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Abstract

We show that for any finitely generated solvable group of expo-
nential growth one can find a measure preserving action for which the
multiple recurrence theorem fails, and a measure preserving action for
which the ergodic Roth theorem fails. This contrasts the positive re-
sults established in [L] and [BL] for nilpotent group actions.

1. Introduction.

Let T and S be invertible measure preserving transformations of a probability measure
space (X,B, µ). The following two facts were recently established in [L] and [BL]:
(a) (multiple recurrence) if T and S generate a nilpotent group then for any A ∈ B with
µ(A) > 0 there exists n ∈ N such that µ(A ∩ TnA ∩ SnA) > 0;
(b) (convergence) if T and S generate a nilpotent group then for any f, g ∈ L∞(X,B, µ),

lim
r−l→∞

1
r−l

r−1
∑

n=l

f(Tnx)g(Snx) exists in L2-norm.

(For S = T 2, (b) reduces to Furstenberg’s ergodic Roth theorem ([F1],[F2]), while the
statement (a), via Furstenberg’s correspondence principle ([F2]), implies the combinatorial
Roth theorem, namely the fact that any set E ⊆ N having positive upper density d(E) =

lim sup
r→∞

|E∩{1,...,r}|
r contains arithmetic progressions of length 3.) These nilpotent results

naturally lead to the following question: do the statements (a) and (b) remain true if the
group generated by T and S is not virtually nilpotent? (A group is virtually nilpotent if it
has a nilpotent subgroup of finite index.) In [BL] we brought some examples showing that
(a) and (b) may fail if T and S generate a solvable group. (An example of similar nature
pertaining to non-recurrence in topological setup appears already in Furstenberg’s book,
[F2] p. 40. See also [Be], page 283, for an example involving a non-solvable group.)
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The counterexamples mentioned above exhibit, actually, a stronger negative behavior.
Namely, in these examples even the averages 1

r

∑r−1
n=0

∫

f(Tnx)g(Snx) dµ were shown to
be divergent. Also, it was shown that it may happen that for a set A ∈ B with µ(A) > 0,
µ(TnA ∩ SnA) = 0 for all n > 0. Motivated by these examples, we conjectured that any
non-virtually nilpotent solvable group has a representation by measure preserving trans-
formations which furnish counterexamples to (a) and (b). Note that a finitely generated
solvable group has exponential growth if and only if it is not virtually nilpotent (see, for
example, [R]). The goal of this paper is to affirm the conjectures made in [BL] by showing
that for solvable groups of exponential growth the Roth-type theorems fail in a strong way:

Theorem. Let G be a finitely generated solvable group of exponential growth.
(A) (non-recurrence) There exist a measure preserving action T of G on a finite measure
space (X,B, µ), elements a1, a2 ∈ G and a set A ∈ B with µ(A) > 0 such that

T (an1 )A ∩ T (an2 )A = ∅

for all n 6= 0.
(B) (non-convergence) For any sequence of intervals {[lm, rm]}∞m=1 with rm−lm → ∞ there
exist a measure preserving action T of G on a finite measure space (X,B, µ), elements
a1, a2 ∈ G and a set A ∈ B such that

lim
m→∞

1

rm − lm

rm−1
∑

n=lm

µ
(

T (an1 )A ∩ T (an2 )A
)

does not exist.

We will actually be proving the following fact, from which Theorem 1.0 clearly follows:

Theorem. Let G be a finitely generated solvable group of exponential growth. For any
partition R ∪ P = Z \ {0} there exist an action T of G on a probability measure space
(X,B, µ) and a set A ∈ B of positive measure such that T (b0)A ∩ T (bn)A = ∅ whenever
n ∈ R and µ

(

T (b0)A ∩ T (bn)A
)

≥ 1
6 for any n ∈ P .

The main ingredient in the proof of Theorem 1.0 is a purely algebraic fact (Theorem 1.0
below) which allows us to reduce the construction of a counterexample to the case where
the group G is of one of the two “standard” types. Such a reduction is possible because of
the following observation:

Lemma. Let G̃ be either a subgroup or a factor-group of a group G. For any measure
preserving action T of G̃ on a probability measure space (X,B, µ), a set A ∈ B and
elements a1, a2 ∈ G̃ there exist a measure preserving action S of G on a probability measure
space (Y,D, ν), a set B ∈ D and elements b1, b2 ∈ G such that ν

(

S(bn1 )B ∩ S(bn2 )B
)

=

µ
(

T (an1 )A ∩ T (an2 )A
)

for all n ∈ Z.
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Indeed, if G̃ is a factor-group of G and η:G −→ G̃ is the factor map, we take (Y,D, ν) =
(X,B, µ), S = T ◦η, B = A, b1 ∈ η−1(a1) and b2 ∈ η−1(a2). If G̃ is a subgroup of G,
we take S to be the action of G induced by T : we define Y =

{

ϕ:G −→ X : ϕ(ba) =

T (b)ϕ(a) for all b ∈ G̃, a ∈ G
}

and S(c):Y −→ Y by (S(c)ϕ)(a) = ϕ(ac), c, a ∈ G. Then

Y ≃ XG̃\G, and S preserves the product measure ν on Y . The projection π:Y −→ X,
π(ϕ) = ϕ(1G), turns (X,T ) into a factor of (Y, S|G̃), and we take B = π−1(A), b1 = a1
and b2 = a2.

We are therefore free to replace our group G by its subgroup or a factor-group. Given
a solvable group of exponential growth, we will extract from it a sub-factor-group (that
is, a subgroup of a factor group) of a very special form which still has exponential growth
and for which we will be able to establish Theorem 1.0. Let H be an abelian group and
let a be an automorphism of H. We will denote by a[H] the extension of H by a: a[H]
is the group generated by H and an additional element a such that a−1ba = ab, b ∈ H.
(The group a[H] can be seen as the set

{

akb : k ∈ Z, b ∈ H
}

with the product defined
by (akb)(alc) = ak+l(alb)c.) G = a[H] is a 2-step solvable group: H is a normal subgroup
of G and G/H is the cyclic group generated by aH. Here are the descripitions of the two
types of groups, obtainable in this way, that will be utilized in the proof of Theorem 1.0:

Type 1: lamplighter group. Let p be a prime integer and let H be the direct sum of
countably many copies of Zp = Z/(pZ), indexed by Z: H =

⊕

Z Zp. Let . . . , b−1, b0, b1, . . .
be the natural basis of H, let b = b0, and let a be the coordinate shift on H: abn = bn+1,
n ∈ Z. Define G = a[H]; it is a solvable group of exponential growth.

Type 2: group of affine transformations. Let V be a finite dimensional Q-vector
space, let b ∈ V and let a be an invertible linear transformation of V for which b is cyclic:
SpanQ{a

nb : n ∈ Z} = V . Let G be the group of affine transformations of V generated by
a and the translation by b. In this case G = a[H], where H is the group generated by the
vectors anb, n ∈ Z. G is nilpotent iff the transformation a is unipotent: (a − IdV )

m = 0
for some m ∈ N, and G is virtually nilpotent iff ad is unipotent for some d ∈ N. We will
say that the automorphism a is almost unipotent on H if ad is unipotent on H for some
d ∈ N. We will say that G is of type 2 if a is not almost unipotent on H and so, G is a
solvable group of exponential growth.

Theorem. Let G be a finitely generated solvable group of exponential growth. Then G
has a sub-factor-group of either type 1 or of type 2.

Theorem 1.0 is proved in the next section; Section 3 is devoted to the proof of Theo-
rem 1.0.

2. Proof of Theorem 1.0.

We first introduce some notation. Let G be a group. The subgroup of G generated
by (the union of) subsets S1, . . . , Sk ⊆ G will be denoted by 〈S1, . . . , Sk〉. For a, b ∈ G
let [b, a] = b−1a−1ba and [b, a]m =

[

[b, a]m−1, a
]

for m = 2, 3, . . . We will say that a ∈ G
is Engel with respect to b ∈ G if there exists m ∈ N such that [b, a]m = 1G, and that a is
Engel with respect to S ⊆ G if a is Engel with respect to each b ∈ S. When a is Engel with
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respect to G it is said to be an Engel element of G.

Theorem. (See, for example, [Sch]VI.8.g) The Engel elements of a solvable group G form
the maximal locally nilpotent normal subgroup of G, the Hirsch-Plotkin radical of G.

(A group is locally nilpotent if all of its finitely generated subgroups are nilpotent.)

We will say that a ∈ G is almost Engel with respect to b ∈ G if there exists d ∈ N such
that ad is Engel with respect to b, and that a is almost Engel with respect to S ⊆ G if a is
almost Engel with respect to each b ∈ S.

Let F be a normal subgroup of G. We will not distinguish between an element a ∈ G
and the coset aF ∈ G/F . We will say that a is (almost) Engel with respect to b ∈ G
modulo F if a is (almost) Engel with respect to b in G/F , that is, if there exists m ∈ N

such that [b, a]m ∈ F (respectively, [b, ad]m ∈ F for some d ∈ N). Let G have solvability
class r and let G1, . . . , Gr be the commutator subgroups of G: G1 = G and Gi+1 = [Gi, Gi]
for i = 1, 2, . . . , r, with Gr+1 = {1G}. We will prove the following:

Proposition. Let G be a finitely generated solvable group of class r such that for any
a ∈ G and any i ≤ r, a is almost Engel with respect to Gi modulo Gi+1. Then G is
virtually nilpotent.

In Lemmas 2.0–2.0 below we keep the assumptions of Proposition 2.0, namely that
for any i = 1, . . . , r, any a ∈ G is almost Engel with respect to any b ∈ Gi \Gi+1 modulo
Gi+1. For each a ∈ G and b ∈ Gi \Gi+1 we may therefore fix d(a, b),m(a, b) ∈ N such that
[

b, ad(a,b)
]

m(a,b)
∈ Gi+1.

Lemma. If a ∈ G is Engel with respect to b ∈ G, then ak is Engel with respect to b for
every k ∈ Z.

Proof. a is Engel with respect to the solvable group H = 〈a, b〉, and by Theorem 2.0,
Engel elements of H form a group.

Lemma. Let a ∈ G, let S be a finite subset of G and let H = 〈a, S〉. There exists a finite
set S′ ⊆ [H,H] such that the group H ′ = 〈S, S′〉 is normal in H.

Proof. We put R1 = R−1 = S ∪ S−1,

Ri =
{

[c, ad(a,c)]m(a,c) : c ∈ Ri−1

}

, i = 2, . . . , r + 1;

Pi =
{

[c, ad(a,c)]n : c ∈ Ri, n = 1, . . . ,m(a, c)− 1
}

, i = 1, . . . , r; ,

Si =
{

[c, ak],
[

[c, ad(a,c)]n, a
k
]

: c ∈ Ri, n = 1, . . . ,m(a, c)− 1, k = 1, . . . , d(a, c)− 1
}

,

i = 1, . . . , r;

R−i =
{

[c, a−d(a−1,c)]m(a−1,c) : c ∈ R−(i−1)

}

, i = 2, . . . , r + 1;

P−i =
{

[c, a−d(a−1,c)]n : c ∈ R−i, n = 1, . . . ,m(a−1, c)− 1
}

, i = 1, . . . , r; ,

S−i =
{

[c, a−k],
[

[c, a−d(a−1,c)]n, a
−k

]

: c ∈ R−i, n = 1, . . . ,m(a−1, c)− 1,

k = 1, . . . , d(a−1, c)− 1
}

, i = 1, . . . , r;
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and S′ =
⋃r

i=2(Ri ∪ R−i) ∪
⋃r

i=1(Si ∪ Pi ∪ S−i ∪ P−i). We have S′ ⊆ [H,H]. Also note
that, by the definition of d(a, c) and m(a, c), we have R2, R−2 ∈ G2, R3, R−3 ∈ G3, etc.
In particular, Rr+1 = R−(r+1) = {1G}.

We have to show that H ′ = 〈S, S′〉 is normal in H. Every element b of H ′ has form

b = ak0c1a
k1c2 . . . a

kr−1cra
kr ,

where c1, . . . , cr ∈ S ∪ S−1 and k0, . . . , kr ∈ Z with
∑r

i=0 ki = 0.
(2.1)

We will check that all elements of the form (2.1) are in H ′; clearly, this will imply the
normality of H. It suffices to show that for any c ∈ S ∪ S−1 = R1 and any k ∈ Z one has
cak = akh with h ∈ H ′, that is, a−kcak ∈ H ′.

Assume that k > 0; for k < 0 the proof is similar (one simply replaces a by a−1 and
Ri, Pi, Si by the corresponding R−i, P−i, S−i). We will prove by induction on k that for
any i ≤ r and any c ∈ Ri ∪ Pi one has a−kcak ∈ H ′. Let c ∈ Ri ∪ Pi; put d = d(a, c)
if c ∈ Ri and d = d(a, c′) if c ∈ Pi is obtained as [c′, ad(a,b)] with c′ ∈ Ri. If k < d, we
have a−kcak = c[c, ak] with [c, ak] ∈ Si. If k ≥ d, we have a−kcak = a−(k−d)c[c, ad]ak−d =
a−(k−d)cak−da−(k−d)[c, ad]ak−d. By induction on k, a−(k−d)cak−d ∈ H ′. Also, [c, ad] ∈ Pi

or ∈ Ri+1, and again, by induction on k, a−(k−d)[c, ad]ak−d ∈ H ′.

Let us remind that a group H is polycyclic if it possesses a finite series {1H} =
Hm+1 ⊂ Hm ⊂ . . . ⊂ H1 = H such that for each j, Hj+1 is a normal subgroup of Hj and
Hj/Hj+1 is cyclic. Among solvable groups, the polycyclic groups are characterized by the
property that any subgroup of a polycyclic group is finitely generated.

Lemma. G is polycylic.

Proof. We will prove that every finitely generated subgroup H of G (in particular, G
itself) is polycyclic. Let H ⊆ Gi and H = 〈a1, . . . , ak, S〉 with S ⊆ Gi+1, |S| < ∞. By
Lemma 2.0 there exists a finite S′ ⊆ Gi+1 such that H ′ = 〈a2, . . . , ak, S, S

′〉 is normal in
H. By the double induction on decreasing i = r, r − 1, . . . and increasing k = 1, 2, . . ., H ′

is polycyclic. Since H/H ′ is cyclic (it is generated by a1), H is also polycyclic.

Lemma. If an element a ∈ G is Engel with respect to Gi modulo Gi+1 for each i = 1, . . . , r,
then a is Engel with respect to G.

Proof. Take any b ∈ G. Since a is Engel with respect toG1 moduloG2, there existsm1 ∈ N

such that [b, a]m1
∈ G2. Since a is Engel with respect to G2 modulo G3, there existsm2 ∈ N

such that [b, a]m1+m2
= [[b, a]m1

, a]m2
∈ G3. And so on, till [b, a]m1+...+mr

= 1G.

Lemma. Let F ⊆ H be normal subgroups of G such that H/F is abelian and finitely
generated. If a ∈ G is Engel modulo F with respect to a set of generators of H/F , then a
is Engel with respect to H modulo F .

Proof. The mapping b 7→ [b, a] induces a self-homomorphism τ :H/F −→ H/F , and
τm(b) = [b, a]m modF , m ∈ N. Let b1, . . . , bs be generators of H/F , let mj , j = 1, . . . , s,
be such that [bj , a]mj

∈ F , and let m = max{m1, . . . ,ms}. Then τm(bj) = [bj , a]m = 1H/F

for all j = 1, . . . , s, and so, is trivial on H/F .
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Proof of Proposition 2.0. Since G is polycyclic by Lemma 2.0, every subgroup of G is
finitely generated. Take i ≤ r; let Gi be generated by b1, . . . , bs and let di =

∏s
j=1 d(a, bj).

By Lemma 2.0, adi is Engel modulo Gi+1 with respect to b1, . . . , bs. By Lemma 2.0, adi is
Engel with respect to Gi modulo Gi+1.

Now let d =
∏r

i=1 dn. By Lemma 2.0, ad is Engel with respect to Gi modulo Gi+1 for
every i. By Lemma 2.0, ad is Engel with respect to G.

Let E be the Hirsch-Plotkin radical of G (see Theorem 2.0 above). E is a locally
nilpotent group, and is finitely generated by Lemma 2.0; hence, E is nilpotent. We have
shown that for any a ∈ G there exists d ∈ N such that ad ∈ E, that is, all elements of G/E
have finite orders. Since G/E is polycyclic, this implies that G/E is finite. Hence, G is
virtually nilpotent.

Proof of Theorem 1.0. Let G be a finitely generated solvable group of exponential
growth. By Proposition 2.0 there exist a ∈ G, i ∈ N and b ∈ Gi such that a is not
almost Engel with respect to b modulo Gi+1. Put G̃ = 〈a, b〉/Gi+1. Clearly, the group
H =

〈

a−nban, n ∈ Z
〉

is normal in G̃, and G̃/H = 〈a〉. Since b ∈ Gi and Gi is normal in
G, H ⊆ Gi/Gi+1 and so, is abelian. The element a acts on H by conjugation, c 7→ a−1ca
for c ∈ H. Let us use additive notation for H and denote the action of a on H by a:
ac = a−1ca, c ∈ H. This turns H into a Z[a,a−1]-module; as such, H is spanned by a
single element b and so, has rank 1. Since Z[a,a−1] is a Noetherian ring, H is a Noetherian
module. In G̃, a is not almost Engel with respect to b; in additive notation this means
that (ad − IdH)mb 6= 0 for all m, d ∈ N, and so, a is not almost unipotent on H.

If H has torsion, we represent H as a tower 0 = H0 ⊂ H1 ⊂ . . . ⊂ Hk = H, where for
each i = 1, . . . , k, Ni = Hi/Hi−1 is a Z[a,a−1]-module of rank 1 and either is torsion free or
is annihilated by a prime integer p: pNi = 0. (Such a tower exists since H is Noetherian.)
If a were almost unipotent on each of N1, . . . , Nk, then a would be almost unipotent on
H. Let us replace H by one of N1, . . . , Nk on which a is not almost unipotent, and denote
by b a generator of H over Z[a,a−1]. We have two cases:

1) H is annihilated by a prime integer p: pH = 0. Then H is a Zp-vector space. Put
bn = anb, n ∈ Z. If . . . , b−1, b0, b1, . . . are linearly dependent over Zp then, since a is an
automorphism of H, H has finite dimension over Zp and so, is finite. In this case a is
almost unipotent, since some its power is identical. Hence, there is no relations between
bn, n ∈ Z, and so, H ≃ Zp[a,a

−1]. The group 〈H, a〉 = a[H] is therefore a group of type 1,
a lamplighter group.

2) H is torsion-free. Again, let bn = anb, n ∈ Z. If . . . , b−1, b0, b1, . . . are linearly inde-
pendent over Z, then H ≃ Z[a,a−1]; by factorizing H by 2H we turn it into Z2[a,a

−1],
and 〈H, a〉 = a[H] into the corresponding lamplighter group. If bn, n ∈ Z, are linearly
dependent over Z, the Q-vector space V = H ⊗ Q is finite dimensional. Since H has no
torsion, the natural mapping H −→ V is an embedding. It follows that the action of a on
V is not almost unipotent and so, the group 〈H, a〉 = a[H] is of type 2.

3. Proof of Theorem 1.0.

In light of Lemma 1.0 and Theorem 1.0, the proof of Theorem 1.0 is reduced to the
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case where G is a group of either type 1 or 2. In both cases G = a[H], where H is an
abelian group and a is an automorphism of H possessing a cyclic element b ∈ H. Denoting
the element of G corresponding to a by a, we have ac = a−1ca for any c ∈ H.

We take a1 = ad, a2 = badb−1 and for n ∈ Z put bn = adnb = a−dnbadn, with a
nonzero integer d to be specified later. Then for any measure preserving action T of G on
a measure space (X,B, µ) and a set A ∈ B one has

T (an1 )A ∩ T (an2 )A = T (an1 )
(

A ∩ T (a−n
1 an2 )A

)

= T (an1 )
(

A ∩ T (a−dnbadnb−1)A
)

= T (an1 )
(

A ∩ T (bnb
−1)A

)

= T (an1 )
(

A ∩ T (bnb
−1
0 )A

)

, n ∈ Z.

When dealing solely with H we will use the additive notation, so that bnb
−1
0 becomes

bn − b0.
Let R∪P be a partition of Z \ {0}. In view of Lemma 1.0 it is enough to construct a

measure preserving action T of H and a set A of positive measure such that

A ∩ T (bn − b0)A = ∅ for n ∈ R and µ
(

A ∩ T (bn − b0)A
)

≥ 1
6 for n ∈ P . (3.1)

We define T to be an action of H by rotations on S = R/Z, identified with [0, 1) and
equipped with the standard Lebesgue measure, and A =

[

0, 1
3

)

. Namely, let T (c)x =
x + α(c), c ∈ H, x ∈ S, where α is a homomorphism from H to S, that is, a character of
H. Denote αn = α(bn), n ∈ Z, then the condition (3.1) takes the form

|αn − α0| ≥
1
3 for n ∈ R and |αn − α0| ≤

1
6 for n ∈ P , (3.2)

where for x ∈ S we denote |x| = min{x, 1− x}.
First let G have type 1, that is, G = a[H] where H =

⊕

Z Zp with p a prime integer,
and a acts on H as the coordinate shift. We put d = 1, then {. . . , b−1, b0, b1, . . .} is the
standard basis in H over Zp. Therefore the only restriction on the choice of elements
αn ∈ S is pαn = 0, n ∈ Z. To satisfy (3.2), we put αn = 0 for n = 0 and n ∈ P , and
αn = 1

2 if p = 2, αn = p−1
2p if p ≥ 3 for n ∈ R.

Now assume that G is of type 2, that is, assume that a is a non-almost unipotent
automorphism of a finite dimensional Q-vector space V , b ∈ V is cyclic for a and H =
〈anb〉n∈Z. Let p(t) = mrt

r +mr−1t
r−1 + . . .+m0 be the minimal polynomial of ad, which

we normalize so that m0, . . . ,mr are integers, gcd(m0, . . . ,mr) = 1 and mr > 0.
We say that a sequence {αn}n∈Z in S is admissible if αn = α(bn), n ∈ Z, for some

character α of H. {αn}n∈Z is admissible if αn satisfy every relation with integer coefficients

that bn satisfy. Let k−N , . . . , kN be integers and let q(t) =
∑2N

i=0 kit
N+i. Then one has

k−Nb−N + . . .+ kNbN = k−Na−Nb+ . . .+ kNaNb = 0 iff q(ad)b = 0. Since b is cyclic for
a this implies q(ad) = 0, and thus q(t) = p(t)q1(t), where q1 has integer coefficients since
the content of p(t) is 1. It follows that {αn}n∈Z is admissible iff αn satisfy the induction
relation

mrαn+r +mr−1αn+r−1 + . . .+m0αn = 0 (3.3)

for all n ∈ Z.
We consider two cases.
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Case 1: all eigenvalues of a have modulus 1. After an appropriate choice of d ∈ N we may
assume that mr = m(d)r(d) ≥ 3. Indeed, the assumption that a is not almost unipotent
means that not all eigenvalues of a are roots of unity. The Kronecker lemma (which states:
an algebraic integer of modulus 1 whose every conjugate has modulus 1 is a root of unity)
implies that there is an eigenvalue λ of a that is not an algebraic integer. Let M be the
set of algebraic integers contained in the field Q(λ). M is a finitely generated Z-module,
and for any value of d we have m(d)r(d)λ

d ∈ M . Thus, if m(d)r(d) ≤ 2 for all d ∈ N, then

all powers λd, d ∈ N, of λ are contained in the finitely generated Z-module 1
2M , which

contradicts the choice of λ.

Since all roots of p(t) have modulus 1 we have |m0| = mr ≥ 3. For n = 0, . . . , r − 1
put αn = 0 if n = 0 or n ∈ P and αn = 1

2 if n ∈ R. Then we can choose by induction αn

for n ≥ r and n < 0 according to (3.3) each in the corresponding interval of length 1
3 in

order that (3.2) be satisfied.

Case 2: a has an eigenvalue of modulus 6= 1. By taking d, either positive or negative,
large enough we get that p(t) has a root λ with |λ| ≥ 7. The following lemma, with δ = 1

12 ,
βn = 0 for n = 0 and n ∈ P and βn = 1

2 for n ∈ R, yields the desired sequence {αn}n∈Z.

Lemma. Let δ > 0 and assume that p(t) has a root λ ∈ C with |λ| ≥ 1 + 1
2δ . Then

for every sequence {βn}n∈Z in S there exists an admissible sequence {αn}n∈Z such that
|αn − βn| ≤ δ for all n ∈ Z.

Proof. In view of the compactness of the set of admissible sequences with respect to the
pointwise convergence it is enough to show that, given N ∈ N, there exists an admissible
sequence {αn}n∈Z such that |αn − βn| ≤ δ for −N ≤ n ≤ N .

Build a finite sequence {zn}
N
n=−N in C satisfying

|zn − zn−1| ≤
1
2 |λ|

n for −N < n ≤ N and Re(λnzn)mod 1 = βn for −N ≤ n ≤ N

in the following way. Choose first z−N with Re(λ−Nz−N )mod 1 = β−N . Assuming that
z−N , . . . , zn−1 are defined take yn ∈ R with

∣

∣yn − Re(λnzn−1)
∣

∣ ≤ 1
2 and yn mod 1 = βn.

Define zn = zn−1+λ−n
(

yn−Re(λnzn−1)
)

, then |zn−zn−1| ≤
1
2 |λ|

n and Re(λnzn)mod 1 =
βn.

Now take z = zN and put αn = Re(λnz)mod 1 ∈ S, n ∈ Z. The sequence {αn}n∈Z is
then admissible, and we have

|λnz − λnzn| ≤ |λn(z − zn)| ≤
1

2

(

|λ|−1 + . . .+ |λ|−(N−n)
)

≤
1

2(|λ| − 1)
≤ δ,

and so |αn − βn| ≤ δ for −N ≤ n ≤ N .
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