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Abstract

Let {Ug}g∈G be a weakly mixing unitary action of a finitely gen-
erated nilpotent group on a Hilbert space H. Extending a known
result about abelian groups, we show that weakly wandering vectors
are dense in H.

0. Introduction

A unitary Z-action {Un}n∈Z on a complex Hilbert space H has continuous spectrum, or

is weakly mixing if the operator U has no eigenvectors. The property of having continuous

spectrum can be characterized in a variety of ways. For example, {Un}n∈Z is weakly mixing

if and only if for any f1, f2 ∈ H and ε > 0 the set S =
{

n ∈ Z
∣

∣ |〈Unf1, f2〉| < ε
}

has

density one in Z with respect to some sequence of intervals Ik = [ak, bk] with bk −ak → ∞.

(This means that d{Ik}(S) = lim
k→∞

|S∩Ik|
bk−ak+1 = 1.)

A vector f ∈ H is called weakly wandering if there is an infinite set S ⊆ Z such that for

any n,m ∈ S, n 6= m, one has 〈Unf, Umf〉 = 0. The following theorem due to U. Krengel

gives a characterization of weak mixing in terms of weakly wandering vectors.

Theorem 1. [K] If a unitary action {Un}n∈Z has continuous spectrum, then the weakly

wandering vectors are dense in H.

The notion of a unitary action with continuous spectrum has natural extension to

more general groups. While some of the definitions make sense for abelian or, sometimes,

amenable groups only, many natural results pertaining to weakly mixing unitary action

can be formulated and proved for general locally compact groups (see [BR] for the details).

As one can guess, Theorem 1 too, should be extendable to more general group actions.

In [G] and [BKM1], Krengel-type results were proved for Zd-actions. In [BKM2] and in a

recent paper [J], Theorem 1 was extended to more general classes of abelian groups, which

include, for example, direct sums of cyclic groups with uniformly bounded torsion. Finally,

B. Begun in his Ph.D. thesis ([B]) extended Theorem 1 to general countable abelian groups.
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The main theorem in [BKM1], as well as the results in the subsequent papers [BKM2],

[J] and [B], have a novel feature. Namely, it is shown there that not only weakly wandering

vectors are dense, but that the weak wandering occurs along so-called symmetric IP-sets,

which we will presently define.

Definition. Let G be an abelian group. Given an infinite set A ⊆ G, the IP-set Γ generated

by A is the set

Γ =
{

x1 + x2 + . . .+ xk

∣

∣ xi ∈ A, xi 6= xj for i 6= j, 1 ≤ i, j ≤ k, k ∈ N
}

.

In other words, Γ is the set of all finite sums of distinct elements from A. The set A is

called the generating set, or the set of generators, for Γ. Finally, the IP-set Γ generated by

A is called symmetric, if the generating set A is symmetric, that is, x ∈ A⇐⇒ −x ∈ A.

Here is the formulation of the main theorem in [BKM1]:

Theorem 2. ([BKM1]) A unitary Zd-action {Ug}g∈Zd on a Hilbert space H has continuous

spectrum if and only if for any f ∈ H and any ε > 0, there exists f̃ , ‖f̃ − f‖ < ε, and a

symmetric IP-set Γ ⊆ Zd, such that 〈Uαf̃ , Uβ f̃〉 = 0 for all distinct α, β ∈ Γ.

Our main goal in this paper is to make a step in a non-commutative direction and

establish an extension of Theorem 2 to unitary actions of finitely generated nilpotent

groups. The standing assumption throughout this paper will be that the Hilbert spaces

we deal with are complex. (We remark in passing that similar results can be established

for real Hilbert spaces as well.) To formulate our main result we need to introduce some

definitions. Let G be a finitely generated nilpotent group. A sequence of finite sets {Φk}
∞
k=1

in G is called a (right) Følner sequence if for any g ∈ G one has lim
k→∞

|Φkg△Φk|

|Φk|
= 0. It

is well known that any countable amenable, in particular, nilpotent group has a Følner

sequence. A unitary action {Ug}g∈G of an amenable group G is called weakly mixing if for

any f, g ∈ H and any ε > 0, the set S =
{

g ∈ G
∣

∣ |〈Ugf1, f2〉| < ε
}

has density one with

respect to some Følner sequence {Φk}
∞
k=1, that is, d{Φk} = lim

k→∞

|S ∩ Φk|

|Φk|
= 1. (It follows

then that S has density one with respect to any Følner sequence in G.)

When dealing with noncommutative groups, one has at his disposal a few possibilities

for defining an IP-set. Aiming at stronger results (and being lucky to be working with

nilpotent groups which are, so to say, close enough to abelian ones) we make the following

definition:

Definition. Given a subset B ⊆ G and c ∈ N, the symmetric FPc-set generated by B,

FPc(B
±), is the set of elements in G which are representable as finite products with entries

from B ∪B−1 so that every element b ∈ B participates in the product ≤ c times (counting
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the appearances of b−1 as well). Formally,

FPc(B
±) = {e} ∪

{

bǫ11 . . . bǫk

k

∣

∣ k ∈ N, b1, . . . , bk ∈ B, ǫ1, . . . , ǫk ∈ {1,−1},

and for any b ∈ B, #
{

i ∈ {1, . . . , k}
∣

∣ bi = b
}

≤ c
}

.

Here is the formulation of our main result:

Theorem 3. Let G be a finitely generated nilpotent group, and let the rank of the (finitely

generated abelian) group G/[G,G] equal d. Let U , g 7→ Ug, g ∈ G, be a unitary weakly

mixing action of G on a Hilbert space H. Then for any f ∈ H, ε > 0 and c ∈ N there exist

f̃ ∈ H with ‖f − f̃‖ < ε and an infinite subset B in G such that

(A) every d elements of B generate a subgroup of finite index in G;

(B) 〈Uαf̃ , Uβ f̃〉 = 0 for all α, β ∈ FPc(B
±) with α−1β 6∈ [G,G].

Remark. The restriction α−1β 6∈ [G,G] in (B) is necessary, as the following simple example

shows. Let G be the group generated by elements a, b, c satisfying [a, b] = c, [a, c] = [b, c] =

1G. (G is isomorphic to the group of upper triangular 3×3 Z-matrices with unit diagonal.)

Let {. . . , f−1, f0, f1, . . .} be an orthonormal basis in a Hilbert space H, and let λ ∈ C,

|λ| = 1. Define an action {Ug}g∈G of G on H by Uc = λ IdH, Uafj = λjfj , Ubfj = fj+1,

j ∈ Z. It is easy to check that this action is weakly mixing, and is faithful if λ is not a root

of unity. The commutator subgroup [G,G] is generated by c and so, for any γ ∈ [G,G]

one has Uγ = λl IdH, l = l(γ) ∈ Z. Hence, for any α, β ∈ G with α−1β ∈ [G,G] and for

any f̃ we have Uαf̃ = λlUβ f̃ , l = l(α−1β). But if B ⊆ G has at least two noncommuting

elements, then the set FPc(B) contains α, β satisfying α−1β ∈ [G,G] \ {e}. Indeed, if

g1, g2 ∈ B and g1g2 6= g2g1, let α = g2g1 and β = g1g2; then α−1β = [g1, g2] 6= e.

Similarly to the proof of Theorem 2 in [BKM1], Theorem 3 is proved by an application

of a fixed point argument. However the noncommutativity of the acting group G and the

fact that we are aiming at wandering along FPc-sets complicate things, and necessitate

the use of structure theorems on unitary actions of finitely generated nilpotent groups.

These structure theorems and some additional auxiliary material are reviewed in Section 1.

Section 2 is devoted to the proof of Theorem 3.

1. Some background information

From now on, G will stand for a finitely generated nilpotent group; we will denote the

neutral element of G by e.

Given a mapping ϕ:G −→ G and h ∈ G, let ϕh:G −→ G, ϕh(g) = ϕ(g)−1ϕ(gh).

We call ϕ polynomial if there is r ∈ N such that for any h1, . . . , hr ∈ G, the mapping
(

. . . (ϕh1
)h2

. . .
)

hr
is constant. In particular, any self-homomorphism of G is a polynomial

mapping: if ϕ:G −→ G is a homomorphism and h ∈ G, then ϕh(g) ≡ ϕ(h) for all g ∈ G.

Theorem 4. ([L3], Theorem 5.4) Polynomial mappings G −→ G form a group under the

element-wise multiplication.
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Corollary 5. Let g1, . . . , gn ∈ G and k1, . . . , kn−1 ∈ Z. The mapping ϕ:G −→ G,

ϕ(g) = g1g
k1g2g

k2 . . . gn−1g
kn−1gn is polynomial.

A subgroup H of G is said to be closed if for every g ∈ G \H, gn 6∈ H for all n 6= 0.

We will need the following fact:

Lemma 6. If H is a subgroup of G, G contains a subgroup G′ of finite index such that

H ∩G′ is a closed subgroup of G′.

For a proof, see, for example, [BL1] Proposition 1.17 and [L1] Proposition 2.10.

We will make use of the following theorem, which describes the way the Hilbert space

splits under a unitary action of a finitely-generated nilpotent group.

Theorem 7. ([L2]) Let U , g 7→ Ug, be a unitary action of G on a Hilbert space H. Then

there is a decomposition of H, H =
⊕

s∈S Ls into a direct sum of pairwise orthogonal

subspaces so that elements of G permute these subspaces: for g ∈ G, s ∈ S one has

Ug(Ls) = Lt, t ∈ S, and if g, s satisfy Ug(Ls) = Ls, then Ug is either scalar or weakly

mixing on Ls.

We will call the decomposition described in Theorem 7 a primitive decomposition of H

(relative to U).

We fix a Følner sequence {Φk}k∈N of finite subsets of G and measure the density of

subsets of G with respect to this sequence. We will say that a statement is true for almost

all elements of G if the elements of G for which this statement holds form a subset of

density one with respect to {Φk}k∈N.

Let V , g 7→ Vg, g ∈ G, be a mapping from G into the group of unitary operators on

a Hilbert space H (V need not to be a homomorphism). Let L be a subspace of H. We

will say that V is scalar on L if for every g ∈ G, Vg is scalar on L: Vg|L = ag IdL, ag ∈ C.

We will say that V is weakly mixing on L if for every f1 ∈ L, f2 ∈ H and every ε > 0,
∣

∣〈Vgf1, f2〉
∣

∣ < ε for almost all g ∈ G.

Now, let ϕ:G −→ G be a polynomial mapping with ϕ(e) = e, let U be a unitary

action of G on a Hilbert space H and let H =
⊕

s∈S Ls be a primitive decomposition

of H relative to U . Let V be the composition of U and ϕ: Vg = Uϕ(g). Fix s ∈ S, let

H =
{

g ∈ G
∣

∣ Ug(Ls) = Ls

}

and let E =
{

g ∈ H
∣

∣ Ug is scalar on Ls

}

.

Theorem 8. Assume that H and E are closed in G. Then the following holds: If

ϕ(G) 6⊆ H, then for any t ∈ S, Vg(Ls) ⊥ Lt for almost all g ∈ G. If ϕ(G) ⊆ H \ E,

then V preserves Ls and is weakly mixing on Ls. If ϕ(G) ⊆ E, then V is scalar on Ls.

The third statement of this theorem is trivial, the first two statements are given by Theo-

rem 5.3 in [L3].
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2. Proof of Theorem 3

As before, let G be a finitely generated nilpotent group with neutral element e. We

may assume that both G and G/[G,G] are torsion-free. This follows from the fact that if

Theorem 3 holds for a nilpotent group Ĝ such that G is a homomorphic image of Ĝ and

rank
(

Ĝ/[Ĝ, Ĝ]
)

= rank(G/[G,G]), then Theorem 3 also holds for G. To see that such a

nilpotent group Ĝ exists, one argues as follows. Assume that G/[G,G] is generated by

h1[G,G], . . . , hd[G,G]. Then h1, . . . , hd generate G. (This is so since, as it is easy to see,

the commutators [hi, hj ] generate [G,G] modulo
[

[G,G], G
]

, the commutators
[

[hi, hj ], hl

]

generate
[

[G,G], G
]

modulo
[

[[G,G], G], G
]

, and so on, and for a nilpotent G this process

is finite.) Consider the free group G̃ generated by h1, . . . , hd, and let G̃ = G̃1 ⊃ G̃2 ⊃ . . .

be its lower central series: G̃i+1 = [G̃i, G̃]. Assume that G has nilpotency class q; then G is

a factor of the group Ĝ = G̃/G̃q+1, the “free nilpotent group of class q with d generators”;

Ĝ has no torsion and Ĝ/[Ĝ, Ĝ] ≃ Zd.

Let H =
⊕

s∈S Ls be the primitive decomposition of H relative to U . Let f ∈ H,

f 6= 0. Without loss of generality we may assume that

f = r1f1 + . . .+ rmfm, (1)

where r1, . . . , rm ∈ R, f1 ∈ Ls1
, . . . , fm ∈ Lsm

satisfy ‖f1‖ = . . . = ‖fm‖ = 1, and

s1, . . . , sm are distinct elements of S. For each i = 1, . . . ,m let Hi =
{

Ug ∈ G
∣

∣ Ug(Lsi
) =

Lsi

}

, Ei =
{

g ∈ H
∣

∣ Ug is scalar on Lsi

}

and Ki = Ei ∩ [G,G]. Notice that Ki is in the

center of Hi.

By Lemma 6, for each i = 1, . . . ,m, G contains a subgroup Gi of finite index such

that Hi ∩Gi and Ei ∩Gi are closed in Gi. Let us replace G by
⋂m

i=1Gi; after this, we may

assume that, for every i = 1, . . . ,m, Hi and Ei are closed subgroups of G.

We will prove Theorem 3 in two steps. First, we will show how to find a sequence

B = {g1, g2, . . .} satisfying the condition (A) of the theorem and such that for any λ ∈

FP2c(B
±)\ [G,G] (and even for any λ ∈ FP6c(B

±)\ [G,G]) Uλf is “almost” orthogonal to

f (that is,
∣

∣〈Uλf, f〉
∣

∣ is small enough). Then we will slightly change f in order to make Uλf

to be strictly orthogonal to f for all λ ∈ FP2c(B
±) \ [G,G]. This will imply Uαf ⊥ Uβf

for all α, β ∈ FPc(B
±) with α−1β 6∈ [G,G].

Let us introduce some notation. Let F = F (z1, z2, . . .) be the free group generated by

the symbols z1, z2, . . .. For a reduced word w ∈ F let the weight of w be the maximal n

for which zn appears in w. Given c ∈ N, we will denote by Fc the subset of F consisting

of the reduced words in which each of z1, z2, . . . appears not more than c times.

For w ∈ F , we denote by degzn
w the total degree of zn ∈ w (for example, degz2

(z−2
1 z3

2

z4
3z

−8
2 z6

1) = −5). Let w ∈ F have weight n. We will say that w is degenerate if degzn
w = 0.

We will denote by w0 the element of F which is obtained from w by erasing all entries of

zn (as well as those of z−1
n ). Notice that w is degenerate if and only if w ≡ w0 mod[F, F ].

Given a sequence B = {g1, g2, . . .} of elements of G and w ∈ F , we will denote by
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w(B) the element of G which is obtained from w by replacing each zi by the corresponding

gi. Clearly,
{

w(B)
∣

∣ w ∈ Fc

}

= FPc(B
±).

Lemma 9. Let w be an element of F of weight n+1, let g1, . . . , gn ∈ G, and let the mapping

ϕ:G −→ G be defined by the formula ϕ(g) = w(g1, . . . , gn, g). If w is nondegenerate, then

ϕ(G) is not contained in any subgroup of infinite index in G.

Proof. This follows from the fact that the set ϕ(G) is syndetic in G: there are finitely

many elements h1, . . . , hk ∈ G such that
⋃k

l=1 hlϕ(G) = G. Furthermore, we will show that

for any nonzero m ∈ Z there are h1, . . . , hk ∈ G such that for any r, s ∈ N with s ≤ r, any

v ∈ F of weight r with degzs
v = m, and any g1, . . . , gs−1, gs+1, . . . , gr ∈ G, for the mapping

ψ:G −→ G given by ψ(g) = v(g1, . . . , gs−1, g, gs+1, . . . , gr) one has G =
⋃k

l=1 hlψ(G). We

will use induction on the nilpotency level of G; let H = G/[G,G] and let h′1, . . . , h
′
k ∈ H

satisfy our statement for the group H and given m. H is a finitely generated abelian

group, thus H/Hm is finite; let h′′1 , . . . , h
′′
l ∈ G be representatives of the cosets of Hm

in H. The mapping ψ satisfies ψ(g) ≡ gmv(g1, . . . , gs−1,1G, gs+1, . . . , gr) mod(H). Thus,

for any p ∈ G there are g ∈ G and i ≤ l such that q = p(h′′i ψ(g))−1 ∈ H. Consider the

mapping η:H −→ H, η(h) = h′′i ψ(gh)ψ(g)−1(h′′i )−1. By induction hypothesis, there are

h ∈ H and j ≤ k such that q = h′jη(h). We then have p = q(h′′i ψ(g)) = h′jh
′′
i ψ(gh), and,

hence, every p ∈ G is representable as p = h′jh
′′
i ψ(g), 1 ≤ j ≤ k, 1 ≤ i ≤ l.

The first part of the proof of Theorem 3 is given by the following lemma, whose

formulation and proof utilize the notation introduced above.

Lemma 10. For any b ∈ N and any mapping δ:Fb −→ R+, w 7→ δw > 0, there is an

infinite sequence B = {g1, g2, . . .} satisfying condition (A) of Theorem 3 and such that for

every w ∈ Fb and γ = w(B), one has

UγLsi
⊥ Lsj

for all i, j = 1, . . . ,m, i 6= j,

and, for every i = 1, . . . ,m,

(∗) if Hi 6= G, then UγLsi
⊥ Lsi

for all γ 6∈ [G,G];

(∗∗) if Hi = G, then
∣

∣〈Uγfi, fi〉
∣

∣ < δw for all γ 6∈ Ki.

Proof. We will construct B inductively: assuming that g1, g2, . . . gn ∈ B have been already

chosen, we will show that, to satisfy the conclusion of the lemma, gn+1 can be taken from

an intersection of finitely many subsets of density one in G. (When choosing g1 we start

with the empty B.)

First of all, by our assumption, G/[G,G] ≃ Zd. If the images of g1, . . . , gn, gn+1 in the

vector space (G/[G,G])⊗Z Q ≃ Qd (that is, when G/[G,G] is considered as the sublattice

Zd in Qd) are in general position (that is, any d of these elements span Qd), then any d

elements of g1, . . . , gn, gn+1 generate a subgroup of finite index in G/[G,G] and so, in G

itself (see [BL1] Lemma 1.10). Thus, assuming that g1, . . . , gn are in general position, in
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order to satisfy condition (A) of Theorem 3 we have to choose gn+1 so that it will be in

the general position with respect to g1, . . . , gn, that is, from a subset of density one in G.

Let w ∈ Fb have weight n + 1. Then ϕ(g) = w0(g1, . . . , gn)−1w(g1, . . . , gn, g) defines

a polynomial mapping ϕ:G −→ G. Define Vg = Uϕ(g). Fix i, 1 ≤ i ≤ m. Consider two

cases:

(∗) Hi 6= G.

(a) If ϕ(G) 6⊆ Hi, then, since Hi is closed in G, by Theorem 8, for any t ∈ S one has

Vg(Lsi
) ⊥ Lt for almost all g ∈ G. This implies that for all j = 1, . . . ,m, Uw(g1,...,gn,g)(Lsi

)⊥

Lsj
for almost all g ∈ G.

(b) If ϕ(G) ⊆ Hi, we have w(g1, . . . , gn, g) ≡ w0(g1, . . . , gn) modHi for all g ∈ G and so,

Uw(g1,...,gn,g)(Lsi
) = Uw0(g1,...,gn)(Lsi

). Now, since Hi is closed in G, the index of Hi in

G is infinite. It follows from Lemma 9 that Uϕ(G) 6⊆ Hi for nondegenerate w. Thus, w

is degenerate and we also have w ≡ w0 mod[F, F ]. It follows by induction on n that for

w 6∈ [F, F ] we have Uw(g1,...,gn,g)(Lsi
) ⊥ Lsj

, j = 1, . . . ,m, for almost all g ∈ G. In the

case w ∈ [F, F ], we have γ = w(g1, . . . , gn+1) ∈ [G,G] for any choice of gn+1 ∈ G.

(∗∗) Hi = G. Then Ei and, so, Ki are normal in G. Since U is weakly mixing, Ei 6= G.

(a) Let ϕ(G) ⊆ Hi \ Ei. Then Vg(Lsi
) = Lsi

for all g ∈ G, and V is weakly mixing on

Lsi
. By induction on n, Uw(g1,...,gn,g)(Lsi

) = Uw0(g1,...,gn)(Lsi
) ⊥ Lsj

for all j 6= i and all

g ∈ G.

If also Uw0(g1,...,gn)(Lsi
) 6= Lsi

, then Uw(g1,...,gn,g)fi ⊥ fi. Otherwise, by Theorem 8,

for every h ∈ Lsi
one has

∣

∣〈Vgfi, h〉
∣

∣ < δw for almost all g ∈ G. Applying this to h =

Uw0(g1,...,gn)−1fi, we obtain
∣

∣〈Uw(g1,...,gn,g)fi, fi〉
∣

∣ < δw for almost all g ∈ G. Clearly,

w(g1, . . . , gn, g) 6∈ Ei for such g.

(b) Now, let ϕ(G) ⊆ Ei. Then, again, Lsi
is VG-invariant and so, Uw(g1,...,gn,g)(Lsi

) ⊥

Lsj
for all j 6= i and all g ∈ G. V is scalar on Lsi

, and hence, Uw(g1,...,gn,g)fi =

aUw0(g1,...,gn)ϕ(g)fi, a = a(g) ∈ C, |a| = 1.

The inclusion ϕ(G) ⊆ Ei implies w(g1, . . . , gn, g) ≡ w0(g1, . . . , gn) modEi for all g ∈

G. Since Ei has infinite index in G, by Lemma 9, ϕ(G) ⊆ Ei is possible only for degenerate

w, which implies w ≡ w0 mod[F, F ] and w(g1, . . . , gn, g) ≡ w0(g1, . . . , gn) modKi for all

g ∈ G. By induction on n,
∣

∣〈Uw0(g1,...,gn)fi, fi〉
∣

∣ < δw, except for the case w0(g1, . . . , gn) ∈

Ki. In this last case, w(g1, . . . , gn, g) ∈ Ki for all g ∈ G.

In either case, elements g of G which may serve as gn+1 for the fixed w can be chosen

from an intersection of finitely many sets of density one in G, which has density one itself.

Since Fb contains finitely many elements of weight n+ 1, gn+1 can be taken from a set of

density one.

We pass now to the second part of the proof, which is quite analogous to the proof of

the abelian case given in [BKM1]. Fix ε > 0 and put ε′ = min
{

ε
‖f‖ , 1

}

. Choose positive

numbers δw, w ∈ F6c, satisfying
∑

w∈F6c
δw < ε′

8 . Using Lemma 10 find an infinite sequence

7



B = {g1, g2, . . .} satisfying condition (A) of Theorem 3 and such that for every w ∈ F6c

and γ = w(B) one has UγLsi
⊥ Lsj

for all i, j = 1, . . . ,m, i 6= j, and for each i = 1, . . . ,m

either (∗) or (∗∗) of Lemma 10 holds.

Given a set Γ ⊆ G, we define Γk =
{

g1 . . . gk

∣

∣ g1, . . . , gk ∈ Γ
}

, k ∈ N, and Γ−1 =
{

g−1
∣

∣ g ∈ Γ
}

. Let Γ = FPc(B
±); then Γ−1 = Γ, and Γk ⊆ FPkc(B

±) =
{

w(B)
∣

∣ w ∈ Fkc

}

for any k ∈ N. Notice that, for every i = 1, . . . ,m,

∑

γ∈Γ6\Ki

∣

∣〈Uγfi, fi〉
∣

∣ <
ε′

8
. (2)

Fix i, 1 ≤ i ≤ m. We will look for f̃i in the form

f̃i = fi +
∑

ξ∈Γ2

xξUξfi (3)

with xξ ∈ C small enough, in order to have

Uλf̃i ⊥ f̃i for all λ ∈ Γ2 \ [G,G]. (4)

This will imply

〈Uαf̃i, Uβ f̃i〉 = 〈f̃i, Uα−1β f̃i〉 = 0

for all α, β ∈ Γ with α−1β 6∈ [G,G]. After we will have found f̃i for all i = 1, . . . ,m, we

will put f̃ = r1f̃1 + . . .+ rmf̃m (where r1, . . . , rm are as in (1)). Since for any α, β ∈ Γ and

ξ, η ∈ Γ2 one has ξ−1α−1βη ∈ FP6c(B
±), we will have

〈UαUξfi, UβUηfj〉 = 〈fi, Uξ−1α−1βηfj〉 = 0

for all 1 ≤ i, j ≤ m, i 6= j. This implies Uαf̃i ⊥ Uβ f̃j for all α, β ∈ Γ and all 1 ≤ i, j ≤ m,

i 6= j. Summarizing, we will have 〈Uαf̃ , Uβ f̃〉 = 0 for all α, β ∈ Γ with α−1β 6∈ [G,G].

Our goal is to find f̃i ∈ Lsi
in the form (3) to get (4). If i is such that (∗) of Lemma 10

takes place, then (4) is already satisfied for f̃i = fi. Thus, let us assume that (∗∗) takes

place for the fixed i. The subspace Lsi
is then UG-invariant, the subgroup Ki is normal in

G, and its action on Lsi
is scalar: for γ ∈ Ki, Uγ |Lsi

= aγ IdLsi
with aγ ∈ C, |aγ | = 1. The

set Γ2 is partitioned into equivalence classes modulo Ki; choose a set D of representatives

of these classes, assuming that λ ∈ D implies λ−1 ∈ D. As the representative for the

class Γ2 ∩ Ki we take e, and put D′ = D \ {e}. Now, since λ1 ≡ λ2 modKi implies

Uλ1
f̃i = aλ

−1

2
λ2
Uλ2

f̃i, and since Ki ⊆ [G,G], to obtain (4) it suffices to have

Uλf̃i ⊥ f̃i for all λ ∈ D′. (5)

We will look for f̃i in the form

f̃i = fi +
∑

ξ∈D

xξUξfi, (6)
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with xξ ∈ C, ξ ∈ D, satisfying

xξ−1 = xξ, ξ ∈ D, (7)

and
∑

ξ∈D

|xξ| < ε′. (8)

It will follow from (8) that ‖f̃i − fi‖ < ε′, which implies

‖f̃ − f‖ =
∥

∥

∥

m
∑

i=1

rif̃i −
m

∑

i=1

rifi

∥

∥

∥
< ε′

√

√

√

√

m
∑

i=1

r2i = ε′‖f‖ ≤ ε.

We will also require that

‖f̃i‖ = 1. (9)

For γ ∈ G we denote bγ = 〈fi, Uγfi〉. Then

bγ = aγ for γ ∈ Ki (10)

and, by (2),
∑

γ∈Γ6\Ki

|bγ | <
ε′

8
. (11)

For λ ∈ Γ2 we have

〈f̃i, Uλf̃i〉=
〈

fi +
∑

ξ∈D

xξUξfi, Uλfi + Uλ

(

∑

η∈D

xηUηfi

)〉

= bλ +
∑

ξ∈D

xξbξ−1λ +
∑

ξ∈D

xηbλη +
∑

ξ,η∈D

xξxηbξ−1λη

= bγ +
∑

ξ∈D

xξ(bξ−1γ + bγξ−1) +
∑

ξ,η∈D

xξxηbξ−1γη.

Let b′λ =

{

−1
2bλ, if λ 6= e

0, if λ = e.
Then the equalities 〈f̃i, Uλf̃i〉 = 0 for all λ ∈ D′ are equivalent

to the following system of equations for unknowns {xξ}ξ∈D:

1

2

∑

ξ∈D

xξ(bξ−1λ + bλξ−1) +
1

2

∑

ξ,η∈D

xξxηbξ−1λη = b′λ, λ ∈ D. (12)

(Condition (9) corresponds to the case λ = e in (12).) The problem of solving the system

(12) can be interpreted as a fixed-point problem. Namely, we consider the space

l′symm(D) =
{

x = (xξ)ξ∈D

∣

∣ xξ−1 = xξ, ‖x‖ :=
∑

ξ∈D |xξ| <∞
}

9



of conjugate-symmetric summable functions on D. In this space we define a (nonlinear)

mapping Φ by setting, for any x ∈ l′symm(D), Φ(x) = y = (yλ)λ∈D with

yλ = b′λ −
1

2

∑

ξ∈D\{λ}

(bξ−1λ + bλξ−1)xξ −
1

2

∑

ξ,η∈D

bξ−1ληxξxη. (13)

And if a point x = (xξ) ∈ l′symm(D) is a fixed-point of Φ, Φ(x) = x, then (xξ) is a solution

of the system (12), and so, the vector f̃ ∈ H defined by (6) satisfies Theorem 3.

The existence of a fixed point x ∈ l′symm(E) will be proved (cf. [BKM1]) by a contrac-

tion mapping argument. Namely, one shows that

(i) the space l′symm(D) is invariant under Φ;

(ii) if ε′

2 ≤ ρ ≤ ε′, the ball Bρ =
{

x ∈ l′symm(E)
∣

∣ ‖x‖ ≤ ρ
}

is invariant under Φ;

(iii) if ρ < (1 − ε′

8 )(1 + ε′

8 )−1, then Φ is contractive in Bρ; more precisely,

∥

∥Φ(x) − Φ(x′)
∥

∥ ≤ θ‖x− x′‖, x, x′ ∈ Bρ,

where θ = ρ(1 + ε′

8 ) + ε′

8 < 1.

In order to prove (i) let us estimate ‖Φ(x)‖. By (13) we have

‖Φ(x)‖ =
∑

λ∈D

|yλ| ≤ ‖Σ0‖ + ‖Σ1‖ + ‖Σ2‖, (14)

where Σ0, Σ1 and Σ2 are, respectively, the constant, the linear and the quadratic parts of

Φ. We have, by (11) and the inclusion D′ ⊆ Γ2 \Ki,

‖Σ0‖ ≤
1

2

∑

λ∈D′

|bλ| ≤
ε′

16
,

‖Σ1‖ =
1

2

∑

λ∈D

∣

∣

∣

∑

ξ∈D
ξ 6=λ

(bξ−1λ + bλξ−1)xξ

∣

∣

∣
≤

1

2

∑

ξ∈D

|xξ|
∑

λ∈D
λ6=ξ

(

|bξ−1λ| + |bλξ−1 |
)

≤
∑

ξ∈D

|xξ|
∑

λ∈Γ2\Ki

|bλ| ≤
ε′

8
‖x‖

and, since ξ−1λη ∈ Ki may happen only for λ = λη−1ξ ∈ D which represents the coset

η−1ξKi, by (10) and (11),

‖Σ2‖ =
1

2

∑

λ∈D

∣

∣

∣

∑

ξ,η∈D

bξ−1ληxξxη

∣

∣

∣
≤

1

2

∑

ξ,η∈D

|xξ||xη|
(

|aξ−1λ
η−1ξ

η| +
∑

λ∈D
λ6=λ

η−1ξ

|bξ−1λη|
)

≤
1

2

∑

ξ,η∈D

|xξ||xη|
(

1 +
∑

γ∈Γ6\Ki

|bξ−1λη|
)

≤
1

2

(

1 +
ε′

8

)

‖x‖2.
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Therefore,

‖Φ(x)‖ ≤
ε′

16
+
ε′

8
‖x‖ +

1

2

(

1 +
ε′

8

)

‖x‖2 <∞ for x ∈ l′symm(D).

Furthermore,

yλ−1= b′λ−1 −
1

2

∑

ξ∈D\{λ−1}

(bξ−1λ−1 + bλ−1ξ−1)xξ −
1

2

∑

ξ,η∈D

bξ−1λ−1ηxξxη

= b′λ −
1

2

∑

ξ∈D\{λ}

(bξλ−1 + bλ−1ξ)xξ−1 −
1

2

∑

ξ,η∈D

bη−1λξxξxη

= b′λ −
1

2

∑

ξ∈D\{λ}

(bλξ−1 + bξ−1λ)xξ −
1

2

∑

η,ξ∈D

bη−1λξxηxξ = yλ,

that is, y = Φ(x) is conjugate-symmetric for x ∈ l′symm(D), and so, y ∈ l′symm(D). This

proves (i).

If x ∈ Bρ, that is, ‖x‖ ≤ ρ, then for any ε′

2 ≤ ρ ≤ 1 (and under the assumption ε′ ≤ 1)

one has

‖Φ(x)‖ ≤
ε′

16
+
ε′

8
ρ+

1

2

(

1 +
ε′

8

)

ρ2 ≤
( 2

16
+
ε′

8
+

1

2
+
ε′

16

)

ρ < ρ.

This proves (ii).

To prove (iii) take x = (xξ), x
′ = (x′ξ) in Bρ and let q = ‖x− x′‖. Similarly to (14),

‖Φ(x) − Φ(x′)‖ ≤ ‖σ1‖ + ‖σ2‖,

where σ1 and σ2 correspond, respectively, to the linear and the quadratic terms. We have

‖σ1‖ =
1

2

∑

λ∈D

∣

∣

∣

∑

ξ∈D
ξ 6=λ

(bξ−1λ + bλξ−1)(xξ − x′ξ)
∣

∣

∣
≤

∑

ξ∈D

|xξ − x′ξ|
∑

λ∈Γ2\Ki

|bλ| ≤
ε′

8
q

and

‖Σ2‖=
1

2

∑

λ∈D

∣

∣

∣

∑

ξ,η∈D

bξ−1λη(xξxη − x′ξx
′
η)

∣

∣

∣

≤
1

2

∑

ξ,η∈D

|xξxη − xξx′η| + |xξx′η − x′ξx
′
η|

(

1 +
∑

γ∈Γ6\Ki

|bξ−1λη|
)

≤
1

2

(

∑

ξ,η∈D

|xξ||xη − x′η| +
1

2

∑

ξ,η∈D

|xξ||xη − x′η|
)(

1 +
ε′

8

)

≤ ρ
(

1 +
ε′

8

)

q.

Finally,
∥

∥Φ(x) − Φ(x′)
∥

∥ ≤
ε′

8
q + ρ

(

1 +
ε′

8

)

q = θq.

Now, since for 0 < ε′ ≤ 1 one has (1 − ε′

8 )
(

ε′(1 + ε′

8 )
)−1

≥ 7
9 , any ρ ∈

(

ε′

2 ,
7ε′

9

)

fits

both (ii) and (iii). And for such ρ, by the Contractive Mapping Theorem, Φ has a (unique)

fixed point in Bρ. This proves Theorem 3.
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