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Abstract

Let T and S be invertible measure preserving transformations of a probabil-

ity measure space (X,B, µ). We prove that if the group generated by T and

S is nilpotent, then limN→∞
1
N

∑N
n=1 u(T

nx)v(Snx) exists in L2-norm for any

u, v ∈ L∞(X,B, µ). We also show that for A ∈ B with µ(A) > 0 one has

limN→∞
1
N

∑N
n=1 µ(A∩T−nA∩S−nA) > 0. By the way of contrast, we bring ex-

amples showing that if measure preserving transformations T , S generate a solvable

group, then (i) the above limits do not have to exist; (ii) the double recurrence prop-

erty fails, that is, for some A ∈ B, µ(A) > 0, one may have µ(A∩T−nA∩S−nA) = 0
for all n ∈ N. Finally, we show that when T and S generate a nilpotent group

of class ≤ c, limN→∞
1
N

∑N
n=1 u(T

nx)v(Snx) =
∫
udµ

∫
vdµ in L2(X) for all

u, v ∈ L∞(X) if and only if T ×S is ergodic on X ×X and the group generated by

T−1S, T−2S2, . . . , T−cSc acts ergodically on X.

0. Introduction

Let (X,B, µ) be a probability measure space and let T be a measure preserving trans-

formation of X. The Furstenberg’s ergodic Roth theorem (see [F1], [F3]) asserts that for

any u, v ∈ L∞(X,B, µ) the limit

lim
N→∞

1

N

N∑

n=1

u(Tnx)v(T 2nx) (0.1)

exists in L2-norm. If A ∈ B is a set of positive measure and u = v = 1A, then one

can show that f(x) = limN→∞
1
N

∑N
n=1 u(T

nx)v(T 2nx) satisfies
∫

A
fdµ > 0. This, via

Furstenberg’s correspondence principle ([F3]), implies Roth’s theorem, namely the fact
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that any set E ⊆ N with positive upper density d̄(E) = lim supN→∞
|E∩{1,...,N}|

N contains

arithmetic progressions of length 3.

Roth’s theorem, published in 1952 ([R]), provided verification of the first nontrivial

case of the Erdös–Turán conjecture ([ET]) that any set E ⊆ N with d̄(E) > 0 contains

arbitrarily long arithmetic progressions. The conjecture was settled in affirmative by Sze-

merédi in [Sz]. The whole topic was given new life in 1977 when Furstenberg ([F1]) gave

an ergodic proof of Szemerédi’s theorem. Furstenberg’s seminal approach gave rise to a

new discipline, Ergodic Ramsey Theory, which placed Szemerédi’s theorem into the right

perspective and has led to new discoveries (see for example [FK1], [FK2], [FK3], [BL1],

[BL2], [L2]), which benefited both the ergodic theory and combinatorics (see [F2] for the

introduction to Ergodic Ramsey Theory and [B2] for an update on some of more recent

developments).

Some of the natural problems in Ergodic Ramsey Theory as well as the problems in

the ergodic theory of multiple recurrence concentrate around the study of the behavior of

ergodic averages of the form

F
(k)
N =

1

N

N∑

n=1

u1(T
n
1 x) . . . uk(T

n
k x), (0.2)

where Ti are measure preserving transformations of a probability measure space (X,B, µ)
and ui ∈ L∞(X,B, µ), i = 1, . . . , k. Two questions related to the limiting behavior of

F
(k)
N are of major importance. First, one wants to know whether the limN→∞ F

(k)
N exists

(weakly, in norm, or even almost everywhere). Second, if all the ui are equal to 1A, where

A ∈ B, µ(A) > 0, one wants to know if

lim inf
N→∞

∫

X

F
(k)
N dµ = lim inf

N→∞

1

N

N∑

n=1

µ(T−n
1 A ∩ . . . ∩ T−n

k A) > 0. (0.3)

While the first question has an intrinsic value for purely ergodic reasons, the second one

is also related to applications of ergodic theory to combinatorics.

It turns out that the answers to these two questions depend heavily on the nature of

the (semi)group G(T1, . . . , Tk) generated by the transformations Ti. We describe first the

state of current knowledge with respect to the second question. Let us assume that the

transformations Ti are invertible. If the group G(T1, . . . , Tk) is nilpotent, it was shown in

[L2] that the lim inf in (0.3) is always positive. On the other hand, some examples discussed

in Section 4 below show that if G(T1, T2) is a solvable, and even polycyclic, non-nilpotent

group, it may happen that for some A ∈ B with µ(A) > 0, T−n
1 A ∩ T−n

2 A = ∅ for all

n > 0. (We strongly believe that any solvable non-virtually nilpotent group G possesses a
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measure preserving action on a space X such that for some T1, T2 ∈ G and A ⊂ X with

µ(A) > 0 one has T−n
1 A ∩ T−n

2 A = ∅ for all n > 0; see Conjecture 5.4 below.)

Much less is known about the existence of the limN→∞ F
(k)
N . Even in the case of

powers of the same transformation, Ti = T ai , the existence of the limit in norm is known

only for k ≤ 3 (proved for totally ergodic T in [CL2] and in full generality in [FW] and

[HK]). In the more general case of commuting transformations the best results to date are

due to Conze and Lesigne ([CL1]), who established the existence of the limN→∞ F
(2)
N in

norm, and to Zhang ([Zh]), who proved the existence of limN→∞ F
(3)
N under the assumption

that Ti and T−1
i Tj , i, j = 1, 2, 3, i 6= j, are ergodic.

Our main result is the following extension of the Conze-Lesigne theorem from [CL1]:

Theorem A. Let T and S be two invertible measure preserving transformations of a

probability measure space (X,B, µ). Assume that the group of transformations generated

by T and S is nilpotent. Then the limit

lim
N→∞

1

N

N∑

n=1

u(Tnx)v(Snx) (0.4)

exists in L2-norm for all u, v ∈ L∞(X).

Note that it immediately follows from Theorem A that the limit (0.4) exists also in the L1-

norm. Moreover, it is not hard to show that the L1-convergence holds for any u ∈ Lp(X)

and v ∈ Lq(X) with 1
p + 1

q = 1. The problem of the almost everywhere convergence is

however much more delicate: even in the case of commuting T , S this is an open question,

though it is generally believed to have a positive answer. The best result in this direction

is due to Bourgain, who established in [Bo] the almost everywhere convergence of the

averages of the form 1
N

∑N
n=1 u(T

anx)v(T bnx), a, b ∈ Z.

While we believe that Theorem A extends to expressions (0.2) with k > 2 (see Con-

jecture 5.5 below), such an extension seems to require a significant progress in our under-

standing of the characteristic factors of measure preserving systems. (See [F4] and [FW],

where the difficulties arising already in the case of powers of a single transformation are

discussed.)

The proof of Theorem A follows in general the scheme of the proof of its commutative

analogue in [CL1]. However, the fact that T and S are not necessarily commuting poses

additional hindrances. In the case when T and S commute, one analyses the behavior

of T and S with respect to a factor (X,D, µ) of (X,B, µ) (a factor is the measure space

determined by a sub-σ-algebra D of B) with the property that L2(X,D, µ) is spanned

by the limits of the ergodic averages 1
N

∑N
n=1 T

−nSnu(x) = 1
N

∑N
n=1 u(T

−nSnx) for u ∈
L2(X,B, µ). If T and S commute, then T−nSn = (T−1S)n, and D is the σ-algebra
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generated by T−1S-invariant sets. Then the actions of T and S on L2(X,D, µ) coincide,

which plays an essential role in the proof.

Now, in the case where T and S generate a nilpotent non-commutative group G, one

does not have the relation T−nSn = (T−1S)n, so that even the existence of

lim
N→∞

1

N

N∑

n=1

T−nSnu(x) (0.5)

is no longer obvious. What comes to help is the fact that T−nSn is a polynomial sequence.

A sequence g(n) taking values in a nilpotent group G is called a polynomial sequence, or a

G-polynomial, if the derivative Dg(n) defined by Dg(n) = g(n)−1g(n+ 1) trivializes after

finitely many applications (that is, there exists d ∈ N such that Ddg ≡ 1G). We prove

the following theorem, which is a nilpotent generalization of a von Neumann-type ergodic

polynomial theorem for commuting operators (see for example [B2], section 2):

Theorem C. Let G be a nilpotent group of unitary operators on a Hilbert space H. Then

for any G-polynomial g(n) and any u ∈ H, limN→∞
1
N

∑N
n=1 g(n)u exists.

Remark. Theorem C should be seen as yet another theorem belonging to the variety of

results which extend recurrence and equidistribution from the group actions framework to

polynomial setup. See, for example, [S], where N. Shah establishes an analogue of Weyl

equidistribution theorem for polynomial trajectories on homogeneous spaces.

Applying Theorem C to the G-polynomial g(n) = T−nSn and the Hilbert space H =

L2(X,B, µ), one obtains the existence of the limit (0.5). However, unlike the commutative

case, T and S do not have to coincide on the subspace of L2(X,B, µ) which is spanned by

the limits of the form (0.5). This complicates the situation and makes necessary introducing

a technique which is based on a nilpotent analogue of the following well known fact from

analytic number theory:

Proposition. (See [Hua], Chapter 1) For any ε > 0 and r ∈ N there is L ∈ N such that if

λ is a primitive root of unity of degree k > L, and if a polynomial p(n) = arn
r+ . . .+a1n ∈

Z[n] satisfies g.c.d.(k, a1, . . . , ar) = 1, then
∣
∣ 1
k

∑k
n=1 λ

p(n)
∣
∣ < ε.

To formulate the nilpotent version of the Proposition, let us introduce some notation.

Given a nilpotent group G of unitary operators on a Hilbert space H and a G-polynomial

g(n) satisfying g(0) = 1G, let Hrat(g) =
{
u ∈ H

∣
∣ the sequence g(n)u, n ∈ Z, is periodic

}
.

Let H be the subgroup of G generated by the elements of g and let H(l)(g) =
{
u ∈ H

∣
∣

P lu = u for all P ∈ H
}
. One can show that Hrat(g) =

⋃

l∈N
H(l)(g), and that for every

l ∈ N, g is periodic on H(l)(g): there is K ∈ N such that g(n + K)u = g(n)u for all

u ∈ H(l)(g) and all n ∈ Z. It follows from the proof of Theorem C (see Theorem 2.17
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below) that for any u ∈ H, limN→∞
1
N

∑N
n=1 g(n)u lies in the closure of Hrat(g). The

following theorem may be viewed as a nilpotent analogue of the Proposition above, and is

also an enhancement of Theorem 2.17:

Theorem D. For every r ∈ N and ε > 0 there is L ∈ N such that if g is a G-polynomial

of degree ≤ r with g(0) = 1G, and u ∈ H is such that u ⊥ H(l)(g) for all l ≤ L, then
∥
∥limN→∞

1
N

∑N
n=1 g(n)u

∥
∥ ≤ ε‖u‖.

It follows from Theorem D, applied to H = L2(X,B, µ) and g(n) = T−nSn, that for any

u ∈ L2(X,B, µ) the “major” portion of the limit limN→∞
1
N

∑N
n=1 T

−nSnu belongs to the

space H(L!)(g), where L is large enough. Now, since g(n) is periodic on H(L!)(g), one has

T−KSK |H(L!)(g)
= 1H(L!)(g) for some K ∈ N. In other words, TK and SK coincide on

H(L!)(g). One is able then to conclude the proof of Theorem A by analyzing the behavior

of T and S with respect to the T, S-invariant factor of (X,B, µ) which is determined by

the subspace H(L!)(g).

As a corollary of Theorem A we obtain a strong form of double recurrence:

Theorem E. Let T , S be measure preserving transformations of X generating a nilpotent

group. Then for any A ∈ B with µ(A) > 0, limN→∞
1
N

∑N
n=1 µ

(
T−nA ∩ S−nA ∩A

)
> 0.

We remark that the fact that lim infN→∞
1
N

∑N
n=1 µ

(
T−nA ∩ S−nA ∩ A

)
> 0 is a special

case of a general nilpotent Szemerédi theorem proved in [L2]; the novelty of Theorem E

is that the lim inf is replaced by lim, and that the proof of this theorem is direct and

relatively simple.

We also bring the following theorem, which establishes the necessary and sufficient

conditions for the limit (0.4) to be the “right” one:

Theorem B. Under the assumptions of Theorem A, let the group G generated by T and

S have nilpotency class ≤ c (that is, if G1 = G and Gk+1 = [G,Gk], k = 1, 2, . . ., the

subgroup Gc+1 is trivial). Then one has

lim
N→∞

1

N

N∑

n=1

u(Tnx)v(Snx) =

∫

udµ

∫

vdµ

in L2-norm for all u, v ∈ L∞(X) if and only if the transformation T × S is ergodic on

X ×X, and the group generated by
{
T−nSn, 1 ≤ n ≤ c

}
acts ergodically on X.

Theorem B naturally generalizes (for the case of 2 transformations) the “commutative”

result from [BB]:

Theorem BB. ([BB]) Let T1, . . . , Tk be commuting invertible measure preserving trans-
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formations of a probability measure space (X,B, µ). Then

lim
N→∞

1

N

N∑

n=1

u1(T
n
1 x) . . . uk(T

n
k x) =

∫

u1dµ . . .

∫

ukdµ

in L2-norm for all u1, . . . , uk ∈ L∞(X) if and only if T1× . . .×Tk is ergodic on X× . . .×X

and all the transformations T−1
i Tj, i 6= j, are ergodic on X.

It is worth mentioning that in complete analogy with the commutative situation, The-

orems A – E also admit “uniform” versions which are obtained by replacing in the formu-

lations Cesàro limits lim
N→∞

1
N

∑N
n=1 by the uniform Cesàro limits lim

N−K→∞
1

N−K

∑N
n=K+1.

(See Remark 2.2 in Section 2.)

One would like to know whether Theorems A and B hold in more general situa-

tions where the group G = G(T, S) is not nilpotent. While Theorems A and B triv-

ially extend to the case when G is virtually nilpotent, namely, contains a nilpotent sub-

group of finite index, we show in Section 4 that if G is a solvable group of exponential

growth, then the limit (0.4) does not have to exist even weakly, and even under the as-

sumptions of Theorem B. (Actually we show that for suitably chosen L∞-functions u, v,

limN→∞
1
N

∑N
n=1

∫
u(Tnx)v(Snx)dµ fails to exist.)

The structure of the paper is as follows. Section 1 is devoted to algebraic preliminaries

about polynomial sequences in nilpotent groups. In Section 2 we consider a (finitely

generated) nilpotent group G of unitary operators on a Hilbert space H, build a structure

theory of its action with respect to subspaces of rational spectrum of its elements, and

prove Theorems C and D. The proofs of Theorems A, B and E, based on the results

obtained in the Sections 1 and 2, are brought in Section 3. Section 4 is dedicated to

various counterexamples, which show that the class of nilpotent groups is the natural

domain where the ergodic Szemerédi and Roth theorems hold. Finally, in Section 5 we

discuss possible refinements of our results and some open problems.

1. Polynomial sequences in nilpotent groups

1.1. Let G be a nilpotent group of class c and let G = G1 ⊃ G2 ⊃ . . . ⊃ Gc ⊃ Gc+1 = {1G}
be its lower central series: Gk+1 = [G,Gk], k = 1, . . . , c. For a sequence g:Z −→ G in G,

we define the derivative of g as the sequence Dg:Z −→ G with Dg(n) = g(n)−1g(n + 1).

g is a polynomial sequence, or a G-polynomial, if Ddg ≡ 1G for some d ∈ N.

In particular, sequences g:Z −→ G satisfying Dg ≡ 1G are the constant G-polynomials

g ≡ T0 ∈ G, sequences satisfying D2g ≡ 1G are the linear G-polynomials g(n) = T1T
n
0 ,
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T0, T1 ∈ G, the quadratic G-polynomials are of the form

{

T2(T1)(T1T0)(T1T
2
0 ) . . . (T1T

n−1
0 ), n > 0

T2(T0T
−1
1 )(T 2

0 T
−1
1 ) . . . (T−n

0 T−1
1 ), n ≤ 0,

etc.

1.2. An integral polynomial is a polynomial p ∈ Q[n] taking on integer values on the

integers. It can be easily shown that any integral polynomial is a linear combination

over Z of binomial coefficients bk(n) = n(n−1)...(n−k+1)
k! , k ≥ 0. Thus, if p is an integral

polynomial of degree ≤ r, the least common multiple of the denominators of its coefficients

divides r!, and hence the polynomials r!p(n) and p(r!n) have integer coefficients.

It can be shown (see, for example, [L1]) that for a nilpotent group G, a sequence g in

G is a G-polynomial if and only if it is representable in the form

g(n) = T
p1(n)
1 . . . T

pt(n)
t , (1.1)

where T1, . . . , Tt ∈ G and p1, . . . , pt are integral polynomials. If g(0) = 1G, one can

additionally assume that in (1.1), p1(0) = . . . = pt(0) = 0. Moreover, if B is any subset of

G with the property that B ∩Gk generates the group Gk for each k = 1, . . . , c, then g(n)

has the representation (1.1) with T1, . . . , Tt ∈ B.

1.3. G-polynomials form a group with respect to element-wise multiplication: (gh)(n) =

g(n)h(n); we will denote this group by ℘G.

It easily follows from the definition of a G-polynomial that if H is a subgroup of G and

a G-polynomial g takes values in H: g(n) ∈ H for all n ∈ Z, then g is an H-polynomial.

So, ℘H is a subgroup of ℘G. It is also clear that if H is a normal subgroup in G and g is

a G-polynomial, then the sequence g(n)H, n ∈ Z, is a (G/H)-polynomial.

1.4. Following the analogy with ordinary polynomials, one has a temptation to define the

degree of a G-polynomial g as the smallest nonnegative integer d for which Dd+1g = const.

Regrettably, the degree so defined fails to have an important property: G-polynomials

of degree ≤ d do not, generally speaking, form a subgroup of ℘G. We do not have any

“canonical” way of defining the degree; the following one seems to us to be best suited

for our purposes (it is an adaptation for nilpotent groups of a more general definition in

[L1]; cf. 1.4 and Theorem 1.12 in [L1]): Let for 1 ≤ k ≤ c, dk be the smallest nonnegative

integer with the property Ddk+1g ∈ ℘Gk+1 (that is,
(
Ddk+1g

)
(n) ∈ Gk+1 for all n ∈ Z);

if g ∈ ℘Gk+1 we put dk = −∞. For k = 1, . . . , c, let sk = max
l≤k, k1+...+kl≤k

∑l
j=1 dkj . Then

the vector degree of g is s̄ = (s1, . . . , sc). Note the the vector degree s̄ is superadditive: for

any k, l with k+ l ≤ c, one has sk + sl ≤ sk+l. It can be shown that, given a superadditive
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vector r̄ = (r1, . . . , rc), G-polynomials of degree ≤ r̄ (that is, with sk ≤ rk, k = 1, . . . , c)

form a group (see [L1]). One can also show that g ∈ ℘G has degree ≤ r̄ if and only if

g is representable in the form (1.1), g(n) = T
p1(n)
1 . . . T

pt(n)
t , so that, for i = 1, . . . , t, if

Ti ∈ Gki \Gki+1, then deg pi ≤ rki .

On most occasions, however, one can work with a scalar “pseudodegree” which is given

by the last component sc of the vector degree s̄, and will be denoted by deg g. Under this

definition, deg g ≤ r implies that in the representation (1.1), p1, . . . , pt can be assumed to

have degree ≤ r. Warning: G-polynomials of degree ≤ r do not necessarily form a group.

1.5. It is clear that degDg ≤ deg g − 1. Moreover, for every m ∈ Z, the degree of the

G-polynomial gm(n) = g(n)−1g(n+m) is smaller than the degree of g. Indeed, for m > 0

gm(n) = g(n)−1g(n+ 1)g(n+ 1)−1g(n+ 2) . . . g(n+m− 1)−1g(n+m)

= Dg(n)Dg(n+ 1) . . . Dg(n+m− 1),

and for m < 0

gm(n) = g(n)−1g(n− 1)g(n− 1)−1g(n− 2) . . . g(n+m− 1)−1g(n+m)

= (Dg)−1(n− 1)(Dg)−1(n− 2) . . . (Dg)−1(n+m).

Thus gm lies in the subgroup of ℘G generated by Dg(n) and Dg(n + k), k ∈ Z. Let

g have vector degree (s1, . . . , sc); then the vector degrees of Dg and of all of its shifts

Dg(n+ k), k ∈ Z, are majorized by (s1 − 1, . . . , sc − 1). Hence, the vector degree of gm is

also majorized by (s1 − 1, . . . , sc − 1) and so, deg gm ≤ sc − 1 = deg g − 1.

1.6. If deg g ≤ r, one has Dr+1g ≡ 1G. It follows (by induction on deg g) that g is

uniquely determined by its values at 0, 1, . . . , r. In particular, for every n ∈ Z, g(n) lies in

the subgroup of G generated by g(0), g(1), . . . , g(r).

1.7. Now we bring in a unified form some general facts about nilpotent groups and poly-

nomial sequences which will be needed in the sequel. We omit the proofs of the facts which

are either well known or routine (see [H] for details).

1.8. Lemma. Any subgroup H of a finitely generated nilpotent group G is finitely gener-

ated.

1.9. Lemma. Let G be a finitely generated nilpotent group. Then any nondecreasing

sequence H1 ⊆ H2 ⊆ . . . of subgroups of G stabilizes.

1.10. Lemma. Any finitely generated torsion-free nilpotent group G possesses a finite

central series with infinite cyclic factors: {1G} = H0 ⊂ H1 ⊂ . . . ⊂ Hs = G such that, for

each i = 1, . . . , s, Hi/Hi−1 is in the center of G/Hi−1 and Hi/Hi−1 ≃ Z.
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1.11. Given a subset B of a group G, we will denote by 〈B〉 the subgroup generated by

B. For T1, . . . , Tt ∈ G, let 〈T1, . . . , Tt〉 =
〈
{T1, . . . , Tt}

〉
.

1.12. Lemma. Assume that a nilpotent group G is generated by its elements T1, . . . , Tt,

and let d1, . . . , dt ∈ N. Then the subgroup H = 〈T d1
1 , . . . , T dt

t 〉 has finite index in G.

1.13. For a subgroup H of a group G we denote by N(H) the normalizer of H in G:

N(H) = {T ∈ G
∣
∣ T−1HT = H}. We also define N0(H) = H, Nk(H) = N

(
Nk−1(H)

)
,

k = 1, 2, . . ..

1.14. Lemma. If H is a subgroup of a nilpotent group G of class c, then N c(H) = G.

1.15. Let H be a subgroup of a group G. We will call the set of elements of G which have

finite order modulo H the closure of H (in G) and denote it by H:

H =
{
T ∈ G

∣
∣ Tn ∈ H for some n ∈ N

}
.

We will say that H is closed if H = H.

1.16. Lemma. If G is a nilpotent group and H is its subgroup, then H is a closed

subgroup of G.

Proof. It follows immediately from definition thatH is closed. To see thatH is a subgroup,

let P1, P2 ∈ H, that is, Pn1
1 , Pn2

2 ∈ H for some n1, n2 ∈ N. Since by Lemma 1.12 the

subgroup E = 〈Pn1
1 , Pn2

2 〉 has finite index in the group 〈P1, P2〉, we have (P1P2)
n ∈ E ⊆ H

for some n ∈ N, which implies P1P2 ∈ H.

1.17. Lemma. If H is a subgroup of a finitely generated nilpotent group G, then H has

finite index in H.

Proof. This follows from Lemmas 1.8 and 1.12.

1.18. Proposition. If H is a closed subgroup of a nilpotent group G, then N(H) is closed

in G as well.

Proof. Let T ∈ N(H), that is, T d ∈ N(H) for some d ∈ N. We may assume that G is

generated by H and T ; let G = G1 ⊃ . . . ⊃ Gc ⊃ Gc+1 = {1G} be the lower central series.

We will prove that for any k ≥ 2 and any Gk-polynomial g with g(0) = 1G there is

m ∈ N such that the Gk-polynomial g(mn) can be written as a product g(mn) = h(n)g̃(n)

with h ∈ ℘H and g̃ ∈ ℘Gk+1. The group Gk is generated by Gk+1 and elements of the

form

S =
[
R1,

[
R2, . . . , [Rk−1, Rk] . . .

]]
(1.2)
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where either Ri = T or Ri ∈ H, i = 1, . . . , k. For such S,

Sdk ≡
[
Rd

1,
[
Rd

2, . . . , [R
d
k−1, R

d
k] . . .

]]
modGk+1.

Since T d ∈ N(H), it is easy to see that R =
[
Rd

1,
[
Rd

2, . . . , [R
d
k−1, R

d
k] . . .

]]
∈ H. Now, if

p(n) is an integral polynomial with p(0) = 0, then for some r ∈ N, p(rn) ∈ Z[n], and then

p(rn) = nq(n) where q(n) ∈ Z[n]. Thus, for m = rdk we have

Sp(mn) = Sp(rdkn) = Sdknq(dkn) ≡ Rnq(dkn) modGk+1 ≡ f(n)modGk+1

with f(n) = Rnq(dkn) ∈ ℘H.

Now, if g is a Gk-polynomial with g(0) = 1G, then one can find S1, . . . , Ss of the

form (1.2) such that g(n) ≡ S
p1(n)
1 . . . S

ps(n)
s modGk+1 where pi, i = 1, . . . , t, are in-

tegral polynomials with pi(0) = 0. Thus for a suitable m ∈ N, we have g(mn) ≡
f1(n) . . . ft(n)modGk+1, with f1, . . . , ft ∈ ℘H. For h = f1 . . . ft ∈ ℘H this gives

g(mn) = h(n)g̃(n) with g̃ ∈ ℘Gk+1.

Now let g be a G2-polynomial with g(0) = 1G. Then for some m2 ∈ N, g(m2n) =

h2(n)g3(n) where h2 ∈ ℘H and g3 ∈ ℘G3. In its turn, for somem3 ∈ N we have g3(m3n) =

h3(n)g4(n) where h3 ∈ ℘H and g4 ∈ ℘G4, and etc. As a result, for m = m2 . . .mc we get

g(mn) ∈ ℘H.

Take any P ∈ H and define a G2-polynomial g by g(n) = [P, T ]n. Then for some

m ∈ N we have g(mn) ∈ ℘H, which implies [P, T ]m ∈ H. Since H is closed, [P, T ] =

P−1T−1PT ∈ H, and so T−1PT ∈ H. This proves that T ∈ N(H).

1.19. Proposition. Let H be a subgroup of a finitely generated nilpotent group G. Then

H is closed if and only if there is a subnormal series H = H0 ⊂ H1 ⊂ . . . ⊂ Ht = G with

infinite cyclic factors; that is, for each j = 1, . . . , t, the subgroup Hj−1 is normal in Hj

and Hj/Hj−1 ≃ Z.

Proof. First, assume that H = H0 ⊂ H1 ⊂ . . . ⊂ Ht = G is a subnormal series with

infinite cyclic factors. Let T ∈ G, T 6∈ H. Let 1 ≤ j ≤ t be such that T ∈ Hj \ Hj−1.

Since Hj/Hj−1 ≃ Z, Tn 6∈ Hj−1 for all n 6= 0, and so, Tn 6∈ H for all n 6= 0. Hence, H is

closed in G.

Conversely, assume that H is closed in G. Then N(H)/H is a finitely generated

torsion-free nilpotent group. By Lemma 1.10, N(H)/H possesses a central series {1N(H)/H}
= H̃0 ⊂ H̃1 ⊂ . . . ⊂ H̃s = N(H)/H with infinite cyclic factors. Denote by Hi the preimage

of H̃i in N(H), i = 0, . . . , s. Then H = H0 ⊂ H1 ⊂ . . . ⊂ Hs = N(H) is a subnormal

series with infinite cyclic factors.

By Proposition 1.18, the subgroup N(H) is also closed in G. So, we can continue our

series by a subnormal series N(H) = Hs ⊂ Hs+1 ⊂ . . . ⊂ Hs1 = N2(H) with infinite cyclic
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factors. Since N2(H) is closed, there is a series N2(H) = Hs1 ⊂ Hs1+1 ⊂ . . . ⊂ Hs2 =

N3(H), etc. Since, by Lemma 1.14, N c(H) = G, the proposition follows.

1.20. Proposition. Let H be a closed subgroup of a nilpotent group G, and let g ∈
℘G \℘H. Then the set

{
n ∈ Z

∣
∣ g(n) ∈ H

}
is finite.

Proof. Since {g(n), n ∈ Z} lies in a finitely generated subgroup of G, we may assume

that G is finitely generated. By Proposition 1.19, there exists a subnormal series H =

H0 ⊂ H1 ⊂ . . . ⊂ Ht = G with Hj/Hj−1 ≃ Z for all j = 1, . . . , t. Let 1 ≤ j ≤ t be such

that g ∈ ℘Hj \℘Hj−1. Let T be a generator of Hj/Hj−1. The image g̃ of g in Hj/Hj−1

is a (Hj/Hj−1)-polynomial, and hence is of the form g̃(n) = T p(n), where p is an integral

polynomial. Since p 6≡ 0, p has only finitely many roots, and so, g̃(n) = 1Hj/Hj−1
for at

most finitely many n ∈ Z. It follows that g(n) ∈ Hj−1 for at most finitely many n ∈ Z.

1.21. Proposition. Let H be a subgroup of a nilpotent group G, let g ∈ ℘G \℘H. Then

either g(n) ∈ H for only finitely many n ∈ Z, or the sequence g(n)H is periodic.

Proof. By Lemma 1.16, H is a closed subgroup in G. Thus if g 6∈ ℘H, then by Proposi-

tion 1.20, g(n) ∈ H for at most finitely many n ∈ Z.

Assume that g ∈ ℘H. Let deg g ≤ r. Since {g(n), n ∈ Z} lies in a finitely generated

subgroup of G, we may assume that G is finitely generated. By Lemma 1.17, H has finite

index in H, so g(n)H runs through a finite set of left cosets of H. Let g(m)H be one of

them. We can write the H-polynomial g′(n) = g(m)−1g(n+m) as g′(n) = S
p1(n)
1 . . . S

ps(n)
s ,

where S1, . . . , Ss ∈ H and p1, . . . , ps are integral polynomials of degree ≤ r satisfying

p1(0) = . . . = ps(0) = 0. Let d ∈ N be such that Sd
j ∈ H for all j = 1, . . . , s. For every

j = 1, . . . , s, since deg pj ≤ r and pj(0) = 0, one has pj(r!n) ∈ Z[n] and so, pj(r!n) = nqj(n)

with qj ∈ Z[n]. Thus pj(r!dn) ≡ 0mod d, j = 1, . . . , s, for all n ∈ Z. Hence, g′(r!dn) ∈ H

and so, g(r!dn+m) ∈ g(m)H for all n ∈ Z. Since this is true for all m ∈ Z, the sequence

g(n)H is periodic (and its period divides r!d).

1.22. Let H be a subgroup of a group G. We define the period of G relative to H, perH(G),

as the minimal d ∈ N such that T d ∈ H for all T ∈ G; if such d does not exist, we say that

perH(G) is infinite. We also define per(G) = per{1G}(G). If H is a normal subgroup of G,

then, clearly, perH(G) = per(G/H).

1.23. Lemma. Let H be a subgroup of a group G. For any S ∈ G, perSHS−1(G) =

perH(G). Furthermore, if ϕ is an automorphism of G, then perϕ(H)(G) = perH(G).

1.24. Corollary. Let H be a subgroup of a group G, let Φ be a set of automorphisms

of G and let H̃ =
⋂

ϕ∈Φ ϕ(H). Then perH̃(G) = perH(G). In particular, for Ĥ =

11



⋂

S∈G SHS−1, perĤ(G) = perH(G).

1.25. The following lemma refines Lemma 1.12:

Lemma. Let G be a nilpotent group of class c, let G2 = [G,G], and let H be a subgroup

of G. Then per(G/(HG2)) ≤ perH(G) ≤
(
per(G/(HG2))

)c
.

Proof. The first inequality is obvious. By Corollary 1.24, we may replace H by the

subgroup
⋂

S∈G S−1HS and hence may assume that H is normal in G. After factorizing

G by H, we have only to check that per(G) ≤
(
per(G/G2)

)c
.

Let K = per(G/G2); we may assume that K is finite. Let G = G1 ⊃ . . . ⊃ Gc ⊃
Gc+1 = {1G} be the lower central series of G. For 1 ≤ k ≤ c, the group Gk is generated

by elements of the form S =
[
S1, [S2, . . . , [Sk−1, Sk] . . .]

]
. Since SK

k ∈ G2, for any such S

we have

SK ≡
[
S1, [S2, . . . , [Sk−1, S

K
k ] . . .]

]
≡ 1G modGk+1,

that is, SK ∈ Gk+1. So, perGk+1
(Gk) ≤ K and hence, per(G) ≤ Kc.

1.26. Let H be a subgroup of a nilpotent group G and g be a G-polynomial. We define

the period of g with respect to H, perH(g), as the minimal k ∈ N for which g(n + k) ≡
g(n)modH for all n ∈ Z. That is, perH(g) is the length of the period of the sequence

{g(n)H, n ∈ Z} (or is infinite, if this sequence is non-periodic). We also define per(g) =

per{1G}(g).

1.27. The rest of this section is devoted to the presentation of some rather technical facts

which will be needed in Section 2. We start with formulating an important lemma from

[Hua] and its easily derivable corollaries:

Lemma. ([Hua], Lemma 2.3) Let q be a prime number, let t, r ∈ N and let p ∈ Z[n] with

deg p ≤ r. Assume that not all coefficients of p are divisible by q. Then the number of

solutions of the congruence p(n) ≡ 0mod qt on the interval {1, . . . , qt} does not exceed

Cqt−
t
r , where C depends on r only.

1.28. Corollary. Let q be a prime number, let t, r ∈ N and let p ∈ Z[n] with deg p ≤ r

and p(0) = 0. Let t1 ∈ N be such that the coefficients of p are divisible by qt1 but not

by qt1+1, and let t2 = t − t1. Then on the interval {1, . . . , qt}, p(n) takes on any value

mod qt at most Cqt1qt2−
t2
r = Cqt−

t2
r times, where C depends on r only. As a consequence,

p(n)mod qt takes on at least 1
C q

t2
r distinct values in Zqt .
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1.29. Corollary. Let q be a prime number, let t, r ∈ N and let p ∈ Q[n] be an integral

polynomial of degree ≤ r satisfying p(0) = 0. Assume that the set
{
p(n)mod qt

∣
∣ n ∈ Z

}

generates a subring qt1Zqt of Zqt , and let t2 = t − t1. Then on any interval of length qt

in Z, p(n)mod qt takes on any value at most C ′qt−
t2
r times, and hence takes on at least

1
C′

q
t2
r distinct values in Zqt , with C ′ depending on r only.

1.30. Let us remind that, given a set A ⊆ Z, the density of A is defined as lim
n→∞

|A∩{−n,...,n}|
2n+1

(if it exists).

Let H be a subgroup of a nilpotent group G and let g be a G-polynomial. It follows

from Proposition 1.21 that for any Q ∈ G, the set
{
n ∈ Z

∣
∣ g(n) ∈ QH

}
has density

(which can be zero).

1.31. The following proposition demonstrates that if g is a G-polynomial whose elements

generate G, then, loosely speaking, perH(g) is large if and only if perH(G) is large, and,

in this case, the values of the sequence g(n)H are distributed with some uniformity.

Proposition. Let G be a nilpotent group.

(a) Let H be a subgroup of G and let g be a G-polynomial of degree ≤ r. Then perH(g) ≤
r! perH(G).

(b) For any r, L ∈ N and δ > 0 there is K ∈ N with the following property: if H is

a subgroup of G with perH(G) > K and g is a G-polynomial of degree ≤ r such that

g(0) = 1G and the elements of g generate G, then perH(g) > L and for any left coset QH

of H the set
{
n ∈ Z

∣
∣ g(n) ∈ QH

}
has density < δ.

Proof. In fact, part (a) of the proposition was already established in the proof of Propo-

sition 1.21: if perH(G) < ∞, then G = H, and so, the sequence g(n)H is periodic with

period dividing r! perH(G).

(b) Choose large enough K ∈ N (it will be clear from the proof how large K has to be

chosen) and assume that perH(G) > K. The factor-group G′ = G/(HG2) is abelian and

finitely generated, so G′ is representable as a finite product of cyclic subgroups: G′ =

B1× . . .×Bk, where each Bj is a cyclic group of order dj , and dj is either infinite or of the

form dj = q
tj
j with prime qj . If at least one of dj is infinite, then perHG2

(G) = perH(G) =

∞. Otherwise, per(G′) = perHG2
(G) is the least common multiple of d1, . . . , dk. Let

d1 = max{d1, . . . , dk}. Since by Lemma 1.25 perHG2
(G) > Kc, we have d1! > Kc, that

is, d1 is large if K is large.

Now let g be a G-polynomial of degree ≤ r satisfying g(0) = 1G. Let P be a generator

of B1. The group B1 is isomorphic to a factor-group of G, namely, B1 ≃
(
G/(HG2)

)
/(B2×

. . .×Bk). Hence, we can consider the image of g in B1, which is a B1-polynomial and as

such has form P p(n), where p is a polynomial Z −→ Zd1 of degree ≤ r satisfying p(0) = 0.
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(If d1 = ∞ we put Z∞ = Z.) Since {g(n), n ∈ Z} generates G, {p(n), n ∈ Z} generates

Zd1 . By Corollary 1.29, on any interval of length d1 in Z the polynomial p(n) takes on

at least
d
1/r
1

C′
distinct values in Zd1 , each value at most C ′d1

1− 1
r times. (If d1 = ∞, p(n)

takes on infinitely many distinct values in Zd1 = Z, each value finitely many times.) It

follows that g(n)H runs through ≥ d
1/r
1

C′
distinct left cosets of H, and for every Q ∈ G the

set
{
n ∈ Z

∣
∣ g(n) ∈ QH

}
has density ≤ C′

d
1/r
1

. Choosing K so large that d1 > (C ′/δ)r and

d1 > (C ′L)r, we get the result.

1.32. Corollary. Let G be a nilpotent group, let H be a subgroup of G, let r, k, b ∈ N and

let g be a G-polynomial of degree ≤ r. Define g̃(n) = g(b+ kn). If perH(g) is large, then

perH(g̃) is large. (That is: for any r, k and N there is L such that if perH(g) > L, then

perH(g̃) > N .)

Proof. We may assume that g(0) = 1G and that G is generated by the elements of g. If

perH(g) is large, then for any Q ∈ G the density of the set
{
n ∈ Z

∣
∣ g(n) ∈ QH

}
is small.

This implies that the density of the set
{
n ∈ Z

∣
∣ g̃(n) ∈ QH

}
is small, and therefore

perH(g̃) must be large.

1.33. Proposition. Let r ∈ N, let G be a nilpotent group and let f :Z2 −→ G be such that

for every m ∈ Z, gm(n) = f(m,n) is a G-polynomial of degree ≤ r, and for every n ∈ Z,

ĝn(m) = f(m,n) is a G-polynomial of degree ≤ r. (f(m,n) is “a G-polynomial in two

variables”.) Also assume that the values of f generate G and that f(m, 0) = f(0, n) = 1G

for all m,n ∈ Z. For any L and δ > 0 there is K such that if H is a subgroup of G with

perH(G) > K, then the set
{
m ∈ Z

∣
∣ perH(gm) < L

}
has density < δ. (K depends on r,

L, δ and the nilpotency class of G, but not on f .)

Proof. Let G2 = [G,G]. By Lemma 1.25, if perH(G) is large, then per(G/(HG2)) is also

large. Hence, the finite abelian group G′ = G/(HG2) contains a cyclic subgroup B = 〈P 〉
whose order is either infinite or equals qt, where q is a prime number and qt is large. We

will consider the second case only. (The analysis of the first case is analogous and, actually,

simpler.)

The Z2-sequence f(m,n) is represented in B by a sequence P p(m,n), where p is a

polynomial Z2 −→ Zqt of degree ≤ r satisfying p(m, 0) = p(0, n) = 0. Replacing, if

needed, p by (r!)2p, we may assume that p has integer coefficients. Since the values of f

generate G, the values of p generate Zqt . It follows that at least one of the coefficients of

p is not divisible by q.

Write p(m,n) = pr(m)nr+. . .+p1(m)n, and assume that it is the polynomial pj which

has a coefficient not divisible by q. Since qt is a large number, we have two possibilities:

a) q is large: q > rL and q > r/δ. In this case, after factorizing B by the subgroup 〈P qt−1〉,
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we may assume that t = 1 and B ≃ Zq. Now, pj is a nonzero polynomial Z −→ Zq, and

hence the set U =
{
m ∈ Z

∣
∣ p(j)(m) ≡ 0mod q

}
has density ≤ r/q < δ. On the other

hand, if m 6∈ U then p(m,n), as a polynomial in n with values in Zq, is not identically zero

and hence, takes on ≥ q/r > L distinct values. Therefore, the sequence gm(n)H takes on

more than L distinct values, that is, perH(gm) > L for all m 6∈ U .

b) t is large: let t1 be such that Cq−t1/r < δ, t2 be such that 1
C qt2/r > L, and t > t1+t2. If

m is such that pj(m) is not divisible by qt1 , then, by Corollary 1.28, p(m,n) as a polynomial

in n takes on > 1
C qt2/r > L distinct values. Hence, perH(gm) > L for such m. On the

other hand, by the same Corollary 1.28, the set
{
m ∈ Z

∣
∣ pj(m) ≡ 0mod qt1

}
has density

≤ Cqt1(1−
1
r )/qt1 = Cq−t1/r < δ.

1.34. As before, let G be a nilpotent group and g be a G-polynomial of degree ≤ r with

g(0) = 1G. Consider the mapping f :Z2 −→ G given by f(m,n) = g(m)−1g(n)−1g(n+m).

f is a G-polynomial in two variables, satisfying f(m, 0) = f(0, n) = 1G for any m,n ∈ Z.

Let E be the group generated by the values of f , and let G2 = [G,G].

Lemma. If the elements of g generate G, then G2 ⊆ E. In particular, E is normal in G.

Proof. For any m,n ∈ Z we have

[
g(m), g(n)

]
= g(m)−1g(n)−1g(m)g(n) = g(m)−1g(n)−1g(n+m)g(m+ n)−1g(m)g(n)

= f(m,n)f(n,m)−1.

1.35. Lemma. Under the assumptions of 1.34, let K = per(E) and for b ∈ Z let Tb =

g(b)−1g(b+K). Then for any n, b ∈ Z, g(b+Kn) = g(b)Tn
b .

Proof. We have Tb = g(b)−1g(b+K) = Dg(b)Dg(b+ 1) . . . Dg(b+K − 1). Thus for any

n ∈ Z,

g(b+ nK) = g(b)
(
Dg(b)Dg(b+ 1) . . . Dg(b+K − 1)

)
. . .

(
Dg(b+Kn−K)Dg(b+Kn−K + 1) . . . Dg(b+Kn− 1)

)
= g(b)Tn

b .

1.36. Clearly, perG2
(E) ≤ per(E). The following proposition demonstrates that, under

the notation of 1.34, per(E) is large if and only if perG2
(E) is large.

Proposition. Let G be a nilpotent group. For any K and r there is N such that if g

is a G-polynomial of degree ≤ r with g(0) = 1G, whose elements generate G and such

that the subgroup E generated by f(m,n) = g(m)−1g(n)−1g(n + m), m,n ∈ Z, satisfies

per(E) > N , then perG2
(E) > K.
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Proof. Let r ∈ N, let g be a G-polynomial of degree ≤ r with g(0) = 1G, let the elements

of g generate G, let E be the group generated by g(m)−1g(n)−1g(n + m), m,n ∈ Z,

and let K = perG2
(E). We will show that per(E) does not exceed some constant which

depends on K and r only. Let L = perG2
(Dg); since Dg(n) = g(1)f(1, n) and f(1, n) is

an E-polynomial, Proposition 1.31(a) gives L < r!K. Define

T = g(L) = Dg(0)Dg(1) . . . Dg(L− 1).

Take any b ∈ Z, let b = a+ nL with 0 ≤ a ≤ L− 1. Then

g
(
b+ L) ≡ g(b)Dg(b) . . . Dg(b+ L− 1) ≡ g(b)Dg(a+ nL) . . . Dg(a+ nL+ L− 1)

≡ g(b)Dg(a)Dg(a+ 1) . . . Dg(L− 1)Dg(0)Dg(1) . . . Dg(a− 1) ≡ g(b)Dg(0) . . . Dg(L− 1)

≡ g(b)T modG2.
(1.3)

Denote by H the group generated by G2 and T . Then (1.3) says that perH(g) ≤ L.

Since g generates G, by Proposition 1.31(b) M = perH(G) does not exceed some constant

depending on L and r only.

Now, let G = G1 ⊂ G2 ⊂ . . . ⊂ Gc ⊂ Gc+1 = {1G} be the lower central series of G.

Consider an element S =
[
S1, [S2, . . . , [Sk−1, Sk] . . .]

]
of Gk for k ≥ 2. Let SM

k−1 = T a1P1

and SM
k = T a2P2 for a1, a2 ∈ Z and P1, P2 ∈ G2. Then

SM2 ≡
[
S1, [S2, . . . , [S

M
k−1, S

K
M ] . . .]

]
≡

[
S1, [S2, . . . , [T

a1 , T a2 ] . . .]
]
≡ 1G modGk+1,

that is, SM2 ∈ Gk+1. It follows that perGk+1
(Gk) ≤ M2 for all k = 2, . . . , c and so,

per(G2) ≤ M2(c−1). Hence, per(E) ≤ KM2(c−1).

2. Rational spectrum and rationally-primitive actions

Throughout this section G stands for a finitely generated nilpotent group of unitary oper-

ators on a Hilbert space H.

2.1. For a sequence {un}n∈N of elements of a Hilbert space the Cesàro limit C-lim
n

un is

limN→∞
1
N

∑N
n=1 un (if it exists, of course). For a sequence {an}n∈N of real numbers we

also denote lim supN→∞
1
N

∑N
n=1 an by C-limsup

n
an.

Our main tool in this section is the following modification of the van der Corput

lemma (cf. [B1]):

Lemma. Let {un}n∈N be a bounded sequence of elements of a Hilbert space: ‖un‖ < b

for all n ∈ N. Then lim supN→∞
∥
∥ 1
N

∑N
n=1 un

∥
∥
2 ≤ C-limsup

m
C-limsup

n
Re〈un, un+m〉. In

particular, if C-lim
n

〈
un, un+m

〉
exists for every m ∈ N and C-lim

m
C-lim

n
〈un, un+m〉 = 0,

then C-lim
n

un = 0.
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Proof. The proof is standard. Let am = C-limsup
n

Re〈un, un+m〉 for m ∈ N and a =

C-limsup
m

am. Fix M ∈ N. For any N ∈ N we have

∥
∥
∥
1

N

N∑

n=1

un

∥
∥
∥

2

=
∥
∥
∥
1

M

M∑

m=1

1

N

N∑

n=1

un

∥
∥
∥

2

=
1

M2

∥
∥
∥
1

N

N∑

n=1

M∑

m=1

un

∥
∥
∥

2

≤ 1

M2

∥
∥
∥
1

N

N∑

n=1

M∑

m=1

un+m−1

∥
∥
∥

2

+
b2

N2
≤ 1

M2

1

N

N∑

n=1

∥
∥
∥

M∑

m=1

un+m−1

∥
∥
∥

2

+
b2

N2

=
1

M2

1

N

N∑

n=1

M∑

m=1

‖un+m−1‖2 +
1

M2

1

N

N∑

n=1

M−1∑

m=1

M∑

k=m+1

2Re〈un+m−1, un+k−1〉+
b2

N2

≤ b2

M
+

2

M2

1

N

N∑

n=1

M−1∑

m=1

(M −m)Re〈un+m−1, un+k−1〉+
b2

N2
.

If N is large, the last expression is smaller than b2

M + 2
M2

∑M
m=1(M − m)am + δ, where

δ > 0 is arbitrarily small.

Now let M0 ∈ N be such that 1
K

∑K
m=1 am < a+ δ for all K > M0. Since am ≤ b2 for

all m, for any M > M0 we can write

2

M2

M∑

m=1

(M −m)am =
2

M2

M∑

K=1

K∑

m=1

am =
2

M2

( M0∑

K=1

K∑

m=1

am +
M∑

K=M0+1

K∑

m=1

am

)

≤ 2

M2

(M2
0 b

2

2
+

M∑

K=M0+1

K(a+ δ)
)

≤ 2

M2

(M2
0 b

2

2
+

M(M + 1)

2
(a+ δ)

)

.

When M is large enough, it is smaller than a+ 2δ.

2.2. Remark. One can prove in a completely analogous fashion the following uniform

version of the van der Corput lemma:

Lemma. If {un}n∈N is a bounded sequence in a Hilbert space, then

lim sup
N−K→∞

∥
∥
∥

1

N −K

N∑

n=K+1

un

∥
∥
∥

2

≤ lim sup
M→∞

1

M

M∑

m=1

(

lim sup
N−K→∞

1

N −K

N∑

n=K+1

Re〈un, un+m〉
)

.

It is this uniform version of the van der Corput lemma which allows one to obtain (prac-

tically without altering the proofs otherwise) the uniform versions of Theorems A – E

alluded to in the Introduction.
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2.3. A unitary operator T on a Hilbert space H is called ergodic if Tu 6= u for all nonzero

u ∈ H. A unitary operator T is called totally ergodic if Tn is ergodic for all nonzero n ∈ Z.

We will say that G is totally ergodic if every T ∈ G \ {1G} is totally ergodic. Notice that

if G is totally ergodic it has no torsion: Tn 6= 1G for any T 6= 1G and n 6= 0.

2.4. Proposition. If G is totally ergodic, then for any nonconstant G-polynomial g and

any u ∈ H, C-lim
n

g(n)u = 0.

Proof. The statement is true for linear G-polynomials, that is, for g of the form g(n) =

PTn, T 6= 1G: since T is ergodic on H, C-lim
n

PTnu = 0 for all u ∈ H. If g is not

linear, then for every m ∈ Z, m 6= 0, g(n)−1g(n + m) is a nonconstant G-polynomial

of degree < deg g. (Indeed, Dg(n) = g(n)−1g(n + 1) is nonconstant in this case. Using

the fact that G is torsion-free, one can deduce that the G-polynomial g(n)−1g(n +m) =

Dg(n)Dg(n + 1) . . . Dg(n + m − 1) is also nonconstant. We omit the proof.) So, we

may use induction on the degree of g and write for u ∈ H, C-lim
n

〈
g(n)u, g(n + m)u

〉
=

C-lim
n

〈
u, g(n)−1g(n +m)u

〉
= 0. By the van der Corput lemma, applied to the sequence

g(n)u, C-lim
n

g(n)u = 0.

2.5. For u ∈ H, the set
{
T ∈ G

∣
∣ Tmu = u for some m ∈ N

}
is a subgroup of G. Indeed,

it is the closure of the stabilizer
{
T ∈ G

∣
∣ Tu = u

}
of u in G.

For a subgroup H of G, we define Hinv(H) =
{
u ∈ H

∣
∣ Pu = u for all P ∈ H

}
and

Hrat(H) =
{
u ∈ H

∣
∣ Hu is finite

}
. Both the subspace of invariant vectors, Hinv(H), and

the rational spectrum subspace, Hrat(H), are H-invariant. Note that while Hinv(H) is a

closed subspace, Hrat(H) may not be closed.

Specializing to the subgroup generated by T ∈ G, we will denote Hinv(T ) =
{
u ∈ H

∣
∣

Tu = u
}
and Hrat(T ) =

{
u ∈ H

∣
∣ Tnu = u for some n ∈ N

}
.

2.6. Lemma. (a) Let H be a subgroup of G. Then Hinv(H) =
⋂

P∈H Hinv(P ) and

Hrat(H) =
⋂

P∈H Hrat(P ).

(b) Let T ∈ G and F = THT−1. Then Hinv(F ) = T
(
Hinv(H)

)
and Hrat(F ) = T

(
Hrat(H)

)
.

Proof. (a) The first statement is obvious, the second follows from Lemma 1.12.

(b) For any P ∈ H and u ∈ Hinv(H) we have TPT−1(Tu) = Tu. For P ∈ H and

v ∈ Hrat(H), the set
{
(TPT−1)nTv, n ∈ Z

}
=

{
TPnv, n ∈ Z

}
is finite.

2.7. Now we assume that G is not totally ergodic on H. We fix a maximal subgroup H of

G such that Hrat(H) is nontrivial; such a subgroup exists by Lemma 1.9.

2.8. Proposition. (a) H is a closed subgroup of G.

(b) For any T 6∈ H and any nonzero u ∈ Hrat(H), the orbit
{
Tnu, n ∈ Z

}
is infinite.

18



(c) Every element T of the normalizer N(H) of H preserves Hrat(H): T
(
Hrat(H)

)
=

Hrat(H), and for any T ∈ N(H) \H, C-lim
n

Tmnu = 0 for all u ∈ Hrat(H) and m ∈ N.

(d) For any T 6∈ N(H), T
(
Hrat(H)

)
⊥ Hrat(H).

Proof. (a) and (b) are clear from the definition of H: if T ∈ G were such that either

Tn ∈ H for some n ∈ N, or Tmu = u for some m ∈ N and nonzero u ∈ Hrat(H), then we

could add T to H.

If T ∈ N(H), then for every P ∈ H, Q = T−1PT ∈ H. It follows that for every

u ∈ Hrat(H) the set
{
PnTu, n ∈ Z

}
=

{
TQnu, n ∈ Z

}
is finite. Hence Tu ∈ Hrat(H),

which implies that T preservesHrat(H). If T ∈ N(H)\H, then Tm has no nonzero invariant

vectors in Hrat(H) for any m ∈ N, thus we have C-lim
n

Tmnu = 0 for all u ∈ Hrat(H). This

gives (c).

If T 6∈ N(H), then for some P ∈ H one hasQ = T−1PT 6∈ H. So, for any u ∈ Hrat(H),

u 6= 0, the set {Qnu, n ∈ Z} =
{
T−1PnTu, n ∈ Z

}
is infinite, and hence Tu 6∈ Hrat(H).

By Lemma 1.14, T ∈ Nk(H) \Nk−1(H) for some 2 ≤ k ≤ c. We will use induction on k

to prove that, in fact, Tu ⊥ Hrat(H).

First, let T ∈ N2(H) \ N(H), and let P ∈ H be such that Q = T−1PT 6∈ H. Since

T ∈ N
(
N(H)

)
, Q ∈ N(H). Thus, for any v ∈ Hrat(H) we have

〈Tu, v〉 = C-lim
n

〈PnTu, Pnv〉 = C-lim
n

〈TQnu, Pnv〉 = 0,

since Pmv = v for some m ∈ N and C-lim
n

Qmnu = 0 by (c).

Now assume that for some k, 2 ≤ k ≤ c − 1, for all Q ∈ Nk(H) \ N(H) one has

QHrat(H) ⊥ Hrat(H). Since, by Proposition 1.18, N(H) is closed in G, Qn 6∈ N(H) for all

n ∈ Z, n 6= 0. So, Qnu, n ∈ Z, are all pairwise orthogonal for distinct n. In particular,

C-lim
n

Qmnu = 0 for any m ∈ Z, m 6= 0. Let T ∈ Nk+1(H) \ N(H), let P ∈ H be such

that Q = T−1PT 6∈ H. Then Q ∈ Nk(H) and for any v ∈ Hrat(H) we again have

〈Tu, v〉 = C-lim
n

〈PnTu, Pnv〉 = C-lim
n

〈TQnu, Pnv〉 = 0.

2.9. Proposition. Let g be a G-polynomial with g(0) = 1G. If g ∈ ℘H then for any

u ∈ Hrat(H), the sequence g(n)u is periodic; in particular, C-lim
n

g(n)u exists. If g 6∈ ℘H,

then for any u ∈ Hrat(H) one has C-lim
n

g(n)u = 0.
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Proof. The first statement of the proposition is clear from the representation g(n) =

P
p1(n)
1 . . . P

pr(n)
r , P1, . . . , Pr ∈ H.

Let g 6∈ ℘H. Let k ∈ N be such that g ∈ ℘Nk(H) and g 6∈ ℘Nk−1(H). Consider

the mapping f :Z2 −→ G, f(m,n) = g(m)−1g(n)−1g(n +m). For every m ∈ Z, gm(n) =

f(m,n) is a G-polynomial. Assume that gm ∈ ℘Nk−1(H) for infinitely many m ∈ Z;

then, for every n ∈ Z, the G-polynomial ĝn(m) = f(m,n) meets Nk−1(H) infinitely

many times, and since Nk−1(H) is closed, ĝn(m) ∈ ℘Nk−1(H) for all m ∈ Z. Thus,

we have two possibilities: either gm(n) ∈ ℘Nk−1(H) for only finitely many m 6= 0, or

f(m,n) ∈ Nk−1(H) for all m,n ∈ Z.

In the first case, since deg
(
g(n)−1g(n+m)

)
< deg g, we may apply induction on the

degree of g and assume that C-lim
n

g(n)−1g(n+m)u = 0 for all but finitely many m ∈ Z.

Then

C-lim
m

C-lim
n

〈
g(n)u, g(n+m)u

〉
= C-lim

m

〈
u,C-lim

n
g(n)−1g(n+m)u

〉
= 0,

and by the van der Corput lemma, C-lim
n

g(n)u = 0.

Now let us assume that f(m,n) = g(m)−1g(n)−1g(n+m) ∈ Nk−1(H) for all m,n ∈ Z.

Then g:Z −→ Nk(H)/Nk−1(H) is a homomorphism, and so, if we put T = g(1), then

g(n) = Tnh(n), where h is an Nk−1(H)-polynomial.

Let u ∈ Hrat(H). If k = 1, that is, h is an H-polynomial, then by Proposition 1.21,

h(n)u periodically runs through a finite set of vectors in Hrat(H). Let m be the period of

the sequence h(n)u, n ∈ Z. Since T ∈ N(H) \H, Tm preserves Hrat(H) and is ergodic on

Hrat(H), we have C-lim
n

g(n)u = C-lim
n

Tnh(n)u = 0. If k > 1, the vectors Tnh(n)u, n ∈ Z,

are pairwise orthogonal, and thus again C-lim
n

g(n)u = 0.

2.10. We will now bring some facts pertaining to a “structure theory” of actions of a

finitely generated nilpotent group of unitary operators with respect to “subspaces of ra-

tional spectrum” of its elements. (For more information about the structure theory see

[L3].) Let F be the set of subgroups of G conjugate with H: F = {THT−1, T ∈ G}.
For F ∈ F , F = THT−1, we have Hrat(F ) = T

(
Hrat(H)

)
, so by Proposition 2.8, the

subspaces Hrat(F ), F ∈ F , are pairwise orthogonal. Hence, G acts by permutations on

the set
{
Hrat(F ), F ∈ F

}
of pairwise orthogonal subspaces of H. By Proposition 2.8, for

every F ∈ F the stabilizer of Hrat(F ) is equal to N(F ), and the elements of N(F ) \ F are

totally ergodic on Hrat(F ). Since H is a closed subgroup of G, F ∈ F is also closed, and

by Proposition 1.18, N(F ) is closed. That is, for any T 6∈ N(F ), never Tn ∈ N(F ) for

n 6= 0. Hence the orbit of Hrat(F ) under the action of T 6∈ N(F ) is infinite.

2.11. Definition. An action of a finitely generated nilpotent group of unitary operators

on a Hilbert space H is rationally-primitive if there is a class F of conjugate subgroups of
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G so that:

(i) the subspaces Hrat(F ), F ∈ F , are pairwise orthogonal and span H; elements of G

permute the subspaces Hrat(F ), F ∈ F , and the stabilizer of Hrat(F ) under this action is

N(F );

(ii) for every F ∈ F , every T ∈ N(F ) \ F is totally ergodic on Hrat(F );

(iii) for every F ∈ F and T 6∈ N(F ), TnHrat(F ) 6= Hrat(F ) for all n ∈ Z, n 6= 0.

2.12. The above considerations give us the following structure theorem:

Theorem. For any unitary action of a finitely generated nilpotent group G on a Hilbert

space H, H is decomposable into the direct sum of pairwise orthogonal G-invariant sub-

spaces with rationally-primitive action of G on each of them.

Indeed, under the notation in 2.10 above, let H′ be the closure in H of
⊕

F∈F Hrat(F ).

Then H′ is a G-invariant subspace of H, and the action of G on H′ is rationally primitive.

(Note that a totally ergodic action of G is also rationally-primitive: here H = {1G} and

Hrat(H) = H.) Since the orthogonal complement of H′ in H is G-invariant, an application

of Zorn’s lemma gives the result.

2.13. Example. Here is an example of a rationally-primitive action of a nilpotent group.

Take for H the space l2(C). Let {uj}j∈Z be the standard basis in H. Put Hj = Cuj , j ∈ Z.

Let λ = e2πiα, where α ∈ R is irrational. Define unitary operators P , T and S on H
by Puj = λuj , Tuj = λjuj and Suj = uj−1, j ∈ Z. Then T and S commute with P and

[T, S] = P , thus the group G generated by P , T and S is nilpotent of class 2.

Let H = 〈T 〉 and F be the class of subgroups of G conjugate with H:

F = {Hk

∣
∣ Hk = SkHS−k, k ∈ Z}.

For k ∈ Z put Tk = SkTS−k. Then Hk = 〈Tk〉, Tk(Hj) = Hj for all j ∈ Z, and

Tk

∣
∣
Hj

= P j−k
∣
∣
Hj

, j ∈ Z. Thus Hrat(Hk) = Hrat(Tk) = Hinv(Tk) = Hk. The normalizer

N(Hk) of Hk is generated by Tk and P , P preserves Hk and is totally ergodic on Hk. Also,

any SaT bP c ∈ G \N(Hk), that is, with a 6= 0, maps Hk onto Hk+a.

2.14. Proposition. Let the action of G on H be rationally-primitive and let F be a

class of conjugate subgroups of G described in 2.11. Then for any subgroup E ⊆ G,

Hrat(E) =
⊕

E⊆F∈F Hrat(F ).

Proof. In light of Lemma 2.6, it suffices to consider the case E = 〈T 〉, T ∈ G. Let u ∈ H,

u =
∑

F∈F uF with uF ∈ Hrat(F ). Since T permutes the spaces Hrat(F ), F ∈ F , u belongs

to Hrat(T ) if and only if all uF , F ∈ F , are in Hrat(T ). By Proposition 2.8, uF ∈ Hrat(T )

if and only if T ∈ F . So, Hrat(T ) =
⊕

T∈F∈F Hrat(F ).
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Remark. One can actually show that Hrat(E) =
⊕

E⊆F∈F Hrat(F ) (see [L3]).

2.15. As another corollary, we obtain the following “nil”-polynomial generalization of the

von Neumann theorem:

Theorem C. For every G-polynomial g and every u ∈ H, C-lim
n

g(n)u exists.

Proof. We may assume that the action of G on H is rationally-primitive and, moreover,

that u ∈ Hrat(F ) for some F ∈ F . After replacing g by g(0)−1g, we may also assume that

g(0) = 1G. But then C-lim
n

g(n)u exists by Proposition 2.9.

2.16. Let g be a G-polynomial with g(0) = 1G and let E be the group generated by

elements of g: E =
〈
g(n), n ∈ Z

〉
. We define Hrat(g) = Hrat(E); it is a (not necessarily

closed) subspace of H, invariant under the action of elements of g.

2.17. Theorem. Let u ∈ H and let v be the orthogonal projection of u onto the closure

of Hrat(g). Then C-lim
n

g(n)u = C-lim
n

g(n)v. In particular, C-lim
n

g(n)u ∈ Hrat(g).

Proof. We may assume that the action of G on H is rationally-primitive; let F be the

corresponding class of conjugate subgroups of G. Let E =
〈
g(n), n ∈ Z

〉
. Then for F ∈ F ,

g ∈ ℘F if and only if E ⊆ F . It follows from Proposition 2.9 and Proposition 2.14 that

C-lim
n

g(n)u = 0 for any u ⊥ Hrat(E).

2.18. Let u ∈ H. We define the period of G with respect to u, peru(G), as a minimal d ∈ N

such that T du = u for all T ∈ G (if such d exists). Let Gu be the stabilizer of u under

the action of G: Gu =
{
P ∈ G

∣
∣ Pu = u

}
. Then, clearly, peru(G) = perGu

(G) (see 1.22).

Similarly, for a G-polynomial g we define peru(g) = perGu
(g) (see 1.26).

2.19. Proposition. For every r ∈ N and ε > 0 there is M ∈ N such that if g is a

G-polynomial of degree ≤ r with peru(g) > M for all u ∈ H, then for any u ∈ H one has
∥
∥C-lim

n
g(n)u

∥
∥ ≤ ε‖u‖.

We may assume that g(0) = 1G and that G is generated by the elements of g. Then

by Proposition 1.31, peru(G) is large if and only if peru(g) is large. Thus, Proposition 2.19

can be reformulated in the following form:

2.20. Proposition. For every r ∈ N and ε > 0 there is L ∈ N such that if peru(G) > L

for all u ∈ H and g is a G-polynomial of degree ≤ r with g(0) = 1G and such that the

elements of g generate G, then for any u ∈ H one has
∥
∥C-lim

n
g(n)u

∥
∥ ≤ ε‖u‖.

Proof. Take any u ∈ H; by Theorem 2.17 we may assume that u ∈ Hrat(g). We may also

assume that H = Span(Gu) and so, is finite-dimensional. Furthermore, we may assume

22



that H is a minimal G-invariant space. Then H = Span(Gv) for any v ∈ H.

For every v ∈ H, let Gv be the stabilizer of v under the action of G. For any

S ∈ G we have GSv = SGvS
−1. Since H is spanned by the elements Sv, S ∈ G, the

group
⋂

S∈G SGvS
−1 acts trivially on H. Let us factorize G by the subgroup which acts

trivially on H. Then
⋂

S∈G SGvS
−1 = {1G} for any v ∈ H. Since S

(
Gv/(G2 ∩Gv)

)
S−1 =

Gv/(G2 ∩Gv), it follows that Gv ⊆ G2 for all v ∈ H.

Define f(m,n) = g(m)−1g(n)−1g(n + m), m,n ∈ Z. For every m ∈ Z, let gm(n) =

f(m,n); gm is a G-polynomial of degree ≤ r− 1 with gm(0) = 1G. Let E be the subgroup

of G generated by the values of f ; by Lemma 1.34, G2 ⊆ E.

We will prove the proposition by induction on r. If r ≤ 1, g has form g(n) = Tn,

T ∈ G, and if perv(g) ≥ 2 for v ∈ H, then Tv 6= v. Hence, if perv(g) ≥ 2 for all v ∈ H,

then T is ergodic on H, and C-lim
n

g(n)v = C-lim
n

Tnv = 0 for any v ∈ H.

Now assume that Propositions 2.19 and 2.20 are true for r − 1, and let M ′ be the

constant corresponding to r−1 in Proposition 2.19. This means that if h is a G-polynomial

of degree ≤ r − 1 and perv(h) > M ′ for all v ∈ H, then
∥
∥C-lim

n
h(n)v

∥
∥ ≤ ε‖v‖ for any

v ∈ H. Let K be such that, by Proposition 1.33, applied to f and E defined above, if

H is a subgroup of E with perH(E) > K, then the set
{
m ∈ Z

∣
∣ perH(gm) < M ′} has

density < ε. Finally, by Proposition 1.36 we can choose N such that if per(E) > N then

perG2
(E) > K.

Consider two cases. First, assume that per(E) > N . Then by the choice of N , for all

v ∈ H and for all m ∈ Z but a set of density < ε, we have perGv
(gm) ≥ perG2

(gm) > M ′

and so,
∥
∥C-lim

n
gm(n)v

∥
∥ ≤ ε‖v‖. Thus,

C-limsup
m

∣
∣C-lim

n
〈g(n)v, g(n+m)v〉

∣
∣ = C-limsup

m

∣
∣C-lim

n
〈v, g(n)−1g(n+m)v〉

∣
∣

≤ ‖v‖C-limsup
m

∥
∥C-lim

n
g(n)−1g(n+m)v

∥
∥ = ‖v‖C-limsup

m

∥
∥C-lim

n
gm(n)v

∥
∥ ≤ 2ε‖v‖2,

which implies
∥
∥C-lim

n
g(n)u

∥
∥ ≤

√
2ε‖v‖ by the van der Corput lemma.

Now consider the case per(E) = K ≤ N . Fix b ∈ Z and put Tb = g(b)−1g(b + K).

Then by Lemma 1.35 we have g(b +Kn) = g(b)Tn
b for all n ∈ Z. If Tbv = v for some v,

then g(b+Kn)v = g(b)v for all n ∈ Z, which is impossible by Corollary 1.32 if perv(g) is

large enough. Thus, if perg(v) is large enough for all v ∈ H, then Tb is ergodic on H and

so, C-lim
n

g(b+Kn)v = g(b) C-lim
n

Tnv = 0 for all v ∈ H. Since it is true for all b ∈ Z, we

obtain

C-lim
n

g(n)v =
1

K

K−1∑

b=0

C-lim
n

g(b+Kn)v = 0

for all v ∈ H.
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2.21. Given a subgroup E of G and l ∈ N, we define

H(l)(E) =
{
u ∈ H

∣
∣ P lu = u for all P ∈ E

}
=

{
u ∈ H

∣
∣ peru(E) divides l

}
.

Lemma. Let E be a subgroup of G and let l ∈ N. Then H(l)(E) is a closed E-invariant

subspace of H. If E is normal in G, then H(l)(E) is also G-invariant.

Proof. It is clear that the subspace H(l)(E) is closed. Assume that T normalizes E:

T−1ET = E. Then for any u ∈ H(l)(E) and P ∈ E we have

P l(Tu) = T (T−1P lT )u = T (T−1PT )lu = Tu.

2.22. Lemma. For any subgroup E of G, Hrat(E) =
⋃

l∈N
H(l)(E).

Proof. It is clear that Hrat(E) ⊆ ⋃

l∈N
H(l)(E). Let u ∈ H(l)(E) and let Gu be the

stabilizer of u. Then P l ∈ Gu for all P ∈ E. Since E, as a subgroup of G, is finitely

generated and nilpotent, by Lemma 1.12 Gu ∩E has finite index in E. It follows that Eu

is finite and hence u ∈ Hrat(E).

2.23. Let g ∈ ℘G with g(0) = 1G. For l ∈ N, we define H(l)(g) = H(l)(E), where E is the

subgroup of G generated by the elements of g. We then have Hrat(g) =
⋃

l∈N
H(l)(g).

Theorem 2.17 tells us that for any vector u ∈ H, the limit C-lim
n

g(n)u lies in

Hrat(g) =
⋃

l∈N
H(l)(g). It follows now from Proposition 2.19 that the main contribution

to C-lim
n

g(n)u is made by the components of u lying in H(l)(g) with small l:

Theorem D. For every r ∈ N and ε > 0 there is L ∈ N such that if g is a G-polynomial

of degree ≤ r with g(0) = 1G, and u ∈ H is such that u ⊥ H(l)(g) for all l ≤ L, then
∥
∥C-lim

n
g(n)u

∥
∥ ≤ ε‖u‖.

Proof. We may assume that the elements of g generate G. Then the G-invariant space
(
Span

⋃L
l=1 H(l)(g)

)⊥
satisfies the assumptions of Proposition 2.20.

3. Existence of C-lim
n

TnuSnv and joint ergodicity of two transformations

3.1. Throughout this section X = (X,B, µ) is a measure space with µ(X) = 1. We will

denote the Hilbert space L2(X) byH and identify the subspace of constants inH with C. A

measure preserving transformation of X induces a unitary operator on H; by conventional

abuse of notation, we will denote the transformation and the corresponding operator by

the same symbol.

Let us now remark that without loss of generality we may assume that the measure

space X is Lebesgue. This will allow us to freely use the measure theoretical apparatus
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developed in [F1], [Z1], [Z2] and [F3]. To see that we indeed can make such an assumption,

we observe that, first, we clearly can assume that µ is non-atomic, and, second, given

measure preserving transformations T and S of X and functions u, v ∈ L2(X), we can

pass, if needed, to a T, S-invariant separable subalgebra of B with respect to which all the

functions Tnu, Snv, n ∈ Z, are measurable. It remains to quote a well known theorem of

Carathéodory (see, for example [Roy], Ch. 15, Theorem 4) which states that any separable

atomless measure algebra (X,B, µ) with µ(X) = 1 is isomorphic to the measure algebra L
induced by the Lebesgue measure on the unit interval. This isomorphism carries T and S

into Lebesgue-measure preserving isomorphisms of L, which by the classical von Neumann

Theorem ([Roy], Ch. 15, Theorem 20) admit realization as point mappings.

3.2. A sub-σ-algebra D of B gives rise to a factor Y = (X,D, µ) of X. The Hilbert space

L2(Y) = L2(X,D, µ) is a closed subspace of H. We denote by E(·|Y) the orthogonal

projection from L2(X) onto L2(Y). E(·|Y) maps L∞(X) onto L∞(Y) and is extendible

by continuity to a mapping L1(X) −→ L1(Y) ([F3], section 5.3). It is also clear that if u

is a nonnegative function, then E(u|Y) is nonnegative as well.

It is sometimes useful to interpret a factor Y as an underlying measure space Y =

(Y,D, ν) provided with a mapping η:X −→ Y satisfying µ
(
η−1(B)

)
= ν(B) for all B ∈ D.

Under the assumption that (X,B, µ) is a regular space, there is a decomposition of µ

with respect to Y , namely, a system of measures µy, y ∈ Y , with µ =
∫
µydν (see [F3],

section 5.4). Then the projection E(·|Y) can be represented via the disintegration with

respect to µy: for u ∈ L2(X), E(u|Y)(y) =
∫
udµy for almost all y ∈ Y .

3.3. Let Y = (X,D, µ) be a factor of X. The space H = L2(X) has the structure

of a module over the ring L∞(Y). A closed subspace of H which is invariant under

multiplication by functions from L∞(Y) will be called a submodule of H (over Y ). A

submodule M of H is said to be finite-dimensional if there are u1, . . . , uk ∈ M such that

the set
{
ϕ1u1 + . . .+ ϕkuk

∣
∣ ϕ1, . . . , ϕk ∈ L∞(Y)

}
is dense in M.

3.4. Let T be a measure preserving transformation of X = (X,B, µ). A factor Y =

(X,D, µ) of X is said to be T -invariant if D is a T -invariant sub-σ-algebra of B.
Let M be a T -invariant submodule of H over Y. T is said to be weakly mixing on M

relative to Y if for any u, v ∈ M, the sequence of L1(Y)-functions E(uTnv|Y), n = 1, 2, . . .,

converges to zero in density. (A sequence {un}n∈N in a topological space converges to a

point u in density if for any neighborhood U of u, the set #
{
n ∈ N

∣
∣ un ∈ U

}
has

density 1, that is, #
{
n ∈ {1, . . . , N}

∣
∣ un ∈ U

}
/N −→

N→∞
1. If {un}n∈N is a bounded

sequence of vectors in a Hilbert space, then the convergence of un to zero in density is

equivalent to C-lim
n

‖un‖ = 0.) T is said to have on M relatively discrete spectrum over Y
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(or to be compact on M relative to Y) if M is spanned by finite-dimensional T -invariant

submodules.

Let X′ = (X,B′, µ) be an intermediate T -invariant factor of X: D ⊆ B′ ⊆ B. Then

T is said to have on X′ relatively discrete spectrum over Y if T has relatively discrete

spectrum over Y on the submodule L2(X′) of H, and T is said to be weakly mixing on X′

relative to Y if T is weakly mixing relative to Y on the orthogonal complement of L2(Y)

in L2(X′).

3.5. We will need the following structure theorem:

Theorem. (Cf. [Z2], Theorem 7.3 and Corollary 7.10, and [F3], Lemma 7.3.) Let T be

a measure preserving transformation of X and let Y be a T -invariant factor of X. Then

H is the direct sum Hwm/Y (T )⊕Hds/Y (T ) of orthogonal T -invariant submodules such that

T is weakly mixing on Hwm/Y (T ) relative to Y and T has on Hds/Y (T ) relatively discrete

spectrum over Y. The space Hds/Y (T ) contains L2(Y) and corresponds to a T -invariant

factor X′ of X: Hds/Y (T ) = L2(X′).

3.6. We will also use the following proposition:

Proposition. (Cf. [CL1], the proof of Proposition 5.) Let X1 and X2 be factors of X and

let Y be a common factor of X1 and X2. Let T be a measure preserving transformation of

X1 and S be a measure preserving transformation of X2 such that Y is T - and S-invariant

and T and S coincide on Y: Tϕ = Sϕ for all ϕ ∈ L2(Y). Also assume that T and S

have on X1 and, respectively, on X2 relatively discrete spectrum over Y. Then for any

u ∈ L∞(X1) and v ∈ L∞(X2), C-limn
TnuSnv exists in L2(X).

Proof. Since the expression TnuSnv is linear in u and v, we may assume that u lies in a

finite-dimensional T -invariant submodule M of H over Y, and v lies in a finite-dimensional

S-invariant submodule N of H over Y. We also may assume that the action of T (= S) on

Y is ergodic (otherwise, we can deal with the members of the ergodic decomposition of Y

and induced decomposition of X). Under this assumption, M possesses an orthonormal

basis over Y: a finite system of functions u1, . . . , uk ∈ L∞(X) spanning M as a module

over L∞(Y) and satisfying E(uiut|Y) = δi,t, i, t = 1, . . . , k (see [Z2] or [L2]). Let v1, . . . , vl

be an orthonormal basis of N over Y. Since for ϕ ∈ L2(Y), S(ϕv) = SϕSv = TϕSv, it

suffices to prove that C-lim
n

TnϕTnuiS
nvj exists for all i, j and all ϕ ∈ L2(Y).

Let Tui(x) =
∑k

t=1 ai,t(x)ut(x), i = 1, . . . , k, with ai,t ∈ L∞(Y), i, t = 1, . . . , k. Let

A(x) =
(
ai,t(x)

)k

i,t=1
. Since the operator induced by T on L2(X) is unitary, A is a unitary

matrix: AA∗ = I. Iterating the relation T





u1
...

uk



 = A(x)





u1
...

uk



 one gets Tn





u1
...

uk



 =
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A(Tnx) . . . A(Tx)A(x)





u1
...

uk



. Define A(n)(x) = A(Tnx) . . . A(Tx)A(x), n ∈ N. Similarly,

define a unitary matrix B(x) =
(
bj,s(x)

)l

j,s=1
with entries from L∞(Y) by S





v1
...

vl



 =

B(x)





v1
...

vl



, and put B(n)(x) = B(Snx) . . . B(Sx)B(x) = B(Tnx) . . . B(Tx)B(x), n ∈ N.

Then

TnuiS
nvj =

k∑

t=1

l∑

s=1

a
(n)
i,t b

(n)
j,s utvs,

where a
(n)
i,t , b

(n)
j,s ∈ L∞(Y) are the entries of the matrices A(n) and B(n) respectively. Thus

we have only to prove that the sequence (Tnϕ)a
(n)
i,t b

(n)
j,s has C-limit in L2(Y) for all i, t, j, s

and all ϕ ∈ L2(Y). We will do this by considering “an abstract model” of the action of

T×S on M⊗N . Let U be a k-dimensional vector space with orthonormal basis e1, . . . , ek,

and let V be an l-dimensional vector space with orthonormal basis e′1, . . . , e
′
l. Consider the

Hilbert space W = L2(Y)⊗ U ⊗ V and define an operator R on W by

R(ϕ⊗ ei ⊗ e′j)(x) =
k∑

t=1

l∑

s=1

ϕ(Tx)ai,t(x)bj,s(x)⊗ et ⊗ e′s,

i = 1, . . . , k, j = 1, . . . , l, ϕ ∈ L2(Y).

ThenR is a unitary operator onW , andRn(ϕ⊗ei⊗e′j) =
∑k

t=1

∑l
s=1(T

nϕ)a
(n)
i,t b

(n)
j,s ⊗et⊗e′s.

Since by the ergodic theorem C-lim
n

Rn(ϕ⊗ei⊗e′j) exists in W , the sequence (Tnϕ)a
(n)
i,t b

(n)
j,s

has C-limit for all t, s, and we are done.

3.7. We are now in position to prove our main result:

Theorem A. Let T and S be measure preserving transformations of X generating a

nilpotent group G. For any u, v ∈ L∞(X), C-lim
n

TnuSnv exists in L2(X).

Proof. Define g(n) = T−nSn, n ∈ Z. Then g is a G-polynomial with deg g ≤ c (to see

this, note that the vector degree (see 1.4) of the G-polynomials Tn, Sn and so, of g does

not exceed (1, 2, . . . , c)) and g(0) = 1G. Let H be the subgroup of G generated by g; one

can check that

H =
{
T a1Sa2 . . . T at−1Sat

∣
∣ a1 + . . .+ at = 0

}
,

and that H is normal in G.

Let u, v ∈ L∞(X) and let M be such that ess-sup|u|, ess-sup|v| < M . Fix ε > 0.

We will show that the sequence 1
N

∑N
n=1 T

nuSnv, N ∈ N, is 4M2
√
ε-close to a sequence

converging in H = L2(X). Since ε is arbitrary, the theorem will follow.
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Let L be the number whose existence, given ε and r = c, is guaranteed by Theo-

rem 2.23. Define

H′ = H(L!)(H) =
{
u ∈ H

∣
∣ PL!u = u for all P ∈ H

}
. (3.1)

Since H is normal in G, by Lemma 2.21 H′ is a G-invariant subspace of H. Let D be the

σ-algebra generated by functions from H′ (that is, the minimal sub-σ-algebra of B with the

property that all functions from H′ are measurable with respect to D). Let Y = (X,D, µ)

be the corresponding G-invariant factor of X. One can check that H′ = L2(Y).

Let Hwm/Y (T ) be the subspace of H on which T is weakly mixing relative to Y, and

let Hds/Y (T ) be the subspace where T has relatively discrete spectrum over Y. Then

H = Hwm/Y (T ) ⊕ Hds/Y (T ), and Hds/Y (T ) = L2(X1) for a factor X1 = (X,BT , µ) of X

(Theorem 3.5). Let H = Hwm/Y (S) ⊕ Hds/Y (S) be the analogous decomposition corre-

sponding to S, and let X2 = (X,BS , µ) be such that Hds/Y (S) = L2(X2). Decompose

u = u′ + u′′ with u′ ∈ Hds/Y (T ) and u′′ ∈ Hwm/Y (T ). Then ess-sup|u′| < M and so,

ess-sup|u′′| < 2M . Similarly, let v = v′ + v′′ with v′ ∈ Hds/Y (S), v′′ ∈ Hwm/Y (S), then

ess-sup|v′| < M and ess-sup|v′′| < 2M .

Let us write 1
N

∑N
n=1 T

nuSnv as

1

N

N∑

n=1

Tnu′Snv′ +
1

N

N∑

n=1

Tnu′Snv′′ +
1

N

N∑

n=1

Tnu′′Snv.

We will show that the first average converges as N tends to infinity, and that the other two

are asymptotically small: lim sup of the norm of each of them does not exceed 2M2
√
ε.

First, assume that at least one of u, v lies in the relatively-mixing component of the

corresponding operator: say, u = u′′ (the treatment of the case of v = v′′ is completely

analogous). Note that, under the made assumption, our u = u′′ satisfies ess-sup|u| < 2M

(as for v, we have, as before, and ess-sup|v| < M).

We will use the van der Corput lemma (Lemma 2.1). For n,m ∈ N, write
∫

(TnuSnv)(Tn+muSn+mv)dµ =

∫

Tn(uTmū)Sn(vTmv̄)dµ =

∫

umg(n)vmdµ,

where um = uTmū and vm = vSmv̄.

Fix m ∈ N. Since ṽm = vm−E(vm|Y) is orthogonal to H′, ṽm is orthogonal to H(l)(g)

for all l ≤ L. By Theorem 2.23,

∥
∥C-lim

n
g(n)ṽm

∥
∥ ≤ ε‖ṽm‖ ≤ ε‖vm‖.

Hence,

C-lim
n

∣
∣
∣

∫

umg(n)
(
vm − E(vm|Y)

)
dµ

∣
∣
∣ = C-lim

n

∣
∣
∣

∫

umg(n)ṽmdµ
∣
∣
∣ ≤ ε‖um‖‖vm‖ ≤ 4M4ε.
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On the other hand,

∣
∣
∣

∫

umg(n)
(
E(vm|Y)

)
dµ

∣
∣
∣ =

∣
∣
∣

∫

E(um|Y)g(n)
(
E(vm|Y)

)
dµ

∣
∣
∣ ≤

∥
∥E(um|Y)

∥
∥
∥
∥E(vm|Y)

∥
∥

for all n ∈ Z. Since
∥
∥E(um|Y)

∥
∥ =

∥
∥E(uTmū|Y)

∥
∥ −→

m→∞
0 in density, we have

C-limsup
m

∣
∣
∣C-lim

n

∫

umg(n)vmdµ
∣
∣
∣ ≤ 4M4ε.

By the van der Corput lemma,

lim sup
N→∞

∥
∥
∥
1

N

N∑

n=1

TnuSnv
∥
∥
∥ ≤ 2M2

√
ε.

Now assume that both u ∈ Hds/Y (T ) and v ∈ Hds/Y (S). Since, by (3.1), the group

H has finite period on the space H′ = L2(Y), the H-polynomial g(n) = T−nSn has finite

period on H′ by Proposition 1.31(a). Let K ∈ N be such that T−KSK is trivial on H′,

that is, TK coincides with SK (almost everywhere) on Y.

The conditions of Proposition 3.6 are now satisfied: Y is a common factor of X1

and X2, T
K and SK coincide on Y, TK has on XT relatively discrete spectrum over Y

and SK has on XS relatively discrete spectrum over Y. Thus, the limit C-lim
n

TKnũSKnṽ

exists for any ũ ∈ L∞(XT ) and ṽ ∈ L∞(XS). In particular, C-lim
n

TKn(Tmu)SKn(Smv) =

C-lim
n

TKn+muSKn+mv exists for every m = 0, . . . ,K− 1. So, C-lim
n

TnuSnv exists in this

case.

3.8. The proof of Theorem A supplies some information about the location of C-lim
n

TnuSnv.

Let H be the normal subgroup of G introduced in the proof of Theorem A. For l ∈ N, let

Dl be the σ-algebra generated by functions from H(l)(H), and let Yl be the corresponding

factor of X: Yl = (X,Dl, µ). Let Hds/Yl(T ) be the subspace of H on which T has relatively

discrete spectrum over Yl, let Hds/Yl(S) be the subspace of H on which S has relatively

discrete spectrum over Yl, and let XT,l, XS,l be the corresponding factors of X. Let Y

be the factor of X generated by all Yl, l ∈ N, namely, Y = (X,D, µ) where D is the

σ-algebra generated by all Dl, l ∈ N. Finally, let XT be the factor generated by all XT,l,

l ∈ N, let XS be the factor generated by all XS,l, l ∈ N, and let X(T,S) be the factor

generated by XT and XS . Since H is normal in G, all the factors Yl,XT,l,XS,l, l ∈ N,

and Y,XT ,XS ,X(T,S) are G-invariant.

Corollary of the proof. For u, v ∈ L∞(X) let u′ = E(u|XT ) and v′ = E(v|XS). Then

C-lim
n

TnuSnv = C-lim
n

Tnu′Snv′. In particular, C-lim
n

TnuSnv ∈ L2(X(T,S)).
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3.9. It follows from a general nilpotent Szemerédi theorem proved in [L2] that if T

and S generate a nilpotent group, then for any set A ∈ B with µ(A) > 0 one has

lim infN→∞
1
N

∑N
n=1 µ

(
A ∩ T−nA ∩ S−nA

)
> 0. The following theorem gives a new,

direct proof of this fact, and shows that one can actually replace lim inf by lim. (The

same proof gives a little bit more, namely the existence and the positivity of the limit

limN−M→∞
1

N−M

∑N
n=M+1 µ(A ∩ T−nA ∩ S−nA); see Remark 2.2.)

Theorem E. Let T and S be measure preserving transformations of X generating a

nilpotent group. Then for any A ∈ B with µ(A) > 0, C-lim
n

µ
(
A ∩ T−nA ∩ S−nA

)
exists

and is positive.

Proof. The limit

C-lim
n

µ
(
A ∩ T−nA ∩ S−nA

)
= C-lim

n

∫

1AT
n1AS

n1Adµ =

∫

1A C-lim
n

(Tn1AS
n1A)dµ

exists by Theorem A. We will use the notation introduced in 3.8. Let u = E(1A|XT ) and

v = E(1A|XS). Then 0 ≤ u, v ≤ 1, and u(x) > 0, v(x) > 0 for almost all x ∈ A. By

Corollary 3.8, C-lim
n

µ(A ∩ T−nA ∩ S−nA) = C-lim
n

∫
1AT

nuSnvdµ. Let ϕ = E(1Auv|Y),

then ϕ(x) > 0 for almost all x ∈ A. Let a > 0 be such that the set B =
{
x ∈ X

∣
∣ ϕ(x) > a

}

has positive measure: ν(B) = b > 0.

Choose l ∈ N so that, if we put u′ = E(u|XT,l), v
′ = E(v|XS,l) and ϕ′ = E(ϕ|Yl),

then ‖u′ − u‖2 < a2b
103 , ‖v′ − v‖2 < a2b

103 and ‖ϕ′ − ϕ‖2 < a2b
103 . To simplify notation, let us

view Yl as an underlying measure space (Yl,Dl, ν). Let µ =
∫
µydν be the decomposition

of µ with respect to Yl. Then there is B′ ∈ Dl with µ(B′) = b′ ≥ 7
10b such that ϕ′(y) > 9a

10 ,

‖u′−u‖y < a
10 and ‖v′−v‖y < a

10 for all y ∈ B′. (‖ · ‖y denotes the norm in L2(X,B, µy).)

The function u′ lies in L2(XT,l), the space on which T has relatively discrete spectrum

over Yl. One can easily show that the orbit {Tnu′}n∈Z is relatively compact with respect

to Yl: for any ε > 0 there is a finite set u1, . . . , uk ∈ L2(XT,l) such that for almost every

y ∈ Yl and every n ∈ Z there is 1 ≤ t(n, y) ≤ k for which
∥
∥Tnu′ − ut(n,y)

∥
∥
y
< ε. Let

u1, . . . , uk1 be such a set corresponding to ε = a
10 . Analogously, let v1, . . . , vk2 ∈ L2(XS,l)

be such that for almost all y ∈ Yl,
∥
∥Snv′ − vs(n,y)

∥
∥
y
< a

10 for some 1 ≤ s(n, y) ≤ k2. Put

k = k1k2 + 1.

Since, under the notation of 3.8, the group H has finite period on the space H(l)(H) =

L2(Yl), the H-polynomial g(n) = T−nSn has finite period on H′. Let K ∈ N be such that

T−KSK is trivial on H′; then TK coincides with SK (almost everywhere) on Yl.

A set of integers is called thick if it contains arbitrarily long intervals in Z. We need

the following simple lemma, whose proof is analogous to that of Lemma 5.1 in [BMZ]:

Lemma. Let T be a measure preserving transformation of a probability measure space

(Y,D, ν), let D ∈ D, ν(D) = d > 0. Then for any thick set Q ⊆ Z and any k ∈ N there
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are n1, . . . , nk ∈ Q such that ν
(⋂k

i=1 T
−niD

)
> 1

2d
k and nj −ni ∈ Q for all 1 ≤ i < j ≤ k.

Let Q be a thick set in Z. Applying the above lemma to the set B′ and (the thick)

set
{
n ∈ Z

∣
∣ Kn ∈ Q

}
, we can find n1, . . . , nk ∈ KZ such that nj −ni ∈ Q, 1 ≤ i < j ≤ k,

and for C =
⋂k

i=1 T
−niB′ one has ν(C) = c > 1

2b
′k.

For any y ∈ Yk, among k pairs of numbers
(
t(ni, y), s(ni, y)

)
, 1 ≤ i ≤ k, there are at

least two equal pairs. Let i(y) and j(y), i(y) < j(y), be such that t(ni(y), y) = t(nj(y), y)

and s(ni(y), y) = s(nj(y), y). Let C ′ ⊆ C be such that i = i(y) and j = j(y) are constant

on C ′ and ν(C ′) = c′ ≥ c
k1k2

. Then

∥
∥Tnju′ − Tniu′∥∥

y
< 2

a

10
=

a

5
and

∥
∥Snjv′ − Sniv′

∥
∥
y
<

a

5

for all y ∈ C ′. It follows that

∥
∥Tnj−niu′ − u′∥∥

Tniy
<

a

5
and

∥
∥Snj−niv′ − v′

∥
∥
Sniy

<
a

5

for all y ∈ C ′. Put n = nj − ni. Taking into account that n, ni, nj ∈ KZ and that the

actions of TK and SK coincide on Yl, we can rewrite the obtained inequalities as

∥
∥Tnv′ − v′

∥
∥
Tniy

<
a

5
and

∥
∥Snv′ − v′

∥
∥
Tniy

<
a

5
.

Let y ∈ C ′. Since Tniy ∈ B′, ‖u′ − u‖Tniy < a
10 . Since Tnjy ∈ B′,

∥
∥Tnu′ − Tnu

∥
∥
Tniy

=
∥
∥Tnj−niu′ − Tnj−niu

∥
∥
Tniy

=
∥
∥u′ − u

∥
∥
Tnj y

<
a

10
.

Thus,
∥
∥Tnu− u

∥
∥
Tniy

<
a

5
+ 2

a

10
=

2a

5
.

In the same way,
∥
∥Snu− u

∥
∥
Tniy

<
2a

5
.

Since Tniy ∈ B′,
∫
1AuvdµTniy = ϕ′(Tniy) > 9a

10 . Taking into account that 0 ≤ u, v ≤ 1,

we obtain ∫

1AT
nuSnvdµTniy >

9a

10
− 2

2a

5
=

a

10
.

Since this is true for all y from the set C ′ of measure c′, we have
∫
1AT

nuSnvdµ > ac′

10 .

Now recall that n = nj − ni is an element of Q, an arbitrarily chosen thick set. This

shows that the set P =
{
n ∈ Z

∣
∣
∫
1AT

nuSnvdµ > cc′

10

}
is syndetic, that is, has bounded

gaps. Let N ∈ N be such that any interval of length N in Z contains an element of P .

Then

C-lim
n

µ(A ∩ T−nA ∩ S−nA) = C-lim
n

∫

1AT
nuSnvdµ >

ac′

10N
.
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3.10. Our next goal is to determine the conditions under which the limit in Theorem 3.7

is the “right” one. Two measure preserving transformations T and S of a measure space

X = (X,B, µ), µ(X) = 1, are said to be jointly ergodic if C-lim
n

TnuSnv =
∫
udµ

∫
vdµ in

L2(X) for all u, v ∈ L∞(X) (see [BB]).

Theorem B. Let T and S be measure preserving transformations of X generating a

nilpotent group. T and S are jointly ergodic if and only if the transformation T × S is

ergodic on X×X, and the group H = 〈T−nSn, n ∈ Z〉 is ergodic on X.

Let us note that if G is nilpotent of class c, then the G-polynomials Tn, Sn and hence,

g(n) = T−nSn are of degree ≤ c. It follows that H is generated by T−1S, . . . , T−cSc

(see 1.6). Thus H is ergodic if and only if the transformations T−1S, . . . , T−cSc have

no common invariant functions other than constants. In particular, for c = 1, that is,

for commuting T and S, Theorem B is reduced to a special case of the joint ergodicity

criterion in [BB] (see Theorem BB in the Introduction).

3.11. We start the proof of Theorem B with the following technical lemma.

Lemma. Let G be a finitely generated nilpotent group of measure preserving transforma-

tions of X = (X,B, µ), and let H be a normal subgroup of G such that H is ergodic on X

and G/H is abelian. If Hrat(H) 6= C, then Hrat(G) 6= C as well. Moreover, there is u ∈ H,

u 6= const, and a prime number r such that T ru = u for all T ∈ G.

Proof. First, replace H by a maximal subgroup of G that contains H and has the property

Hrat(H) 6= C. Let w ∈ Hrat(H), w 6= const, let l ∈ N be such that P lw = w for all P ∈ H

and let H′ = H(l)(H) =
{
u ∈ H

∣
∣ P lu = u for all P ∈ H

}
. Then H′ corresponds to a

nontrivial G-invariant factor X′ of X: H′ = L2(X′). After passing from X to X′, we may

assume that P l is trivial on X for all P ∈ H.

Let R ∈ H, R 6= 1G, be an element of the center of G: since G is nilpotent and

[G,G] ⊆ H, such an element exists. If R is not ergodic on X, we may replace X by its

factor X′′ on which R is trivial, and replace G by G/〈R〉: since H is ergodic on X, H is

ergodic on X′′ and so, the group H/〈R〉 is nontrivial. By Lemma 1.9, this operation can

be nontrivially performed only finitely many times. So, we may assume that R is ergodic

on X. Let u ∈ H, u ⊥ C, be an eigenvector of R: Ru = λu. Then |u| = const 6= 0 and

λl = 1.

Let l′ ∈ N be the minimal integer for which λl′ = 1, let r be any prime divisor of l′

and l′ = rk. Put u′ = uRu . . . Rk−1u, then Ru′ = λku′. Renaming u′ by u and λk by λ,

we have Ru = λu with λr = 1.

For T ∈ G, let v = uTu . . . T r−1u. Then Rv = λrv = v, so v = const. Hence Tv = v,

that is, TuT 2u . . . T ru = uTu . . . T r−1u, and so, T ru = u.
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3.12. Proof of Theorem B. Necessity: If T × S is not ergodic on X×X, then Tu = λu

and Sv = λv for some λ ∈ C and u, v ∈ H (see, for example, [F3], Lemma 4.18). If T is

not ergodic, C-lim
n

Tnw = w for a nonconstant w ∈ H, then C-lim
n

TnwSn1 = w 6=
∫
wdµ.

If both T and S are ergodic on X, then we may assume that |u| ≡ |v| ≡ 1 and
∫
udµ =

∫
vdµ = 0. Thus, C-lim

n
TnuSnv̄ = uv̄ 6=

∫
udµ

∫
v̄dµ = 0.

Now assume that H is not ergodic on X, let u ∈ H, u 6= const, be such that T−nSnu =

u for all n ∈ Z. We may assume that u ⊥ C, that is,
∫
udµ = 0. Then

C-lim
n

∫

TnūSnudµ = C-lim
n

∫

ūT−nSnudµ =

∫

|u|2dµ 6=
∫

ūdµ

∫

udµ = 0.

Sufficiency: Let both T × S and H be ergodic. Then H satisfies the assumptions of

Lemma 3.11, and, since T and S can not possess a common eigenvalue, Hrat(H) = C.

Define g(n) = T−nSn. Then, by Theorem 2.17, C-lim
n

g(n)u =
∫
udµ for all u ∈ H.

Now, let u, v ∈ H. Replacing u by u−
∫
udµ, we may assume that

∫
udµ = 0. Then

C-lim
m

C-lim
n

∫

(TnuSnv)(Tn+muSn+mv)dµ

= C-lim
m

C-lim
n

∫

Tn
(
uTmū)Sn

(
vSmv̄

)
dµ

= C-lim
m

C-lim
n

∫
(
uTmū)g(n)

(
vSmv̄

)
dµ = C-lim

m

∫

uTmūdµ

∫

vSmv̄dµ

= C-lim
m

∫

(u⊗ v)(T × S)m(ū⊗ v̄)dµ× dµ =

∫

u⊗ vdµ× dµ

∫

ū⊗ v̄dµ× dµ

=

∫

udµ

∫

vdµ

∫

ūdµ

∫

v̄dµ = 0.

By the van der Corput lemma, C-lim
n

TnuSnv = 0.

4. Counter-examples

In this section we will give three examples which demonstrate that neither the con-

vergence of the expressions 1
N

∑N
n=1 u(T

nx)v(Snx) nor the joint recurrence of T and S

(i.e. the positivity of µ(T−nA ∩ S−nA ∩ A) for some n > 0) necessarily hold if the group

G = 〈T, S〉 is a solvable non-nilpotent group. The three examples below correspond to

“different types” of solvable groups, which hints that we may be dealing here with a general

phenomenon. (See the discussion and conjectures in Section 5.)

Actually, the examples in this section show that hardly any of the convergence the-

orems proved in this paper holds true for solvable groups which do not contain a nilpo-

tent subgroup of finite index. Indeed, the examples below show also that both the nil-

polynomial ergodic theorem (Theorem C) and the joint ergodicity criterion (Theorem B)
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no longer hold. In all three examples we deal with ergodic transformations T , S such that

for some u, v ∈ L2(X,B, µ) (these u and v are actually chosen to be characteristic func-

tions of subsets of X) the weak limit C-lim
n

∫
(S−nTnu)vdµ = C-lim

n

∫
TnuSnvdµ does not

exist. It follows that C-lim
n

S−nTnu does not exist in L2-norm, which constitutes a coun-

terexample to Theorem C. (Notice that when 〈T, S〉 is nilpotent, T−nSn is a polynomial

sequence.) The transformations T and S in example 4.2 have, in addition, the property

that the action of the group generated by T−nSn, n ∈ Z, is ergodic. This furnishes a

counterexample to Theorem B.

Remark. A noncommutative counterexample to Theorem B was also given by Berend

([Be], Example 7.1). In Berend’s example, the transformations T and S generate a non-

solvable group.

4.1. Our first construction is a modification of an example of Furstenberg ([F3], p. 40).

Let X = {0, 1}Z equipped with the product measure determined by the weights ( 12 ,
1
2 ) on

{0, 1}. For every D ⊆ Z, let PD be the transformation of X switching the coordinates

corresponding to the elements of D: for x = (xj)j∈Z let (xPD)j =

{
1− xj , j ∈ D
xj , j 6∈ D.

(The

transformations PD act on X from the right while the corresponding induced action on

functions on X will be from the left.) All such PD, D ⊆ Z, form an abelian group; we

denote this group by H. Let S be the coordinate shift on X (also acting on X from the

right): (xS)j = xj+1. Let G be the group of measure preserving transformations of X

generated by H and S. It is easy to see that H is normal in G and so, G is a solvable

group of class 2 (that is, a metabelian group).

Let D = {a1, a2, . . .} ⊆ Z with 0 ≤ a1 < a2 < . . .. Put T = SPD. Then for any x ∈ X

and n ∈ Z,

(xSn)0 = xn and (xTn)0 =







xn, n ≤ a1
1− xn, a1 < n ≤ a2
xn, a2 < n ≤ a3
1− xn, a3 < n ≤ a4
. . .

Put A =
{
x ∈ X

∣
∣ x0 = 0

}
. Then µ(A) = 1

2 , and we have AT−n = AS−n for n ≤ a1 and

a2k < n ≤ a2k+1, k ∈ N, and AT−n = (X \A)S−n for a2k−1 < n ≤ a2k, k ∈ N.

It follows that for any sequence {rn}n∈N made of 0’s and 1
2 ’s, one can find D ⊆ Z

such that for T = SPD one has rn = µ(AT−n ∩ AS−n), n ∈ N. In Furstenberg’s example

D = {0}, so µ(AT−n ∩AS−n) = 0 for all n ∈ N. It gives a counterexample to the ergodic

Szemerédi theorem (namely, to relation (0.3) in the Introduction) for solvable groups.

To get a counterexample to the ergodic Roth theorem (see (0.1)), take D = {a1,
a1 + a2, . . .} where a1, a2, . . . is a rapidly increasing sequence of integers, say ak = k!.
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Then µ(AT−n ∩AS−n), n ∈ N, is a sequence of the form

(
1
2 , 0, 0
︸︷︷︸

, 12 , . . . ,
1
2

︸ ︷︷ ︸
,0, 0, . . . , 0
︸ ︷︷ ︸

, 12 ,
1
2 ,

1
2 , . . . ,

1
2

︸ ︷︷ ︸
,0, 0, 0, 0, . . . , 0
︸ ︷︷ ︸

, . . .

a2 a3 a4 a5 a6

)
,

and so, for u = 1A, the limit C-lim
n

∫
TnuSnudµ = C-lim

n
µ(AT−n ∩AS−n) does not exist.

4.2. The groupG in example 4.1 is solvable but is not polycyclic: its centerH is the product

of infinitely many copies of Z2 (a group is polycyclic if it has a finite subnormal series with

cyclic factors). Our next example is called up to show that the ergodic Szemerédi and

Roth theorems do not hold for polycyclic groups as well.

Let X = T1 × T1 be the torus equipped with Lebesgue measure, let for x ∈ X,

xP = x +
(α

0

)

, xQ = x +

(
0

α

)

and xT = Λx, where α ∈ T1 and Λ =

(
5 4
6 5

)

. Let G

be the group generated by P , Q and T , acting on X on the right. We have xT−1PT =

x+Λ
(α

0

)

= xP 5Q6 and xT−1QT = x+Λ

(
0

α

)

= xP 4Q5, so the subgroup H = 〈P,Q〉 is
normal in G. Since H ≃ Z2 and G/H ≃ Z, G is polycyclic.

Put S = PTP−1, then Sn = PTnP−1. For x ∈ X we have:

xT−nSn = xT−nPTnP−1 = Λn
(
Λ−nx+

(α

0

))
−

(α

0

)

= x+ α(Λn

(
1

0

)

−
(
1

0

)

)

= x+ α

(
λn

µn

)

,

where λn = 1
2 (5+

√
24)n + 1

2 (5−
√
24)n − 1 and µn =

√
6
4 (5+

√
24)n −

√
6
4 (5−

√
24)n. We

have λn+1/λn > 5 for all n ∈ N.

Lemma. Let M ∈ N and let λ1 < λ2 < . . . be a sequence of real numbers satisfying

λn+1/λn ≥ M + 1 for all n ∈ N. For any sequence of integers c1, c2, . . . with 0 ≤ ci < M

there is a real number α, 0 ≤ α < 1, for which cn
M ≤ {λnα} < cn+1

M for all n ∈ N.

Proof. For λ ∈ R, let us call any interval [β, γ] such that λ[β, γ] ≡ [ k
M , k+1

M ] mod 1,

0 ≤ k ≤ M − 1, a (λ, k)-interval. For every n ∈ N, since λn+1/λn ≥ M + 1, any (λn, k)-

interval contains a (λn+1, l)-subinterval for each l = 0, . . . ,M − 1. So α can be taken as

the common point of a nested sequence of (λn, cn)-intervals, n = 1, 2 . . ..

We can now apply this lemma with M = 4 to our sequence {λn}. To construct

a counterexample to the ergodic Szemerédi theorem, we choose α corresponding to the

sequence 2, 2, . . .. Since the first coordinate of the point 0T−nSn is {λnα}, we have

0T−nSn ∈ [ 12 ,
3
4 ]× T1 for all n ∈ N. So for A = [0, 1

4 ]× T1 we have AT−n ∩AS−n = ∅ for

all n ∈ N.
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For a counterexample to the ergodic Roth theorem, take α to be the number cor-

responding to the sequence r =
(
2, 0, 0
︸︷︷︸

,2, . . . , 2
︸ ︷︷ ︸

,0, 0, . . . , 0
︸ ︷︷ ︸

,2, 2, 2, . . . , 2
︸ ︷︷ ︸

,0, 0, 0, 0, . . . , 0
︸ ︷︷ ︸

, . . .

a2 a3 a4 a5 a6

)
,

where, say, ak = k!. Define A = [0, 1
4 ] × T1 and B = [ 12 , 1] × T1. Then either AT−nSn ⊂

X \ B (if n is such that rn = 0), or AT−nSn ⊂ B (if rn = 2). So, if we put u = 1A and

v = 1B , we will have
∫
TnuSnvdµ =

∫
(S−nTnu)vdµ = µ(AT−nSn ∩ B) = 1

8rn, n ∈ N, a

sequence that has no Cesàro limit.

Notice also that we simultaneously get a counterexample to Theorem B for polycyclic

groups. Indeed, since both T and S are weakly (and even strongly) mixing, T × S is

ergodic on X ×X. Transformations T−nSn generate a dense subgroup of the group of all

rotations of the torus X, which is, hence, ergodic on X. So, all assumptions of Theorem B

are satisfied, but the limit C-lim
n

TnuSnv does not exist.

4.3. Our last example is, in a sense, a hybrid of the preceding two. Let X be the infinite-

dimensional torus TZ, with the product measure. Let α ∈ T1. For x=(. . . , x−1, x0, x1, . . .)∈
X, put (xS)j = xj+1, (xP )j ≡ xj + 5jαmod 1, and T = P−1SP . Then

(xT−nSn)0 = (xP−1S−nPSn)0 = x0 + (5n − 1)α,

that is, T−nSn acts on the zero-coordinate circle as a rotation by (5n − 1)α. Let A =
{
x ∈ X

∣
∣ x0 ∈ [0, 1

4 ]
}
. Then, similarly to example 4.2, one can choose α so that, for

the corresponding T , T−nA ∩ S−nA = ∅ for all n ∈ N. And if we put B =
{
x ∈ X

∣
∣

x0 ∈ [ 12 , 1]
}
, then for any sequence {rn}n∈N made of 0’s and 1

4 ’s one can find α such that

rn = µ(AT−n ∩BT−n) for all n ∈ N.

5. Some conjectures

5.1. Theorems A and B on one hand and the counterexamples brought in Section 4 on the

other, show that for solvable groups there is a sort of dichotomy related to the behavior of

the expressions µ(T−nA∩S−nA) and 1
N

∑N
n=1 f(T

nx)g(Snx). Namely, the known conver-

gence and recurrence results pertaining to commuting measure preserving transformations

extend naturally to the case when T and S generate a nilpotent group. On the other hand,

when T and S generate a solvable group of exponential growth, Theorems A and B are no

longer valid. (We remark that, by Gromov’s theorem, a finitely generated solvable group

has exponential growth if and only if it is not virtually nilpotent.) Also, in the measure

preserving system (X,B, µ, 〈T, S〉) one can no longer expect to have the recurrence along

the sequence T−nSn (i.e. unlike the nilpotent case, it may occur that for a set A ∈ B with

µ(A) > 0 one has for all n > 0, µ(A ∩ TnS−nA) = µ(T−nA ∩ S−nA) = 0). The reason

behind this dichotomy seems to be the fact that when two elements, T and S, generate a
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solvable group of exponential growth, the sequence T−nSn is not necessarily a polynomial

sequence (in the sense of definition in 1.1) whereas when 〈T, S〉 is nilpotent, this is always
the case. The following example shows, however, that even if 〈T, S〉 is a solvable group of

exponential growth, the sequence T−nSn may be polynomial.

5.2. Let G be the group defined by generators T and S and the relations S2 = 1G and

[S, T−nSTn] = 1G for all n ∈ Z. Then G is a solvable group: if we denote Sn = T−nSTn,

then the subgroup H generated by {Sn, n ∈ Z} is abelian and normal in G, and G/H

is generated by T . On the other hand, G is not nilpotent: the elements [T, S] = S1S,

[T, [T, S]] = S2S, . . .,
[
T, [T, . . . , [T, S] . . .]

]
= SnS, . . . are all nontrivial. However, the

sequence g(n) = T−nSn is polynomial in G:

(Dg)(n) =
(
g(n)

)−1
g(n+ 1) = S−nTnT−n−1Sn+1 = S−nTSn+1 = TS−n

1 Sn+1;

(D2g)(n) ≡ S−1
1 S; (D3g)(n) ≡ 1G.

Note that the limit C-lim
n

TnuSnv = 1
2 C-limn

T 2n(u+TSu) clearly exists in L2(X) for any

measure preserving action of G on a probability space (X,B, µ) and any u, v ∈ L∞(X).

5.3. Given a group G, a sequence g:Z −→ G and m ∈ Z, let us define the m-derivative

of g(n) by Dmg(n) = g(n)−1g(n + m). Notice that the 1-derivative D1 coincides with

derivative D as defined in 1.1. Let us say that a sequence g(n) is polynomial of degree

≤ d if for any m1, . . . ,md ∈ Z, Dm1 . . . Dmd
g(n) is a constant sequence in G. One can

show that for sequences in nilpotent groups this notion of polynomiality coincides with the

one defined in 1.1. Note that the sequence T−nSn featured in 5.2 satisfies this stronger

definition of polynomiality as well. We have the following conjecture:

Conjecture. (i) Let G be a group of unitary operators on a Hilbert space H. If g(n) is a

polynomial sequence in G, then C-lim
n

g(n)u exists for any u ∈ H.

(ii) Let G be a group of measure preserving transformations of a probability measure space

(X,B, µ), and let T, S ∈ G be such that the sequence T−nSn is polynomial in G. Then for

any u, v ∈ L∞(X), C-lim
n

TnuSnv exists in L2-norm.

5.4. On the other hand, counterexamples of Section 5 lead to the following conjecture:

Conjecture. Let G be a finitely generated solvable group without a nilpotent subgroup

of finite index. There is a measure preserving action of G on a probability measure space

(X,B, µ) such that

(i) there are T, S ∈ G and u, v ∈ L∞(X) such that C-lim
n

∫
TnuSnvdµ does not exist.

(ii) there are T, S ∈ G and A ∈ B with µ(A) > 0 such that µ(T−nA ∩ S−nA) = 0 for all

n > 0.
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5.5. A natural question is whether C-lim
n

Tn
1 u1 . . . T

n
k uk exists for all k > 2 and T1, . . . , Tk

generating a nilpotent group. Though the problems seems to be very difficult, we believe

that the following conjecture is true:

Conjecture. Let G be a nilpotent group of measure preserving transformations of a proba-

bility measure space (X,B, µ). Then for any G-polynomials g1, . . . , gk and any u1, . . . , uk ∈
L∞(X), C-lim

n
g1(n)u1 . . . gk(n)uk exists in L2-norm and almost everywhere.

5.6. We pass now to a discussion of joint ergodicity. While in the case of commuting T , S

Theorem B reduces to a special case of Theorem BB, we have, as yet, no nilpotent analog

of Theorem BB for more than two transformations.

Conjecture. Let T1, . . . , Tk be measure preserving transformations of a probability mea-

sure space (X,B, µ), generating a nilpotent group. Then

C-lim
n

Tn
1 u1 . . . T

n
k uk =

∫

u1dµ . . .

∫

ukdµ

in L2(X) for all u1, . . . , uk ∈ L∞(X) if and only if T1 × . . .×Tk is ergodic on X × . . .×X

and for any 1 ≤ i < j ≤ k, the group generated by {T−n
i Tn

j , n ∈ Z} is ergodic on X.

5.7. It would be interesting to find a condition for joint ergodicity in more general groups.

The counterexamples in Section 4 and the discussion in 5.3 lead us to the following con-

jecture (which for sake of conciseness we formulate for two transformations).

Conjecture. Let T and S be measure preserving transformations of a probability measure

space (X,B, µ). Then C-lim
n

TnuSnv =
∫
udµ

∫
vdµ in L2(X) for all u, v ∈ L∞(X) if and

only if the following three conditions hold:

(a) T × S is ergodic on X ×X;

(b) the sequence T−nSn is polynomial (in the sense of 5.3);

(c) the group generated by {T−nSn, n ∈ Z} is ergodic.

5.8. We want to conclude by mentioning one more interesting problem. Namely, it would

be nice to know to which extent the property of growth of a group alone is responsible for

the validity of the results and counterexamples brought in the paper. It was Grigorchuk

who constructed in [G] a large family of groups of intermediate growth, which occupy an

intermediate place between the groups of polynomial and exponential growth.

Question. Which of the results obtained above extend to Grigorchuk’s groups?
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