additional hypothesis of nestedness �1 ⊂ �2 ⊂ . . . of the
Følner sequence is imposed; but an inspection of the proof shows that this hypothesis is not needed
(because the mean ergodic theorem holds for nonnested Følner sequences).
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sequence of G. Then

lim sup
n→∞

‖Eg∈�n(Tc1g f1)(Tc2g f2) . . . (Tckg fk)‖L2(X)

≤ inf
1≤i≤k

‖ fi‖Uk(X)

∏
1≤ j≤k: j �=i

‖ f j‖L∞(X).

Proof. Induction on k. When k = 1, we may rescale �n by c1 to normalize
c1 = 1, and then the claim follows from (3.1). Now suppose that k > 1, and that
the claim has already been proved for k − 1. By permuting indices, it suffices to
show that

(3.4) lim sup
n→∞

‖Eg∈�nFg‖L2(X) ≤ ‖ fk‖Uk(X),

where ‖ fi‖L∞(X) ≤ 1 for i = 1, . . . , k − 1, and

Fg := (Tc1g f1)(Tc2g f2) . . . (Tckg fk).

We may also normalize ck = 1. Using the Følner property, we can rewrite the
left-hand side of (3.4) as

lim sup
m→∞

lim sup
n→∞

‖Eg∈�nEh∈�m Fg+h‖L2(X),

which we can then bound using the triangle inequality by

lim sup
m→∞

lim sup
n→∞

Eg∈�n‖Eh∈�m Fg+h‖L2(X).

By Cauchy-Schwarz, this is bounded by(
lim sup

m→∞
lim sup

n→∞
Eg∈�n‖Eh∈�m Fg+h‖2

L2(X)

)1/2

,

which we may expand as(
lim sup

m→∞
lim sup

n→∞
Eh,h′∈�m

∫
X
Eg∈�nFg+hFg+h′dμ

)1/2

.

This last expression is bounded above by(
lim sup

m→∞
Eh,h′∈�m lim sup

n→∞
|
∫

X
Eg∈�n Fg+hFg+h′ |dμ

)1/2

.

Now, for each h, h′, we may write

∫
X
Eg∈�nFg+hFg+h′ =

∫
X

(Tc1h f1)Tc1h′ f1Eg∈�n

k∏
i =2

T(ci −c1)g((Tcih fi )Tci h′ fi )dμ.
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Applying Cauchy-Schwarz and the induction hypothesis (and the normalization
ck = 1), we conclude that

lim sup
n→∞

|
∫

X
Eg∈�n Fg+hFg+h′ |dμ ≤ ‖(Th fk)Th′ fk‖Uk−1(X).

Note that (Th fk)Th′ fk has the same U k−1(X) norm as (Th−h′ fk) fk. Putting all this
together, we can bound the left-hand side of (3.4) by(

lim sup
m→∞

Eh,h′∈�m ‖Th−h′ fk fk‖Uk−1(X)

)1/2

.

By the triangle inequality and the pigeonhole principle, we can bound this by

(lim sup
m→∞

Eh∈�m−h′
m
‖Th fk fk‖Uk−1(X))

1/2

for some sequence h′
m ∈ �m; and by Hölder’s inequality, this is bounded by

(lim sup
m→∞

Eh∈�m−h′
m
‖Th fk fk‖2k−1

Uk−1(X))
1/2k
.

But the �m − h′
m form a Følner sequence of G, and the claim (3.4) then follows

from (3.2). �
We also need the following variant.

Lemma 3.3 (Generalized van der Corput lemma, II). Let G = F
ω
p for a

prime p, and let X = (X,X, μ, (Tg)g∈G) be a G-system. Let 1 ≤ k < p, and let

c0, c1, . . . , ck be distinct elements of Fp. Let f0, . . . , fk ∈ L∞(X), and let (�n)∞n=1

be a Følner sequence of G. Then

lim sup
n→∞

sup
h∈G

Eg∈h+�n |Ic0,...,ck ; f0,..., fk (g)| ≤ inf
0≤i≤k

‖ fi‖Uk+1(X)

∏
0≤ j≤k: j �=i

‖ f j‖L∞(X).

Proof. As before, it suffices to show that

lim sup
n→∞

sup
h∈G

Eg∈h+�n |Ic0,...,ck ; f0,..., fk (g)| ≤ ‖ fk‖Uk+1(X)

under the normalization ‖ f j‖L∞(X) ≤ 1 for 0 ≤ j < k.
Next, we remove the supremum in the above estimate. Suppose that we have

already shown that

(3.5) lim sup
n→∞

Eg∈�n |Ic0,...,ck ; f0,..., fk (g)| ≤ ‖ fk‖Uk+1(X).

For any ε > 0, and any n, we can find hn = hn,ε ∈ G such that

sup
h∈G

Eg∈h+�n |Ic0,...,ck ; f0,..., fk (g)| ≤ (1 + ε)Eg∈hn+�n |Ic0,...,ck ; f0,..., fk (g)|.
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Applying (3.5) to the Følner sequence (hn +�n)∞n=1, we conclude that

lim sup
n→∞

sup
h∈G

Eg∈h+�n |Ic0,...,ck ; f0,..., fk (g)| ≤ (1 + ε)‖ fk‖Uk+1(X)

and the claim then follows by sending ε to 0.
It remains to establish (3.5). Write Fg := (Tc0g f0) · · · (Tckg fk), so that

Ic0,...,ck ; f0,..., fk (g) =
∫

X Fgdμ. Then for any m, we have

|Ic0,...,ck ; f0,..., fk (g)| =
∫

X
Eh∈�m ThFgdμ;

and hence, by Cauchy-Schwarz, the left-hand side of (3.5) is bounded by

(lim sup
m→∞

lim sup
n→∞

Eg∈�n

∫
X

|Eh∈�m ThFg|2dμ)1/2.

We can expand this expression as

(lim sup
m→∞

lim sup
n→∞

Eh,h′∈�mEg∈�n

∫
X

(ThFg)(Th′Fg)dμ)1/2,

which by the triangle inequality is bounded by

(
lim sup

m→∞
Eh,h′∈�m

∣∣∣∣ lim sup
n→∞

Eg∈�n

∫
X

(ThFg)(Th′Fg)dμ
∣∣∣∣
)1/2

.

Rewriting
∫

X (ThFg)(Th′Fg)dμ as

∫
X

k∏
j =0

Tc j g((Th f j )Th′ f j )dμ

and applying Lemma 3.2, we may thus bound the left-hand side of (3.5) by

(lim sup
m→∞

Eh,h′∈�m‖(Th fk)Th′ fk‖Uk(X))
1/2.

One can then argue as in the proof of Lemma 3.2 to bound this by ‖ f k‖Uk+1(X), as
required. �

Corollary 3.4. Let G = Fωp for a prime p, and let X = (X,X, μ, (Tg)g∈G) be

a G-system. Let 1 ≤ k < p. Let f0, f1, . . . , fk ∈ L∞(X). Let (�n)∞n=1 be a Følner
sequence of G.

(i) The sequence Eg∈�n(Tc1g f1) · · · (Tckg fk) converges in L2(X) to 0 for distinct

nonzero elements c1, . . . , ck of Fp whenever ‖ fi‖Uk(X) = 0 for some
1 ≤ i ≤ k.
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(ii) The sequence Eg∈�n

∫
X (Tc0g f0) · · · (Tckg fk) converges to 0 for distinct ele-

ments c0, . . . , ck of Fp whenever ‖ fi‖Uk(X) = 0 for some 0 ≤ i ≤ k.
(iii) The sequence Ic0,...,ck ; f0,..., fk (g) converges in uniform density to 0 for distinct

elements c0, . . . , ck of Fp whenever ‖ fi‖Uk+1(X) = 0 for some 0 ≤ i ≤ k.

Proof. The claim (i) is immediate from Lemma 3.2. To prove (ii), we may
first permute so that ‖ fk‖Uk(X) = 0, and then translate so that c0 = 0. The claim
then follows from (i) after using Cauchy-Schwarz to eliminate f 0. Finally, (iii)
follows from Lemma 3.3. �

We remark that one can also prove (iii) using the structure of Host-Kra mea-
sures, after performing an ergodic decomposition; see [23, Corollary 4.5].

Theorem 1.6 is then immediate from Corollary 3.4 and the following result
from [6].

Theorem 3.5 (Characteristic factor for the U k norm). Let G = F
ω
p for a prime

p, and let X = (X,X, μ, (Tg)g∈G) be an ergodic G-system. For each 1 ≤ k ≤ p,
denote the sub-σ-algebra of X generated by the polynomials φ : X → R/Z of

degree less than k by B<k. Then there is a factor (Zk−1, πk−1) of X that is equiv-
alent to B<k, and there is a continuous ergodic (k − 1)-step Weyl system, with

Zk = Zk−1 ×ρk Uk for all 1 ≤ k < p, for some compact abelian p-torsion group Uk,
and some polynomial (G,Zk−1,Uk)-cocycle ρk of degree less than k. Furthermore,

if f ∈ L∞(X), then ‖ f ‖Uk (X) = 0 if and only if (πk−1)∗ f = 0.

Proof. This follows from [6, Proposition 1.10], [6, Theorem 1.19] and [6,
Corollary 8.7], using Lemma 2.1 to ensure that the Weyl system obtained is con-
tinuous. The ergodicity of the Weyl systems is automatic because any factor of an
ergodic system is again ergodic.

Remark. The condition k ≤ p was subsequently removed in [32] (but with
the important caveat that the groups U j need no longer be p-torsion, but are merely
pm-torsion for some m ≥ 1); however, for our application ,we have k ≤ p, so we
do not need the (more difficult) arguments from [32] here. It may also be possible
to adapt the arguments in [28] to give an alternate proof of Theorem 3.5, but we
do not pursue this here.

4 Some special cases of the limit formulae

In the next two sections, we prove the main limit formulae, Lemmas 1.8 1.9. To
motivate the proof of these formulae in the general case, we discuss some model
cases of these results here.
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We begin with a special case of Lemma 1.8, when p > 2 and X is a 2-step
Weyl system X = U1 ×ρ2 U2, where ρ2 is a polynomial (G,U1,U2)-cocycle of
degree less than 2. Furthermore, we assume (abusing notation slightly) that the
base system U1 is also the Kronecker factor Z1(X); thus the only polynomials of
degree less than 2 on X are those which are functions of the U1 coordinate only.
The special case of Lemma 1.8 we discuss is

(4.1) lim
n→∞Eg∈�n

∫
X

f0(Tg f1)(T2g f2)(T3g f3)dμ

=
∫

U2
1 ×U3

2

f0(x1, x2) f1(x1 + t1, x2 + t2) f2(x1 + 2t1, x2 + 2t2 + u2)

· f3(x1 + 3t1, x2 + 3t2 + 3u2)

dmU1 (x1)dmU1 (t1)dmU2 (x2)dmU2 (t2)dmU2 (u2).

(The factor map π2 is not needed in this special case, as it is the identity map.) To
simplify things further, we assume that each i = 0, 1, 2, 3, the function f i takes
the special form

(4.2) fi (x1, x2) = e(φi,2(x2))

for some additive character (i.e., continuous homomorphism) φ i,2 : U2 → R/Z.
One can (and should) also consider the slightly more general example of functions
of the form

(4.3) fi (x1, x2) = e(φi,1(x1) + φi,2(x2)),

where φi,1 : U1 → R/Z is an additive character of U1, as these Fourier-analytic
examples then span a dense subspace of L2(X). However, to keep the discussion
here simple, we ignore the lower order terms φ i,1 and focus only on examples of
the form (4.2).

The verification of (4.1) now splits into several cases, depending on the nature
of the characters φ0,2, . . . , φ3,2. One easy case is when φ0,2, . . . , φ3,2 all vanish
identically; then both sides of (4.1) are clearly equal to 1.

Next, suppose that φ3,2 vanishes identically, but that one of the other φi,2, say
φ2,2 is not identically 0. Then our task is to show that

(4.4) lim
n→∞Eg∈�n

∫
X

f0(Tg f1)(T2g f2)dμ

=
∫

U3
2

e(φ0,2(x2) + φ1,2(x2 + t2) + φ2,2(x2 + 2t2 + u2))

dmU2 (x2)dmU2 (t2)dmU2 (u2).
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Observe that (x2, t2, u2) varies over U 3
2 ; the tuple (x2, x2 + t2, x2 +2t2 +u2) is uncon-

strained in U3
2 . In particular, if (x2, t2, u2) is drawn uniformly at random using the

Haar measure on U 3
2 , then (x2, x2 + t2, x2 + 2t2 + u2) is also uniformly distributed

with this Haar measure. Thus the right-hand side factors as(∫
U2

e(φ0,2)dμ2

)(∫
U2

e(φ1,2)dμ2

)(∫
U2

e(φ2,2)dμ2

)
.

By Fourier analysis, the third factor vanishes, since φ2,2 is assumed to not be
identically 0; so the right-hand side of (4.4) vanishes. As for the left-hand side,
observe that the function f2(x1, x2) = e(φ2,2(x2)) has mean 0 on every coset of
U2 in U1 × U2; since we are assuming U1 = Z1, this implies that (π1)∗ f2 = 0.
By Theorem 3.5, this implies that ‖ f2‖U2(X) = 0. Applying Corollary 3.4, we
conclude that the left-hand side of (4.4) vanishes also, so we are done in this case.

Finally, we consider the case in which φ3,2 does not vanish identically. We can
then simplify the right-hand side of (4.1) by noting the extrapolation identity

x2 + 3t2 + 3u2 = x2 − 3(x2 + t2) + 3(x2 + 2t2 + u2),

which allows us to write the right-hand side as∫
U3

2

e
(
φ′

0,2(x2) + φ′
1,2(x2 + t2) + φ′

2,2(x2 + 2t2 + u2)
)

dmU2 (x2)dmU2 (t2)dmU2 (u2),

where φ ′
0,2 := φ0,2 + φ3,2, φ′

1,2 := φ1,2 − 3φ3,2, and φ′
2,2 := φ2,2 + 3φ3,2. Next,

observe that �gu2 = ρ(g, ·) for all g ∈ G; since ρ is a polynomial cocycle of
degree less than 2, we conclude that u2 is a polynomial of degree less than 3 (i.e.,
a quadratic function). For any g ∈ G and x ∈ X , the sequence n �→ u 2(Tngx) is
then also a quadratic polynomial. In particular, we have the interpolation identity

u2(T3gx) = u2(x) − 3u2(Tgx) + 3u2(T2gx),

which allows us to write the left-hand side of (4.1) as

lim
n→∞Eg∈�n

∫
X

f ′
0(Tg f ′

1)(T2g f ′
2)dμ,

where f ′
i (x1, x2) := e(φ ′

i,2(x2)) for i = 0, 1, 2. Thus, we have reduced the task of
verifying (4.1) when φ3,2 does not vanish identically to the task of verifying (4.1)
when φ3,2 does vanish identically, which has already been covered by the preced-
ing arguments. This concludes the demonstration of (4.1) for the model functions
(4.2). The model cases (4.3) can be handled by similar arguments, exploiting the
linear nature of n �→ u1(Tngx) in addition to the quadratic nature of n �→ u2(Tngx)
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eventually to reduce to the case in which φ2,1, φ3,1, φ3,2 vanish and φ2,2 does not
vanish identically, which can then be treated by Theorem 3.5 and Corollary 3.4 as
before; we leave the details to the interested reader (they are special cases of the
argument in Section 5 below).

Now we consider an analogous example for the second limit formula, Lemma
1.9. Keeping the system X = U1 ×ρ2 U2 as before, we now turn to the task of
showing that

(4.5)
∫

X
f0Tg f1T2g f2T3g f3dμ ≈UD

∫
U1×U2

2

f0(x1, x2) f1(x1 +�gu1, x2 + t2)

f2(x1 + 2�gu1, x2 + 2t2 +�2
gu2) f3(x1 + 3�gu1, x2 + 3t2 + 3�2

gu2)

dmU1 (x1)dmU2 (x2)dmU2 (t2),

where the notation ≈UD is defined immediately following the statement of Lemma
1.9 in the Introduction.

Again, we restrict attention to the model case (4.2) for simplicity. If the φ i,2 all
vanish identically, then the claim is trivial as before. Now suppose that both φ2,2

and φ3,2 vanish identically, but that φ1,2 does not. The right-hand side of (4.5) then
simplifies to ∫

U2
2

e(φ0,2(x2) + φ1,2(x2 + t2))dmU2 (x2)dmU2 (t2),

which vanishes by a change of variables and Fourier analysis. Meanwhile, the
left-hand side of (4.5) is

∫
X f0Tg f1dμ; the nonvanishing of φ1,2 guarantees that

‖ f1‖U2(X) = 0 by Theorem 3.5, and so by Corollary 3.4, the left-hand side goes to
0 in uniform density, as required.

Now suppose that φ3,2 vanishes identically, but φ2,2 does not. For any g ∈ G
and x ∈ X , we consider the sequence ψ2,g,x : Z → U2 defined by ψ2,g,x(n) :=
u2(Tngx). As discussed earlier in this section, ψ2,g,x is a quadratic sequence. How-
ever, for fixed g, we can also compute the top order coefficient � 2

1ψ2,g,x of this
sequence: �2

1ψ2,g,x = �2
gu2. Note that as ψ2,g,x and u2 are both quadratic, the

left and right-hand sides here are constants (i.e., elements of U2). Thus, ψ2,g,x

is not an arbitrary quadratic sequence, but is in fact the sum of the sequence
n �→ (n

2

)
�2

gu2 and a linear sequence. Using the Lagrange interpolation formula
ψ2,g,x(2) = −ψ2,g,x(0)+2ψ2,g,x(1)+�2

gu2, allows us to rewrite the left-hand side of
(4.5) as e(�2

gu2)
∫

X f ′
0Tg f ′

1dμ, where f ′
i := e(φ′

i,2) for i = 1, 2, φ ′
0,2 := φ0,2 − φ2,2,

and φ′
1,2 := φ1,2 + 2φ2,2. Similarly, using the identity

x2 + 2t2 +�2
gu2 = −x2 + 2(x2 + t2) +�2

gu2,
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we may rewrite the right-hand side of (4.5) as

e(�2
gu2)

∫
U1×U2

2

f ′
0(x1, x2) f ′

1(x1 +�gu1, x2 + t2)dmU1 (x1)dmU2 (x2)dmU2 (t2).

From the previously handled cases of (4.2), we already know that∫
X

f ′
0Tg f ′

1dμ

≈UD

∫
U1×U2

2

f ′
0(x1, x2) f ′

1(x1 +�gu1, x2 + t2) dmU1 (x1)dmU2 (x2)dmU2 (t2).

Multiplying through by the phase e(�2
gu2), we obtain (4.5) in the case that φ3,2

vanishes, but φ2,2 does not necessarily vanish. A similar calculation (which we
omit) then allows us to extend the previous cases to cover the case when φ3,2

does not necessarily vanish either, giving (4.5) in all instances of the model case
(4.2). Again, the addition of the lower order terms in (4.3) can be handled by
a modification of these arguments, which are special cases of the argument in
Section 6 below and which we leave to the reader.

5 Proof of the first limit formula

In this section, we prove Lemma 1.8. Let p,G,X, k, c0, . . . , ck, (�n)∞n=1 be as in
that lemma. If (πk−1)∗ fi = 0 for some i = 0, . . . , k, then the claim is immediate
from Theorem 1.6. By linearity, we may thus reduce to the case in which each f i

is a pullback by (πk−1)∗ from the associated function f̃i := (πk−1)∗ fi . Our task is
to show that for any f0, . . . , fk ∈ L∞(X),

(5.1) Eg∈�n

∫
X

f0(Tc0gx) . . . fk(Tckgx)dμ(x)

converges as n → ∞ to the integral

(5.2)
∫

HPc0 ,...,ck
(Zk−1)

f̃0 ⊗ . . .⊗ f̃kdmHPc0 ,...,ck
(Zk−1).

As noted after the statement of Lemma 1.8, HPc0,...,ck (Zk−1) surjects onto each
of the k + 1 coordinates of (Zk−1)k+1. Hence, we can bound (5.2) in magnitude by
‖ fi‖L2(X) for any 0 ≤ i ≤ k, if we normalize so that ‖ f j‖L∞(X) ≤ 1 for j �= i .
Of course, a similar bound can also be obtained for (5.1). By combining these
observations with Fourier analysis on the compact abelian group U1 × · · · × Uk

and a limiting10 argument, it suffices to verify this claim under the assumption that
10Here we use the basic fact that an L∞ function on a compact abelian group can be approximated

to arbitrary accuracy in L2 norm by a finite linear combination of multiplicative characters, while still
staying uniformly bounded in L∞. This can be established for instance by first approximating the
function by a continuous function, then using the Stone-Weierstrass theorem.
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each f̃i , i = 0, . . . , k, is a tensor product of multiplicative characters,

f̃i (u1, . . . , uk−1) =
k−1∏
j =1

e(φi j (u j ))

for all u1 ∈ U1, . . . , uk−1 ∈ Uk−1 and some additive characters (i.e, continuous
homomorphisms) φi j : U j → R/Z for i = 0, . . . , k and j = 1, . . . , k − 1. The
expression (5.1) is then equal to

(5.3) Eg∈�n

∫
X

e
( k∑

i =0

k−1∑
j =1

φi j
(
ψ j,g,x(ci)

))
dμ(x),

where ψ j,g,x : Z → Uj is the (periodic) sequence

(5.4) ψ j,g,x(n) := u j
(
πk−1(Tngx)

)
and u j : Zk−1 → U j , j = 1, . . . , k − 1, are the coordinate functions. Also, by
Fourier analysis, the expression (5.2) is equal to 1 when we have the identities

(5.5)
k∑

i =0

φi j
(
P j (ci)

)
= 0

for all j = 1, . . . , k −1 and all polynomials P j : Z → Uj of degree less than j + 1,
and 0 otherwise.

The strategy is to use the polynomial structure of the Weyl system to place the
additive characters φi j in a “normal form”, at which point the convergence can be
deduced from Lemma 3.2. This is achieved as follows. From construction of the
Weyl system we have�gu j = ρ j (g, ·) for all g ∈ G and j = 1, . . . , k −1. Since ρ j

is a polynomial cocycle of degree less than j , we conclude that u j : Zk−1 → U j

is a polynomial of degree less than j + 1. This implies that for any x ∈ X , the
sequenceψ j,g,x defined in (5.4) is a polynomial sequence of degree less than j + 1,
and thus has a Taylor expansion of the form

u j (πk−1(Tngx)) =
j∑

l =0

(
n
l

)
a j,g,x

for some coefficients a j,g,x ∈ U j . As the c0, . . . , c j are distinct elements of Fp,
we may then use Lagrange interpolation (using the p-torsion nature of U j and the
hypothesis j < p to justify any division occurring in the interpolation formula).
This implies that one can express ψ j,g,x(n) as a linear combination

(5.6) ψ j,g,x(n) =
j∑

i =0

bn, j,iψ j,g,x(ci)
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for some integer coefficients bn, j,i that do not depend on g or x (but may de-
pend on p and c0, . . . , c j ). Indeed, the interpolation formula gives the more gen-
eral identity P j (n) =

∑ j
i =0 bn, j,iP j (ci) for any polynomial P j : Z → U j of

degree less than j + 1, with the same coefficients bn, j,i . In particular, for any
j < i ≤ k, we can rewrite φi j (ψ j,g,x(ci)) in (5.3) as a linear combination of the
φi j (ψ j,g,x(c0)), . . . , φi j (ψ j,g,x(c j )), and similarly write φi j (P j (ci)) in (5.5) as the
same linear combination of the φi j (Pj (c0)), . . . , φi j (P j (c j )). From this fact, we
see that if the additive character φi j is not identically 0 for some j < i ≤ k, we
may delete that character (and adjust the characters φ0 j , . . . , φ j j by appropriate
multiples of the deleted character) without affecting either (5.3) or (5.5). Using
this observation repeatedly, we see that to prove the convergence of (5.3) to 1
when (5.5) holds and 0 otherwise, it suffices to do so under the normalization that
φi j = 0 for all i > j , which we now assume henceforth.

We now divide the argument into two cases. If the φi j are all identically 0, the
claim is trivial. Otherwise, we may find 1 ≤ j∗ ≤ k such that φi j all vanish for
j > j∗, but φi∗ j∗ is not identically 0 for at least one 0 ≤ i∗ ≤ j∗. By permuting
the i indices, and then readjusting the φi j characters for j < j∗ as before, we may
assume without loss of generality that i∗ = j∗.

Observe from Lagrange interpolation that if P j∗ : Z → U j∗ is an arbitrary poly-
nomial sequence of degree less than j∗ + 1, then the tuple (P j∗(c0), . . . ,P j∗(c j∗))
can take arbitrary values in U j∗+1

j∗ ; in particular, as φ j∗ j∗ is not identically 0, the
identity (5.5) does not hold for j = j∗. Thus, the expression (5.2) vanishes in this
case; and our task is now to show that (5.3) converges to 0. But from the vanishing
of φi j when i > j or j > j∗, we can write (5.3) in the form

Eg∈�n

∫
X

( j∗−1∏
i =0

Fi(Tci gx)

)
e
(
φ j∗ j∗

(
u j∗(πk−1(T j∗gx))

))
dμ(x)

for some functions F0, . . . ,F j∗−1 ∈ L∞(X) of unit magnitude which do not depend
on g or x, and whose exact form is of no importance to us. Applying Lemma 3.2,
we conclude that

lim sup
n→∞

∣∣∣∣Eg∈�n

∫
X

e
( k∑

i =0

m∑
j =1

φi j
(
ψ j,g,x(ci)

))
dμ(x)

∣∣∣∣ ≤ ‖e(φ j∗ j∗(u j∗(πk−1)))‖U j∗(X).

However, as the character φ j∗ j∗ is not identically 0, the function e(φ j∗ j∗(u j∗) has
mean 0 on every coset of U j∗ in U1 × . . .× Uk−1, and thus

(π j∗−1)∗
(
e
(
φ j∗ j∗

(
u j∗(πk−1)

)))
= 0.

By Theorem 3.5, we conclude that
∥∥e
(
φ j∗ j∗

(
u j∗(πk−1)

))∥∥
U j∗ (X) = 0, giving the

desired convergence of (5.3) to 0. This concludes the proof of Lemma 1.8.
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Remark. The argument above gives a new proof of the convergence of the
averages

Eg∈�n

∫
X

(Tc0g f0) . . . (Tckg fk)dμ

as n → ∞ for arbitrary k ≥ 0, f0, . . . , fk ∈ L∞(X), and c0, . . . , ck ∈ Fp (since,
after collecting like terms, we can reduce to the case where the c0, . . . , ck ∈ Fp are
distinct, so that k < p). A modification of the argument also shows convergence
in L2(X) of the averages

(5.7) Eg∈�n (Tc1g f1) . . . (Tckg fk)

for arbitrary k ≥ 0, c1, . . . , ck ∈ Fp and f1, . . . , fk ∈ L∞(X). We sketch the
argument as follows. First, collecting like terms and factoring out those terms
with ci = 0, we may assume that the c1, . . . , ck are distinct and nonzero, so that
k < p. By Theorem 1.6 (as in the proof of Lemma 1.8), we may assume that
each fi has the form fi = π∗

k−1 f̃i for some f̃i ∈ L∞(Zk−1), and then use Fourier
decomposition as before to assume that each f̃i is the tensor product of characters
e(φi j ). We can then use identities of the form (5.6) (setting c0 := 0) to reduce to
the case where the φi j vanish for i > j and then adapt the preceding argument to
show that the average (5.7) either is identically 1 or converges in norm to 0. We
leave the details to the interested reader. We remark that the limit value of (5.7)
does not depend on the Følner sequence (�n).

6 Proof of the second limit formula

We now prove of Lemma 1.9, using a minor variant of the argument used to prove
Lemma 1.8.

Let p,G,X, k, c0, . . . , ck, (�n)∞n=1 be as in Lemma 1.8. Using Theorem 1.6 as
in the previous section (but with Zk as the characteristic factor, instead of Zk−1),
we reduce to the case in which each f i is a pullback by (πk)∗ from the associated
function f̃i := (πk)∗ fi . Our task is to show that for any f0, . . . , fk ∈ L∞(X),

(6.1) |Ic0,...,ck ; f0,..., fk (g) − Jc0,...,ck ; f0,..., fk (g)|

converges in uniform density to 0.

Observe that the closed group HPc0,...,ck (Zk)0 contains the diagonal group
Z�k := {(z, . . . , z) : z ∈ Zk} ⊂ Zk+1

k and thus surjects onto each factor Zk. Translat-
ing, we see that the cosets HPc0,...,ck (Zk)g also surject onto each factor Zk. We can
then repeat the limiting argument from the previous section and reduce to the case
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in which each f̃i , i = 0, . . . , k, is a tensor product of characters, viz.,

f̃i (u1, . . . , uk) =
k∏

j =1

e(φi j (u j ))

for all u1 ∈ U1, . . . , uk ∈ Uk and some characters (i.e continuous homomorphisms)
φi j : Uj → R/Z for i = 0, . . . , k and j = 1, . . . , k. For g ∈ G, Ic0,...,ck ; f0,..., fk (g) is
then equal to

(6.2)
∫

X
e
( k∑

i =0

k∑
j =1

φi j (ψ j,g,x(ci))
)

dμ(x),

where

(6.3) ψ j,g,x(n) := u j (πk(Tngx))

and u j : Zk → U j , j = 1, . . . , k are the coordinate functions. Meanwhile, the
value of Jc0,...,ck ; f0,..., fk (g) depends on the behavior of the quantities

(6.4)
k∑

i =0

φi j (P j (ci))

for j = 1, . . . , k, where P j ranges over all polynomials P j : Z → U j of degree
less than j +1 with leading coefficient� j

1P j = � j
gu j . If, for each j , the expression

in (6.4) is equal to a constant θ j,g ∈ R/Z independent of P j , then Jc0,...,ck ; f1,..., fk (g)
is equal to e(

∑k
j =1 θ j,g). In all other cases, Jc0,...,ck ; f1,..., fk (g) vanishes.

As in the previous section, we use the polynomial structure of the Weyl system
to put the characters φi j in “normal form”. Fix g ∈ G. As before, for each
1 ≤ j ≤ k and x ∈ X, the sequence ψ j,g,x : Z → Uj is a polynomial sequence of
degree less than j + 1 from Z to U j . However, since g is now fixed, we see from
(6.3) that there is an additional constraint on the top order coefficient of ψ j,g,x:

(6.5) �
j
1ψ j,g,x = � j

gu j .

This additional (g-dependent) constraint on φ j,g,x allows us to eliminate one further
character φi j than was possible in the previous section. Indeed, from (6.5) we see
that the modified sequence n �→ ψ j,g,x(n)−(n

j

)
� j

gu j is now a polynomial sequence
of degree less than j rather than j + 1. Applying Lagrange interpolation to this
polynomial of one degree lower and then rewriting everything in terms of ψ j,g,x,
we obtain identities of the form

ψ j,g,x(n) =
j−1∑
i =0

b′
n, j,i,gψ j,g,x(ci) + a′

n, j,i
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for all n ∈ Z and coefficients b′
n, j,i,g, a′

n, j,g ∈ Fp that do not depend on x. Further-
more, we have the same identity P j (n) =

∑ j−1
i =0 b′

n, j,i,gP j (ci)+a′
n, j,i for any polyno-

mial P j : Z → U j of degree less than j + 1 obeying the constraint � j
1P j = � j

gu j .

It follows from these identities that whenever φi j is not identically 0 for some
1 ≤ j ≤ i ≤ k, we can rewrite φi j (ψ j,g,x(ci)) as a linear combination of
φi j (ψ j,g,x(c0)), . . . , φi j (ψ j,g,x(c j−1)) plus a constant independent of x, and, simi-
larly, we can rewrite φi j (P j (ci)) in (6.4) as the same linear combination of
φi j (P j (c0)), . . . , φi j (P j (c j−1)) plus the same constant. Because of this, we can
delete φi j (and adjust the characters φ0 j , . . . , φ j−1, j by appropriate multiples of
the deleted character), resulting in Ic0,...,ck ; f1,..., fk (g) and Jc0,...,ck ; f1,..., fk (g) being ro-
tated by the same (g-dependent) phase shift. In particular, (6.1) remains unchanged
by these modifications of the characters φ i j . Arguing as in the previous section,
we can thus reduce to the case in which the φ i j vanish for all j ≤ i ≤ k (note
that this is a slightly stronger vanishing condition than that of the previous section,
where φi j vanishes only for j < i ≤ k).

As in the preceding section, we now consider two cases. If the φ i j are all
identically 0, the claim is trivial. Otherwise, we can find 1 ≤ j∗ ≤ k such that φi j

all vanish for j > j∗, but φi∗ j∗ is not identically 0 for at least one 0 ≤ i∗ ≤ j∗ − 1.
By permuting the i indices, and then readjusting the φi j characters for j < j∗ as
before, we may assume without loss of generality that i∗ = j∗ − 1.

Fix g ∈ G. Observe from Lagrange interpolation that if P j∗ : Z → Uj∗ is
a polynomial sequence of degree less than j∗ + 1 that is arbitrary save for obey-
ing the constraint � j∗

1 P j∗ = � j∗
g u j∗ , then the sequence n �→ P j∗(n) − ( n

j∗

)
� j∗

g u j∗ is
an arbitrary polynomial of degree less than j∗. In particular, the tuple
(P j∗(c0), . . . ,P j∗(c j∗−1)) can take arbitrary values in U j∗

j∗ . Thus, as φ j∗−1, j∗ is not
identically 0, the identity (5.5) does not hold for j = j∗; and so Jc0,...,ck ; f0,..., fk (g)
vanishes for all g ∈ G. Our task is now to show that Ic0,...,ck ; f0,..., fk (g) converges in
uniform density to 0. But from the vanishing of φi j when i ≥ j or j > j∗, we can
write (5.3) in the form

Eg∈�n

∫
X

( j∗−2∏
i =0

Fi(Tci gx)

)
e
(
φ j∗−1, j∗

(
u j∗
(
πk−1(Tcj∗−1gx)

)))
dμ(x)

for functions F0, . . . ,F j∗−2 ∈ L∞(X) of unit magnitude which do not depend on g
or x. Arguing as in the previous section, we have

∥∥e
(
φ j∗−1, j∗

(
u j∗(πk−1)

))∥∥
U j∗ (X) = 0;

and the claim now follows from Lemma 3.2.
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7 Proof of structure theorem

We now prove Proposition 1.10. Let the notation be as in Lemma 1.9. Observe
that the coset HPc0,...,ck (Zk)g depends on g only through the quantities � j

gu j ∈ U j

for j = 1, . . . , k. Furthermore, the dependence of the integral

Jc0,...,ck ; f0,..., fk (g) =
∫

HPc0 ,...,ck
(Zk−1)

(πk)∗ f0 ⊗ · · · ⊗ (πk)∗ fkdmHPc0 ,...,ck
(Zk)θ(g)

on θ(g) is continuous (this is easiest to see by first approximating each (π i)∗ fi

in L2 norm with a continuous function on the compact group Zk). Therefore,
it suffices to represent each sequence θ j : g �→ � j

gu j for j = 1, . . . , k in the
form θ j (g) = � j

gu j = F j (S j,gy j ) for some continuous j -step Weyl system Y j =
(Y j ,Y j , ν j , (S j,g)g∈G), some continuous function F j : Y j → U j , and some point
y j ∈ Y . The claim then follows by composing the various continuous maps and
noting that the product of finitely many continuous Weyl systems of step at most
k is of step at most k.

For each j , we introduce the form � j : G j → U j by � j (g1, . . . , g j ) :=
�g1 . . .�g j u j (again, note that the right-hand side is a constant function and so
can be identified with an element of U j ). From the identities �g�h = �h�g and
�g+h = �g + �h + �g�h (and noting that any j + 1-fold derivative of u j van-
ishes), we see that � j is a symmetric multilinear form. Our task is to establish a
representation of the form

(7.1) � j (g, . . . , g) = F j (S j,gy j )

for some continuous k-step Weyl system Y j = (Y j ,Y j , ν j , (S j,g)g∈G), some con-
tinuous function F j : Yj → U j , and some point y j ∈ Y .

Fix j . To achieve the above goal, we exploit a dynamical abstraction of the
algebraic observation (essentially the binomial formula) that if we define

i (x)(h1, . . . , h j−i) := � j (h1, . . . , h j−i, x(i))

for 0 ≤ i ≤ j and x, h1, . . . , h j−i ∈ G, where x(i) denotes i copies of x, (so, in
particular, 0(x) = � j ), then the i(x) : G j−i → U j are symmetric multilinear
forms (where the multilinearity is, of course, with respect to the field Fp), and we
have the shift identity

i(x + g)(h1, . . . , h j−i) =
i∑

l =0

(
l
i

)
l(x)(h1, . . . , h j−i, g(i−l))

for all 0 ≤ i ≤ j and x, g, h1, . . . , h j−i ∈ G.
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Now we give the dynamical version of the above identity. For each 1 ≤ i ≤ j ,
let Vi be the collection of all symmetric multilinear forms i : G j−i → U j , where
the multilinearity is with respect to the field Fp. Then Vi can be viewed as a closed
subgroup of the product space U G j−i

i and is thus a compact abelian group. Set
Y j := V1 × . . .× V j with the product σ-algebra Y j and Haar measure ν j . Define
the shift maps S j,g(1, . . . ,  j ) = (S j,g(1, . . . ,  j )i)

j
i =1 for g ∈ G and i ∈ Vi for

i = 1, . . . , j by

(7.2) S j,g(1, . . . ,  j )i(h1, . . . , h j−i) =
i∑

l =0

(
i
l

)
l(h1, . . . , h j−i, g(i−l))

with the convention that 0 := � j . We verify that this is an action:

S j,g′(S j,g(1, . . . ,  j ))i(h1, . . . , h j−i)

=
i∑

l =0

(
i
l

)
S j,g(1, . . . ,  j )l(h1, . . . , h j−i, (g′)(i−l))

=
i∑

l =0

l∑
m =0

(
i
l

)(
l

m

)
m(h1, . . . , h j−i, (g′)(i−l), g(l−m))

=
i∑

m =0

(
i
m

)
i−m∑
a =0

(
i − m

a

)
m(h1, . . . , h j−i, (g′)(a), g(i−m−a))

=
i∑

m =0

(
i
m

)
m(h1, . . . , h j−i, (g + g′)(i−m))

= S j,g+g′(1, . . . ,  j )i(h1, . . . , h j−i),

where the penultimate equation follows from the symmetry and multilinearity of
m, and we have implicitly used the fact that the formula (7.2) extends to the case
i = 0 with the convention that S j,g(1, . . . ,  j )0 and 0 are both equal to � j .

One easily verifies by induction that Y j = (Y j ,Y j , ν j , (S j,g)g∈G) is a tower

Y j = V1 ×η2 V2 ×η3 · · · ×η j V j

of cocycle extensions, where the (G,V1 ×η2 · · ·×ηi−1 Vi−1,Vi)-cocycle ηi is defined
for 1 ≤ i ≤ j by the formula

(7.3) ηi(g, (1, . . . , i−1))(h1, . . . , h j−i) =
i−1∑
l =0

(
i
l

)
l(h1, . . . , h j−i, g(i−l)).

For each 1 ≤ i ≤ j , we see from (7.2) that differentiation of the coordinate func-
tion vi : (1, . . . , l) �→ i in some direction j yields an affine-linear combination
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of the previous coordinate functions v1, . . . , vi−1. In particular, this implies that
each coordinate function vi is a polynomial of degree less than i +1, which implies
from (7.3) that each cocycle η i is a polynomial of degree less than i . Thus Y j is
a j -step Weyl system; an easy induction then shows that it is in fact a continuous
j -step Weyl system.

From (7.2) we have v j (S j,g(0, . . . , 0)) = � j (g, . . . , g); as v j : Yj → V j ≡ U j

is clearly a continuous function, we obtain the desired representation (7.1).

8 Khintchine for double recurrence

We now prove Theorem 1.12. Suppose for contradiction that the claim fails. Then
we can find p,X,A, ε as in Definition 1.11 such that the set

{μ(T−c0gA ∩ T−c1gA ∩ T−c2gA) ≥ μ(A)3 − ε}
fails to be syndetic. In particular, the complement of this set contains translates
of any given finite set, and in particular must contain a Følner sequence (�n)∞n=1.
Thus we have μ(T−c0gA ∩ T−c1gA ∩ T−c2gA) < μ(A)3 − ε for all n = 1, 2, . . . and
g ∈ �n. We can rewrite this as

(8.1)
∫

X
(Tc0g1A)(Tc1g1A)(Tc2g1A)dμ < μ(A)3 − ε,

where 1A is the indicator function of A. If we could show that

lim
n→∞Eg∈�n

∫
X

(Tc0g1A)(Tc1g1A)(Tc2g1A)dμ > μ(A)3 − ε,

then we would obtain the desired contradiction. However, a direct application of
Lemma 1.8 computes the left-hand side as∫

U1

∫
U1

f (x + c0t) f (x + c1t) f (x + c2t)dmU1 (x)dmU1(t),

where U1 = Z1 is the Kronecker factor and f := π11A; and it is possible11 for
this integral to be significantly smaller than μ(A)3 = (

∫
U1

fdmU1 )3. Fortunately,
we can get around this difficulty by the following trick of Frantzikinakis [11] (see
also [4]). Observe from Hölder’s inequality that∫

U1

f (x) f (x) f (x)dmU1 (x) ≥ (
∫

U1

fdmU1 )3 = μ(A)3.

11An explicit example of this phenomenon can be constructed, for large p at least, by adapting the
Behrend construction [2], similar to the construction in [4, Section 2.1], which handled the case ci = i
in which U1 was replaced by R/Z and f replaced by an indicator function 1B ; we omit the details.
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As translations are continuous in (say) the L2 norm, we conclude that∫
U1

f (x + c0t) f (x + c1t) f (x + c2t)dmU1 (x) ≥ μ(A)3 − ε/2

(say) for all t ∈ U1 sufficiently close to the origin. In particular, by Urysohn’s
Lemma, we can find a nonnegative continuous function η : U1 → R

+ with∫
U1
ηdmU1 = 1 such that

(8.2)
∫

U1

∫
U1

η(t) f (x + c0t) f (x + c1t) f (x + c2t)dmU1 (x)dmU1(t) ≥ μ(A)3 − ε/2.

We now claim the weighted limit formula

(8.3) lim
n→∞Eg∈�nη(ρ1(g))

∫
X

(Tc0g1A)(Tc1g1A)(Tc2g1A)dμ

=
∫

U1

∫
U1

η(t) f (x + c0t) f (x + c1t) f (x + c2t)dmU1 (x)dmU1 (t),

which (on replacing A by all of X) gives limn→∞ Eg∈�nη(ρ1(g)) = 1 (this can also
be established from the unique ergodicity of the Kronecker factor); and this gives
a contradiction between (8.1) and (8.2).

It remains to establish (8.3). We prove this formula for arbitrary continuous
functions η : U1 → C. By the Stone-Weierstrass Theorem and Fourier analysis, it
suffices to establish the claim when η is a multiplicative character, viz., η = e(φ)
for some continuous homomorphism φ : U1 → R/Z. But as c0, c1, c2 are distinct
elements of Fp, there is a Lagrange interpolation identity of the form

t = a0(x + c0t) + a1(x + c1t) + a2(x + c2t)

for integers a0, a1, a2 depending only on c0, c1, c2. Thus the right-hand side of
(8.3) can be rewritten as∫

U1

∫
U1

f0(x + c0t) f1(x + c1t) f2(x + c2t)dmU1 (x)dmU1(t),

where fi (x) := f (x)e(aiφ(x)) for i = 0, 1, 2. Since the shift (T1,g)g∈G on the
Kronecker system Z1 = U1 is given by T1,g : x �→ x +ρ1(g) for each group element
g ∈ G, we can write ρ1(g) = a0T1,c0g(x) + a1T1,c1g(x) + a2T1,c2g(x) for all g ∈ G and
x ∈ U1, which implies that

η(ρ1(g))
∫

X
(Tc0g1A)(Tc1g1A)(Tc2g1A)dμ =

∫
X

(Tc0g f̃0)(Tc1g f̃1)(Tc2g f̃2)dμ

for any g ∈ G, where f̃i (x) := 1A(x)e(aiφ(π1(x))) for i = 0, 1, 2 and x ∈ X . Since
fi = (π1)∗ f̃i for i = 0, 1, 2, the claim (8.3) now follows from Lemma 1.8.
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9 Khintchine for triple recurrence

We now give the proof of Theorem 1.13, which follows the lines of Theorem 1.12
(and is, of course, also similar to the proof of the analogous claim for Z-systems
in [4]). We may permute indices so that c0 + c3 = c1 + c2. By translating, we may
normalize c0 = 0, and then by dilating normalize c1 = 1, so that c3 = c2 + 1.

Again, we assume for contradiction that the claim fails. Then, arguing as be-
fore, we can find p,X,A, ε verifying the hypotheses of the theorem and a Følner
sequence (�n)∞n=1 such that

∫
X

1A(Tg1A)(Tc2g1A)(T(c2+1)g1A)dμ < μ(A)4 − ε

for all n = 1, 2, . . . and g ∈ �n. Arguing as before, we see that it suffices to locate
a nonnegative continuous function η : U1 → R+ with

∫
U1
ηdmU1 = 1 such that

lim
n→∞Eg∈�nη(ρ1(g))

∫
X

1A(Tg1A)(Tc2g1A)(T(c2+1)g1A)dμ ≥ μ(A)4 − ε/2.

A direct application of Lemma 1.8 gives

lim
n→∞Eg∈�n

∫
X

1A(Tg1A)(Tc2g1A)(T(c2+1)g1A)dμ

=
∫

U2
1 ×U3

2

f (x1, x2) f (x1 + t1, x2 + t2) f

(
x1 + c2t1, x2 + c2t2 +

(
c2

2

)
u2

)

f

(
x1 + (c2 + 1)t1, x2 + (c2 + 1)t2 +

(
c2 + 1

2

)
u2

)

dmU1 (x1)dmU1 (t1)dmU2 (x2)dmU2 (t2)dmU2 (u2),

where we now set f := (π2)∗1A. We can twist this identity by characters as in the
previous section to conclude the weighted generalization

lim
n→∞Eg∈�nη(ρ1(g))

∫
X

1A(Tg1A)(Tc2g1A)(T(c2+1)g1A)dμ

=
∫

U2
1 ×U3

2

η(t1) f (x1, x2) f (x1 + t1, x2 + t2) f

(
x1 + c2t1, x2 + c2t2 +

(
c2

2

)
u2

)

f

(
x1 + (c2 + 1)t1, x2 + (c2 + 1)t2 +

(
c2 + 1

2

)
u2

)

dmU1 (x1)dmU1 (t1)dmU2 (x2)dmU2 (t2)dmU2 (u2).
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By Urysohn’s Lemma and the Fubini-Tonelli Theorem, it thus suffices to show
that

∫
U1×U3

2

f (x1, x2) f (x1 + t1, x2 + t2) f
(

x1 + c2t1, x2 + c2t2 +

(
c2

2

)
u2

)

f
(

x1 + (c2 + 1)t1, x2 + (c2 + 1)t2 +

(
c2 + 1

2

)
u2

)

dmU1 (x1)dmU2 (x2)dmU2 (t2)dmU2 (u2) ≥ μ(A)4 − ε/2

for all t1 sufficiently close to the origin. As before, this expression is continuous
in t1; so it suffices to show that

∫
U1×U3

2

f (x1, x2) f (x1, x2 + t2) f
(

x1, x2 + c2t2 +

(
c2

2

)
u2

)

f
(

x1, x2 + (c2 + 1)t2 +

(
c2 + 1

2

)
u2

)

dmU1 (x1)dmU2 (x2)dmU2 (t2)dmU2 (u2) ≥ μ(A)4.

From Hölder’s inequality and the Fubini-Tonelli theorem,

∫
U1

(∫
U2

f (x1, x2)dmU2 (x2)
)4

dmU1 (x1) ≥
(∫

U1×U2

fdmU1×U2

)4

= μ(A)4,

so it suffices to prove

∫
U3

2

F (x2)F (x2 + t2)F
(

x2 + c2t2 +

(
c2

2

)
u2

)
F
(

x2 + (c2 + 1)t2 +

(
c2 + 1

2

)
u2

)

dmU2 (x2)dmU2 (t2)dmU2 (u2) ≥
(∫

U2

FdmU2

)4

(9.1)

for any real-valued F ∈ L∞(U2).
This inequality can be established by Fourier analysis (cf. [4] or [17]), but one

can also give a Cauchy-Schwarz-based proof as follows. The starting point is the
identity

(c2 − 1)x2 + (c2 + 1)
(

x2 + c2t2 +

(
c2

2

)
u2

)

= (c2 − 1)

(
x2 + (c2 + 1)t2 +

(
c2 + 1

2

)
u2

)
+ (c2 + 1)(x2 + t2).
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From this and some routine computation, we see that for any x, y, y ′ ∈ U2, there
exists a unique triple (x2, t2, u2) such that

(c2 − 1)x2 = y,

(c2 + 1)(x2 + c2t2 +

(
c2

2

)
u2) = x − y,

(c2 − 1)x2 + (c2 + 1)t2 +

(
c2 + 1

2

)
u2 = y′,

(c2 + 1)x2 + t2 = x − y;

and so we may rewrite the left-hand side of (9.1) after a linear change of variables
as ∫

U2

(∫
U2

F
(

(c2 − 1)−1y
)

F
(

(c2 + 1)−1(x − y)
)

dmU2 (y)
)2

dmU2 (x)

(note that c2 − 1, c2 + 1 are invertible in Fp). By Cauchy-Schwarz, this is greater
than or equal to

(∫
U2

(∫
U2

F
(

(c2 − 1)−1y
)

F
(

(c2 + 1)−1(x − y)
)

dmU2 (y)
)

dmU2 (x)
)2

,

which by a further linear change of variables is equal to (
∫

U2
FdmU2 )4, giving (9.1).

10 Counterexamples

We turn to the proof of Theorem 1.15. We begin by passing from sets A to func-
tions f , which are more convenient from the perspective of building counterexam-
ples. More precisely, we use the following “Bernoulli extension” construction.

Theorem 10.1 (Reduction to the function case). Let p be a prime, and let
c0, . . . , ck be distinct elements of Fp. Let G = F

ω
p , and suppose that there exist an

ergodic G-system X = (X,X, μ, (Tg)g∈G), a nonnegative function f ∈ L∞(X), and
ε > 0 such that the set{

g ∈ G :
∫

X
(Tc0g f ) · · · (Tckg f )dμ ≥

(∫
X

fdμ
)k+1

− ε

}

is not syndetic. Then (c0, . . . , ck) does not have the Khintchine property in char-
acteristic p.
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Proof. By rescaling, we may assume that f takes values in [0, 1].

We construct a new system Y = (Y,Y, μY , (Sg)g∈G) as follows. The underlying
space is X × [0, 1]G, with the measure μY given by the product of μX and the
G-fold product of uniform measure on [0, 1], and similarly for the σ-algebra Y.
The shift Sg is given by Sg((x, (th)h∈G)) := (Tgx, (th+g)h∈G). One easily verifies that
Y is a G-system and that (X, π) is a factor of this system, where π : Y → X is the
projection map onto X . Indeed, the system Y is the product of X and a Bernoulli
system; as the latter system is weakly mixing, any product of such a system with
an ergodic system is ergodic (see, e.g., [14, Proposition 4.5] or [10, Theorem 4.1]).
In particular, as X is ergodic, Y is also ergodic.

Taking f as the function in the hypotheses of Theorem 10.1, we now define
A ⊂ Y by A := {(x, (th)h∈G) : t0 ≤ f (x)}. This is clearly a measurable set in Y ;
and from the Fubini-Tonelli Theorem, μY (A) =

∫
X fdμ. A further application of

Fubini-Tonelli gives

μY (S−c0gA ∩ · · · ∩ S−ckgA) =
∫

X
(Tc0g f ) · · · (Tckg f )dμ

for any g ∈ G, and so we obtain the desired counterexample to (c0, . . . , ck) having
the Khintchine property. �

To verify the requirements of Theorem 10.1, we use the following “skew shift”
construction, which reduces the task of demonstrating failure of the Khintchine
property to the harmonic analysis task of finding a counterexample to a certain
integral inequality.

Let T :=
∏

Fp be the compact group formed as the product of countably
many copies of Fp. Following the notation of Lemma 1.9, we define the set
HPc0,...,ck (Tm)θ ⊂ (Tm)k+1 for natural numbers m, k ≥ 1 and elements c0, . . . , ck

of Fp to be the collection of all tuples (P(c0), . . . ,P(ck)), where P : Z → T
m can

be written in components as P = (P1, . . . ,Pm), and for each 1 ≤ i ≤ j , Pi is a
polynomial of degree less than i + 1 with ∂i

1Pi = θi .

Theorem 10.2. Let p be a prime, and let c0, . . . , ck be distinct elements of Fp.

Suppose that there exist a natural number 1 ≤ m < p and a nonnegative function
f ∈ L∞(Tm) such that

∫
HPc0 ,...,ck

(Tm)θ
f ⊗ · · · ⊗ fdmHPc0 ,...,ck

(Tm)θ <

(∫
Tm

fdmTm

)k+1

for all θ = (θ1, . . . , θm) ∈ T
m. Then (c0, . . . , ck) does not have the Khintchine

property.
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Proof. We use an explicit Weyl system, analogous to a skew-shift system on
a torus. We identify the group G with the polynomial ring Fp[t] on one generator
t, by identifying each generator en of G with tn−1. We then embed Fp[t] in the field
Fp[t]

(
(1/t)

)
of half-infinite Laurent series

∑d
n=−∞ cntn, which is a locally compact

space using the norm ‖∑d
n=−∞ cntn‖ := pd when cd �= 0 (and with ‖0‖ = 0, of

course). The quotient space T :=
∑d

n=−∞ cntn/Fp[t] is then a compact abelian
group which can be identified with F∞

p and has a Haar probability measure dmT.
(One should view Fp[t], Fp[t]

(
(1/t)

)
, T as being characteristic p analogues of Z,

R, R/Z respectively.)
Let α be an element of Fp[t]

(
(1/t)

)
that is irrational in the sense that it is not

of the form f/g for any f, g ∈ Fp[t] with g nonzero. A simple cardinality (or
category, or measure) argument shows that irrational α exist, and it is not hard
to give concrete examples of irrational elements. We then construct a G-system
X = (X,X, μ, (Tg)g∈G) by setting X to be the “torus” X := T

m with the product
measure dmTm and product Borel σ-algebra, and shifts

(10.1) Tg((xi)
m
i =1) :=

( i∑
j =0

(
g

i − j

)
x j

)m

i =1

for all x1, . . . , xm ∈ T. Here, we adopt the convention that x0 := α, and
(g

i

)
:=

g(g − 1) . . . (g − i + 1)/i! is viewed as an element of Fp[t] (note that this is well-
defined for any i < p, which is acceptable for us since m < p). This shift system
is a dynamical abstraction of the binomial identity(

h + g
i

)
=

i∑
j =0

(
g

i − j

)(
h
i

)

for any h, g ∈ G.
It is easy to see that X is a G-system. Let us verify that it is ergodic. By the

Ergodic Theorem, this is equivalent to the assertion that

(10.2) lim
n→∞Eg∈Fn

p
Tg f =

∫
X

fdμ

in L2 norm for all f ∈ L2(X) and some Følner sequence (�n)∞n=1 of G. By Fourier
decomposition and a density argument, it suffices to achieve this for functions f

of the form

(10.3) f (x1, . . . , xm) = ep(a1x1 + · · · + amxm)

for a1, . . . , am ∈ Fp[t], where the standard character ep : T → C is defined by

ep

( d∑
n=−∞

cntn modFp[t]
)

:= e2πic−1/p.
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If all the a1, . . . , am vanish, both sides of (10.2) are clearly equal to 1, so the
claim is trivial in this case. Now suppose that there is 1 ≤ i∗ ≤ m such that ai∗ is
nonvanishing, but ai = 0 for all i∗ < i ≤ m. We induct on i . If i = 1, then we
have Eg∈Fn

p
Tg f = (Eg∈Fn

p
ep(a1αg)) f . As α is irrational, a1α does not lie in Fp[t];

and a direct calculation shows that this expression converges to 0 as n → ∞. If
i > 1, we need to show that the left-hand side of (10.2) converges to 0. By the
van der Corput Lemma (see12, e.g., [5, Lemma 2.9]) it suffices to show that

lim
n→∞Eg∈Fn

p

∫
X

Tg(Th f f )dμ = 0

for all h ∈ G\{0}. It is easy to verify that Th f f takes the form (10.3) for some
tuple (a1, . . . , am) which is not identically 0, but vanishes in the ai∗, . . . , am entries,
so that the claim follows from the induction hypothesis.

For each g ∈ G and f0, . . . , fk ∈ L∞(X), we consider

Ic0,...,ck ; f0,..., fk (g) :=
∫

X
(Tc0g f0) . . . (Tckg fk)dμ(10.4)

and

Jc0,...,ck ; f0,..., fk (g) :=
∫

HPc0 ,...,ck
(Tm )θ

f0 ⊗ . . .⊗ fkdmHPc0 ,...,ck
(Tm)θ(g)

where θi (g) :=
(g

i

)
α. We shall establish the limit formula

(10.5) lim
g→∞ |Ic0,...,ck ; f0,..., fk (g) − Jc0,...,ck ; f0,..., fk (g)| = 0;

this is very similar to Lemma 1.9, but here the limit is in the classical sense (using
the one-point compactification G ∪ {∞} of G, or, equivalently, using the Frechet
filter on G) rather than in the sense of uniform density. Assume (10.5) for the
moment. If f is the function in Theorem 10.2 (which we identify with an element
of L∞(X)), we see from the hypotheses on f and compactness that there exists
ε > 0 such that∫

HPc0 ,...,ck
(Tm)θ

f ⊗ · · · ⊗ fdmHPc0 ,...,ck
(Tm)θ <

(∫
X

fdμ
)k+1

− ε

for all θ ∈ T
m . In particular,

Jc0,...,ck ; f,..., f (g) <
(∫

X
fdμ

)k+1

− ε

12One could also use the case k = 1 of Lemma 3.3 here.



F
ω
P-ACTIONS 371

for all g ∈ G; and thus by (10.5),

Ic0,...,ck ; f,..., f (g) <
(∫

X
fdμ

)k+1

− ε/2

for all but finitely many g. Applying Theorem 10.1, we conclude that (c0, . . . , ck)
does not have the Khintchine property.

It remains to establish the limit formula (10.5). We can repeat large portions
of the proof of Lemma 1.9 to do this. Indeed, by the same Fourier decomposition
used to prove Lemma 1.9, we may assume that each f i takes the form

(10.6) fi (x1, . . . , xm) := ep

( m∑
j =1

ai j x j

)

for coefficients ai j ∈ Fp[t]. Using Lagrange interpolation identities exactly as
in the proof of Lemma 1.9, we can reduce to the case where a i j = 0 whenever
j ≤ i ≤ k, and then reduce further to the case in which there exists 1 ≤ j ∗ ≤ m
such that a j∗−1, j∗ �= 0 and ai j = 0 whenever i ≥ j or j > j∗. As in the proof of
Lemma 1.9, Jc0,...,ck ; f0,..., fk (g) = 0 in this case; so it remains to show that

lim
g→∞ Ic0,...,ck ; f0,..., fk (g) = 0.

Using (10.4), (10.6), and (10.1), we can expand the expression I c0,...,ck ; f0,..., fk (g) as

∫
Tm

ep

( j∗−1∑
i =0

j∗∑
j =1

ai j

( j∑
l =0

(
cig

j − l

)
xl

))
dmTm (x1, . . . , xm),

with the convention x0 = α. By Fourier analysis, this expression vanishes unless

(10.7)
j∗−1∑
i =0

j∗∑
j =l

ai j

(
cig

j − l

)
= 0

for all l = 1, . . . , j∗. Thus, it suffices to show that for all but finitely many g, the
identities (10.7) do not simultaneously hold for all l = 1, . . . , j∗.

Suppose for contradiction that there are infinitely many g ∈ G for which (10.7)
holds for all l = 1, . . . , j∗. As the left-hand side of (10.7) is a polynomial in
g, these polynomials must vanish identically for each l. In particular, extracting
the g j∗−l coefficient of the left-hand side, we conclude that

∑ j∗−1
i =0 ai j∗c

j∗−l
i = 0

for all l = 1, . . . , j∗. But as the Vandermonde determinant of the c0, . . . , c j∗−1 is
nonvanishing, this implies that ai j∗ = 0 for all i = 0, . . . , j∗ −1, giving the desired
contradiction. This establishes (10.5), and Theorem 10.2 follows. �
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Now we can prove Theorem 1.15. Fix k ≥ 3 and p. We say that a property
holds for generic tuples (c0, . . . , ck) ∈ F

k+1
p if the number of tuples which fail

to have the property is at most Ckpk for some Ck depending only on k. Thus, for
instance, a generic tuple (c0, . . . , ck) has all entries c0, . . . , ck distinct. Our task is
to establish that a generic tuple (c0, . . . , ck) does not have the Khintchine property.
In view of Theorem 10.2 (applied with m = 2), it suffices to exhibit, for each
generic tuple, a nonnegative function f ∈ L2(T2) with the property that

∫
HPc0 ,...,ck

(T2)θ
f ⊗ · · · ⊗ fdmHPc0 ,...,ck

(T2)θ <

(∫
T2

fdmT2

)k+1

for all θ = (θ1, θ2) ∈ T
2. The left-hand side can be expanded as

∫
T3

k∏
i =0

f (x1 + ciθ1, x2 + ci t2 +

(
ci

2

)
θ2)dmT3(x1, x2, t2).

To create this counterexample, we use the perturbative ansatz

f (x1, x2) = 1 +
∑

(a1,a2)∈A

εa1,a2 ep(a1x1 + a2x2)

where A is a set of nonzero elements of Fp[t]2 of bounded cardinality (in our
example, |A| = 8) and εa1,a2 are small complex coefficients to be chosen later. In
order for f to be real-valued, we require A to be symmetric (A = −A) and the
coefficients εa1,a2 to satisfy the symmetry condition

(10.8) ε−a1,−a2 = εa1,a2

for all (a1, a2) ∈ A. If A is fixed and the εa1,a2 are chosen sufficiently small, then f
is a nonnegative element of L∞(T2). As A is assumed to not contain (0, 0), f has
mean 1. It thus suffices to choose A and εa1,a2 as above, for which

(10.9)
∫
T3

k∏
i =0

f (x1 + ciθ1, x2 + cit2 +

(
ci

2

)
θ2)dmT3(x1, x2, t2) < 1

for all θ1, θ2 ∈ T. The left-hand side of (10.9) can be expanded as

∑
(a1,i ,a2,i )∈A∪{(0,0)} for i =0,...,k

(
k∏

i =0

εa1,i ,a2,i

)

∫
T3

ep

(
k∑

i =0

a1,i

(
xi + ciθ1) + a2,i(x2 + cit2 +

(
ci

2

)
θ2

))
dmT3(x1, x2, t2),
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with the convention that ε0,0 := 1. The term in which all the (a1,i, a2,i) vanish is 1.
As for the other terms, they vanish unless

(10.10)
k∑

i =0

a1,i = 0,
k∑

i =0

a2,i = 0,
k∑

i =0

a2,i ci = 0,

in which case that term is equal to the expression(
k∏

i =0

εa1,i ,a2,i

)
ep

(
k∑

i =0

a1,i ciθ1 + a2,i

(
ci

2

)
θ2

)
.

In order to establish (10.9), it thus suffices to select (for a generic choice of
(c0, . . . , ck)) a finite symmetric set A ⊂ F2

p\{(0, 0)} and sufficiently small coef-
ficients εa1,a2 for (a1, a2) ∈ A satisfying(10.8) and the following condition.

• There is at least one choice of tuple (a1,i, a2,i)k
i =0 ∈ (A ∪ {(0, 0)})k+1, not all

vanishing, satisfying (10.10). Furthermore, for all such tuples, one has the
additional constraints

k∑
i =0

a1,i ci = 0,(10.11)

k∑
i =0

a1,i

(
ci

2

)
= 0(10.12)

and

�
k∏

i =0

εa1,i ,a2,i < 0(10.13)

Indeed, from the previous discussion, the left-hand side of (10.9) equals 1 plus
the left-hand side (10.13) for all tuples (a1,i, a2,i)k

i =0, not all vanishing, satisfying
(10.10).

It remains to exhibit A and (εa1,a2 )(a1,a2)∈A with the stated properties. We do
this as follows. We first locate a nontrivial quadruple (α0, α1, α2, α3) ∈ F

4
p which

satsfies
3∑

i =0

αi = 0(10.14)

3∑
i =0

αi ci = 0(10.15)

3∑
i =0

αi c
2
i = 0(10.16)
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(note that these sums are well-defined when k ≥ 3). Indeed, one can use the
Lagrange interpolation formula to take

(10.17) αi :=
∏

0≤ j≤3: j �=i

1
ci − c j

.

Note that generically, the ci are all distinct, so that the αi in (10.17) are well-
defined and nonvanishing. We then set

A := {σ(αici, αi ) : i = 0, 1, 2, 3; σ ∈ {−1,+1}}.

This set is clearly symmetric. Because the ci are all distinct, the αi are all nonzero,
and the characteristic p is not equal to two, A consists of eight distinct elements of
F

2
p\{(0, 0)}.

Now we classify all the tuples (a1,i, a2,i)k
i =0 ∈ (A ∪ {(0, 0)})k+1 satisfying

(10.10). Certainly the tuple when (a1,i, a2,i) = (0, 0) for all i does this. By (10.14),
(10.15), (10.16), we see that the tuples given by (a1,i, a2,i) = σ1i≤3(αici, αi ) for
σ = +1,−1 also satisfies (10.10), (10.11), and (10.12), and also satisfies (10.13)
if the weights εa1,i ,a2,i are chosen so that �∏3

i =0 εαi ci ,αi < 0, which is easily ac-
complished. To conclude the construction, it suffices to show that for generic
(c0, . . . , ck) there are no other tuples satisfying (10.10).

Suppose for contradiction that another tuple (a1,i, a2,i)k
i =0 ∈ (A ∪ {(0, 0)})k+1

satisfying (10.10) exists. We can write (a1,i, a2,i) = 1i∈Bσi(α ji c ji , α ji ) for some
nonempty B ⊂ {0, . . . , k}, with σi ∈ {−1,+1} and ji ∈ {0, 1, 2, 3} for all i ∈ B .
We can exclude the cases in which B = {0, 1, 2, 3} and σ i = σ and ji = i for all
i ∈ B and some σ = {−1,+1}, since those tuples were already considered. As
the number of possibilities for B , σi , ji depend only on k, it suffices to show that
for a fixed choice of B, σi , ji not of the above form, the condition (10.10) fails for
generic (c0, . . . , ck).

Fix B, σi , ji as above. The conditions (10.10) can then be written as

∑
i∈B

σiα ji c ji = 0(10.18)

∑
i∈B

σiα ji = 0(10.19)

∑
i∈B

σiα ji ci = 0.(10.20)

Suppose first that B contains an element i∗ that lies outside of {0, 1, 2, 3}. Then∑
i∈B σiα ji ci can be written as σi∗α ji∗ ci∗ +Q, where Q does not depend on ci∗ . Since

α ji∗ is generically nonzero, we conclude (after first choosing all c i for i �= i∗, and
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then observing that generically the constraint (10.20) can hold for at most one c i∗)
that (10.20) fails for generic (c0, . . . , ck), and we are done in this case.

Thus we may assume that B ⊂ {0, 1, 2, 3}. We now focus on (10.19), which
asserts that a certain linear combination of α0, α1, α2, α3 (with coefficients in
{−4,−3,−2,−1, 0, 1, 2, 3, 4}) vanishes. From (10.17), we may write

(10.21) αi = ± 1
V

∏
0≤i ′<i ′′≤3:i ′,i ′′ �=i

(ci ′ − ci ′′),

where V :=
∏

0≤i ′<i ′′≤3(ci ′ − ci ′′) is the Vandermonde determinant. Thus, (10.19)
can be recast as the assertion that a certain linear combination of the polynomi-
als
∏

0≤i ′<i ′′≤3:i ′,i ′′ �=i(ci ′ − ci ′′) for i = 0, 1, 2, 3 vanishes. But it is easy to see that
these polynomials are linearly independent (indeed, they each contain a mono-
mial term that is not present in any of the other three polynomials); and so, by the
Schwarz-Zippel Lemma [27], any nontrivial linear combination of these polyno-
mials is nonzero for generic (c0, . . . , ck). The only remaining case occurs when
all the coefficients of α0, α1, α2, α3 in (10.19) vanish. There are two ways this can
happen: either j0 = j1 = j2 = j3 = j for some j , or (up to permutation) one has
j0 = j1 = j and j2 = j3 = j ′ and σ0, σ2 = +1, σ1, σ3 = −1 for some j �= j ′.

In the former case j0 = j1 = j2 = j3 = j , one can cancel α j from (10.20)
to obtain a nontrivial linear constraint between c0, c1, c2, c3 with coefficients in
±1, which then fails for generic choices of (c0, . . . , ck). Thus we may assume
that j0 = j1 = j and j2 = j3 = j ′ and σ0, σ2 = +1, σ1, σ3 = −1. We then turn
to (10.20), which becomes α j (c0 − c1) + α j ′(c2 − c3) = 0, which by (10.21) is a
constraint of the form

(c0 − c1)
∏

0≤i ′<i ′′≤3:i ′,i ′′ �= j

(ci ′ − ci ′′) = ±(c2 − c3)
∏

0≤i ′<i ′′≤3:i ′,i ′′ �= j ′
(ci ′ − ci ′′).

By unique factorization, the two polynomials on the left and right-hand sides
here are distinct; so by the Schwartz-Zippel Lemma, this identity fails for generic
(c0, . . . , ck), and the claim follows.

Remark. The above arguments give an explicit description of the tuples
(c0, . . . , ck) for which the Khintchine property is still possible. Further analysis
of these exceptional cases (possibly involving modification of the set A and the
weights εa1,i ,a2,i might well resolve Conjecture 1.14 stated in the Introduction, but
this seems to require a rather large amount of combinatorial and algebraic case
checking, and will not be pursued here.

Remark. Similar counterexamples can be constructed for Z-systems; they
are weaker than those based on the Behrend construction given in [4], although
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they have the advantage of applying to a wider class of coefficients c 0, . . . , ck. We
leave the details to the interested reader.
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