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Abstract

We consider Ledrappier’s dynamical system, which was the first example of a Z2-action
which is 2-mixing but not 3-mixing. Our main result is that, excluding certain small “con-
structible” sets, the system is mixing of every order.
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1 Introduction

Let k be a positive integer and T1, . . . , Tk be invertible commuting measure preserving trans-
formations of a probability space (X,B, µ). The corresponding Zk-action (T n)

n∈Zk (where, for
n = (n1, . . . , nk), we denote T n1 . . . T nk by T n) is r-mixing, for r ≥ 2, if

µ

(

r
⋂

i=1

T niAi

)

−→
r
∏

i=1

µ(Ai), Ai ∈ B, 1 ≤ i ≤ r,
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as ni − nj → ∞ for all i 6= j. 1) The question whether, for Z-actions, 2-mixing necessarily
implies r-mixing for every r is an old open problem in ergodic theory. One of the first non-trivial
results related to this problem was established by Rohlin [6], who proved that mixing (i.e., 2-
mixing) endomorphisms of compact groups are mixing of all orders. Rohlin’s result was generalized
subsequently to more general classes of transformations, and conventional wisdom started leaning
towards the belief that the answer to the above question is positive. Since there is, on the face
of it, nothing special about Z-actions, there was also a tendency to think that the situation for
Zk-actions with k > 1 is similar. To the surprise of many, Ledrappier [3] proved that this is not
the case. He provided an example of a pair σ, τ of commuting mixing automorphisms of a compact
abelian group G, such that for some measurable set A ⊆ G one has

µ
(

A ∩ σ2n

A ∩ τ 2n

A
)

6−→
n→∞

µ(A)3 .

Ledrappier’s work has served as an impetus for new and interesting developments and, indeed,
has led to the creation of a new branch of ergodic theory, which studies Zd-actions by automorphisms
of compact abelian groups, and has strong connections to abstract algebra and number theory (see
[8]).

Our goal in this paper is to undertake a deeper study of the higher-order mixing properties of
Ledrappier’s example, in the hope that this will shed new light on other similar (and more general)
examples. One of the natural questions addressed in this paper concerns the nature of the obstacles
to higher-order mixing. We will show that, in fact, Ledrappier’s example is “almost mixing of all
orders”.

To formulate this result formally (and to prove it), we have to review first Ledrappier’s con-
struction and introduce some notation and definitions. To give the reader a feeling of the kind of
results to be proved subsequently, we will formulate now a special case of our main result, which
describes completely the obstacle to 3-mixing in Ledrappier’s example.

Put
L = {{(a, b), (a + 2k, b), (a, b + 2k)} : a, b ∈ Z, k ∈ Z+}

(where Z+ = {0, 1, 2, . . .}). We view L as a set of triangles in the 2-dimensional integer lattice,
obtained from the single triangle {(0, 0), (1, 0), (0, 1)} by dilations by powers of 2 and translations.

Denote by ρ(C, D) the Hausdorff distance between subsets C and D of Z2

ρ(C, D) = max{sup
c∈C

inf
d∈D

‖c − d‖, sup
d∈D

inf
c∈C

‖c − d‖}, C, D ⊆ Z2,

where ‖ · ‖ is the maximum norm on Z2. 2) As usual in metric spaces, we shall also denote by
ρ(C,D) the minimal distance between a set C ⊆ Z2 and a collection D of subsets of Z2.

1)Note that the conventional notion of mixing, namely the condition that µ (A ∩ T nB) −→
n→∞

for all A, B ∈ B,

corresponds to 2-mixing.
2)We shall denote by ρ the Hausdorff distance between subsets of Zr

2 as well.
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Two sequences (vn) and (wn) of pairs of integers grow apart as n → ∞ if ‖vn − wn‖ −→
n→∞

∞.

Theorem 1.1. Let σ, τ be the endomorphisms from Ledrappier’s example, and

((

a
(n)
1 , b

(n)
1

)

,
(

a
(n)
2 , b

(n)
2

)

,
(

a
(n)
3 , b

(n)
3

))∞

n=1

be a sequence of triples of integer pairs. Then

µ
(

σ−a
(n)
1 τ−b

(n)
1 A ∩ σ−a

(n)
2 τ−b

(n)
2 B ∩ σ−a

(n)
3 τ−b

(n)
3 C

)

−→
n→∞

µ(A)µ(B)µ(C), A, B, C ∈ B,

if and only if the following conditions hold:

1. The sequences (a
(n)
i , b

(n)
i ) and (a

(n)
j , b

(n)
j ) grow apart for i 6= j.

2. ρ(Dn,L) −→
n→∞

∞, where Dn = {(a
(n)
i , b

(n)
i ) : 1 ≤ i ≤ 3}. 3)

The theorem indicates that the only obstruction to 3-mixing in Ledrappier’s system is what
happens along powers of 2. Our main interest in this paper is to understand (the generalized form
of) this phenomenon for mixing of any order. The main result of the paper is that, roughly speaking,
the only obstacle to mixing of any order is connected to exceptional behavior of Ledrappier’s system
along certain explicitly described rarified sets. For example, we obtain mixing of all orders along
“most” systems of polynomial sequences (cf. Proposition 8.2 and Theorem 8.18).

Let us mention in passing a few relevant results regarding high-order mixing of algebraic dynam-
ical systems, and the related algebraic tools required to tackle such systems. First, note that the
situation is quite simpler for connected groups. In fact, Schmidt and Ward [9] showed that, for such
systems, mixing implies mixing of all orders. When passing from this ergodic-theoretical result, by
duality, to the equivalent algebraic claim, one obtains certain equations over fields of characteristic
0, which have to be shown to admit only finitely many solution. This step is accomplished using [7].
Ledrappier’s example shows that, in the totally disconnected case, mixing does not imply mixing
of higher orders. When studying the degree of mixing of such systems, one needs again to consider
various equations arising from considering the dual action. This time, the equations are over fields
of finite characteristic. The relevant algebraic tools are now provided by results such as obtained

3)Thus, for example, if an, bn, |an − bn| −→
n→∞

∞, then

µ
(

A1 ∩ σanA2 ∩ τ bnA3

)

−→
n→∞

µ(A1)µ(A2)µ(A3)

for any measurable sets A1, A2, A3.
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by Masser [5], who was able to show that the degree of mixing of such systems is completely de-
termined by the non-mixing shapes. (For another result in this realm, which deals only with the
special case of S-unit equations with two indeterminates, see Voloch [13]).

In Section 2 we present Ledrappier’s example in detail, and provide some more background. The
main result of the paper is presented in Section 3. In Section 4 we digress to study in detail the
case of 4-mixing, where we manage to draw a complete picture of the situation. Section 5 contains
an algebraic result, which is crucial for the proof of the main theorem. In Section 6 we prove the
main theorem. We would like to note that some of our arguments are reminiscent of those in [1].
Section 7 provides more details on the sets which are the obstacles to high-order mixing. Finally,
in Section 8 we treat some general examples which confirm the main motto of the paper.

The authors would like to express their gratitude to the referee, who pointed out several relevant
references, which helped to put the paper in the right context.

2 Ledrappier’s example

Let F2 denote the field of 2 elements. We start with the set FZ
2

2 , considered as the set of all double
sequences over F2. Equipped with the product topology and coordinatewise addition, FZ

2

2 forms a
compact abelian group. The Haar measure on FZ

2

2 is the product measure obtained by taking the
normalized counting measure of F2. On FZ

2

2 we have a leftward shift σ and a downward shift τ .
The former is defined by

σ
(

(νmn)∞m,n=−∞

)

= (νm+1,n)∞m,n=−∞

and the latter by
τ
(

(νmn)∞m,n=−∞

)

= (νm,n+1)
∞
m,n=−∞ .

Obviously, the set

G =
{

(νmn)∞m,n=−∞ : νmn + νm+1,n + νm,n+1 = 0, (m, n) ∈ Z2
}

is a compact subgroup of FZ
2

2 , invariant under both σ and τ . Our object of study is the measure
preserving Z2-action (σmτn)∞m,n=−∞ on the probability space (G,B, µ), where B is the Borel field
of G and µ the normalized Haar measure on G.

It will be convenient to identify points in FZ
2

2 with formal power series. Namely, a point
(νmn)∞m,n=−∞ ∈ FZ

2

2 is identified with the power series

∞
∑

m,n=−∞

νmnx−my−n.

Thus the actions of σ and τ correspond to multiplication by x and y, respectively. (Note that the set
of all power series

∑∞
m,n=−∞ νmnx−my−n does not admit a “natural” multiplication operation, but
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the product of a power series and a polynomial in F2[x
±1, y±1] is well defined.) The dual group of FZ

2

2

may be identified with F2[x
±1, y±1], as follows. The value of a character (corresponding to a poly-

nomial
∑

(m,n)∈S xmyn) at the point (νmn)∞m,n=−∞ ∈ FZ
2

2 is (−1)
∑

(m,n)∈S νmn , where we note that the

exponent
∑

(m,n)∈S νmn is the free term of the product
∑

(m,n)∈S xmyn ·
∑∞

m,n=−∞ νmnx−my−n. The

duals σ̂ and τ̂ correspond to multiplication by x and y on F2[x
±1, y±1]. The subgroup G corresponds

to the set of those power series
∑∞

m,n=−∞ νmnx−my−n for which (1+x+y)·
∑∞

m,n=−∞ νmnx−my−n = 0.

The annihilator of G corresponds to the set of all polynomials divisible by 1 + x + y. Hence Ĝ is
the quotient F2[x

±1, y±1]/〈1+x+y〉, which may be identified with the ring of all rational functions
over F2 whose denominator is of the form xk(1 + x)l.

Let us briefly mention that there is another way of viewing the system, which may be more
convenient for certain purposes. Take F

Z+

2 as the underlying group. Let σ′ be the (one-sided) shift,
and let τ ′ = I + σ′, where I is the identity map. The dual group now is F2[x], and the dual actions
are again multiplications by x and by 1 + x. This system is basically equivalent to Ledrappier’s
system. (More accurately, the transformations σ ′ and τ ′ are non-invertible, and one should pass to
the natural extension to obtain exactly the same system.)

3 The main result

As mentioned above, our main result in this paper says, roughly speaking, that the only obstacle
to mixing of all orders in Ledrappier’s system is what happens along powers of 2. We shall proceed
to state this result in a precise form in the general case.

In view of Theorem 1.1, the following definition is natural.

Definition 3.1. Let (X,B, µ, (T n)
n∈Z2) be a measure preserving system, r ≥ 2 an integer and

M ⊆ (Z2)r. The system is r-mixing modulo M if for any A1, A2, . . . , Ar ∈ B one has

lim µ

(

r
⋂

i=1

T niAi

)

=

r
∏

i=1

µ(Ai)

as ρ((n1, . . . ,nr),M) → ∞ and ni − nj → ∞ for i 6= j.

Obviously, the smaller the set M is, the stronger is the assertion that a system is mixing modulo
M. Also, if M1 and M2 are two sets of r-tuples, such that the distance from every point of M1

to the set M2 is at most C for some constant C, then mixing modulo M2 implies mixing modulo
M1. In particular, if the Hausdorff distance between M1 and M2 is finite, then mixing modulo
M2 coincides with mixing modulo M1.
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With this terminology, Theorem 1.1 is equivalent to the assertion that Ledrappier’s system is
3-mixing modulo L. 4)

Definition 3.1 may be easily modified for Zd-actions for any d. Note that a Zd-action (T n)
n∈Zd

on a probability space (X,B, µ) is strongly mixing, i.e., satisfies the condition

µ
(

A ∩ T−nB
)

−→
n→∞

µ(A)µ(B), A, B ∈ B,

if and only if it is 2-mixing modulo the empty set. Similarly, one can check that a Zd-action
(T n)

n∈Zd is weakly mixing, i.e., satisfies the condition

µ
(

A ∩ T−nB
)

−→
n→∞

n/∈M0

µ(A)µ(B), A, B ∈ B,

for some M0 ⊆ Zd of density 0, if and only if there exists a set M ⊆ (Zd)2 of density 0 such that
the action is 2-mixing modulo M. It is worth mentioning that, in general, the exceptional set M
distinguishing weak mixing from strong mixing may be not too small, in the following sense. Given
any positive sequence (cn) satisfying cn = o(nd), one can show ([14]) that there exists a weakly
mixing system (X,B, µ, (T n)

n∈Zd), sets A, B ∈ B and ε > 0 such that

|{1 ≤ ‖n‖ ≤ N : |µ(A ∩ T−nB) − µ(A)µ(B)| > ε}| > cN

for all sufficiently large N .
Our objective in this paper is to find, for any r, necessary and sufficient conditions on a set

of r-tuples Mr, so that Ledrappier’s system will be r-mixing modulo Mr. Moreover, we would
like these conditions to be as explicit as possible. As we shall see, Ledrappier’s system is r-mixing
modulo Mr for rather small sets Mr.

Definition 3.2. A finite r-element set {(a1, b1), (a2, b2), . . . , (ar, br)} in Z2 is a special r-gon if

xa1(1 + x)b1 + xa2(1 + x)b2 + . . . + xar(1 + x)br = 0.

The set of all special r-gons will be denoted by Lr.
Denote by Λr the set of all r-element sets in Z2, containing a special s-gon for some s ≤ r.
The following theorem is the main result of this paper.

4)Note that we could avoid the condition that the distance between (mi, ni) and (mj , nj) tends to infinity for
i 6= j by adjoining to M the set

⋃

1≤i<j≤r

{

((m1, n1), (m2, n2), . . . , (mr, nr)) ∈ (Z2)r : (mi, ni) = (mj , nj)
}

.

However, since in any non-trivial system the convergence in question (for all r-tuples of measurable sets) implies that
the sequences (mi, ni) and (mj , nj) grow apart, it seems more natural to put the condition as part of the definition.
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Theorem 3.3. For every r ≥ 3, Ledrappier’s system is r-mixing modulo Λr.

As we shall see in the sequel, the set Λr is rather small, which justifies the title of this paper.
(See Sections 4, 7 and 8.)

4 An explicit form of Theorem 3.3 for r = 4

Theorem 1.1 is in principle a special case of Theorem 3.3, but uses the additional knowledge as
to how special triangles look like (see Lemma 5.6). To obtain an “explicit” form of Theorem 3.3
for a specific r, one needs to know explicitly the family Lr, as well as all families Ls for s < r.
Unfortunately, these families tend to become quite cumbersome as r increases. We shall now give
an explicit description of L4. Given two polynomials

P1(x, y) =

r
∑

i=1

xai1ybi1 , P2(x, y) =

r
∑

i=1

xai2ybi2,

we will say that the polynomial P2(x, y) is obtained from P1(x, y) by an (a, b)-translation and 2k-
dilation if

P2(x, y) = xaybP1(x, y)2k

,

namely if
ai2 = a + 2kai1, bi2 = b + 2kbi1, 1 ≤ i ≤ r,

for some integers a, b and k ≥ 0. Analogous terminology will be used for r-gons. Now consider the
following families of quadrangles (of which the first consists of a single quadrangle):

Q1 = {{(0, 0), (0, 3), (3, 0), (1, 1)}},

Q2 = {{(0, 0), (0, 2k + 1), (2k, 0), (1, 2k)} : k ≥ 0},

Q3 = {{(0, 0), (0, 2k), (2k + 1, 0), (2k, 1)} : k ≥ 0},

Q4 = {{(0, 0), (0, 2k), (2k − 1, 0), (2k − 1, 1)} : k ≥ 1},

Q5 = {{(0, 0), (0, 2k − 1), (2k, 0), (1, 2k − 1)} : k ≥ 1},

Q6 = {{(0, 0), (0, 2k + 1), (1, 0), (2k, 1)} : k ≥ 0},

Q7 = {{(0, 0), (0, 1), (2k + 1, 0), (1, 2k)} : k ≥ 0},

Q8 = {{(0, 1), (0, 2k), (1, 0), (2k, 0)} : k ≥ 1},

Q9 = {{(0, 2k + 1), (0, 2k), (1, 0), (2k + 1, 0)} : k ≥ 0},

Q10 = {{(2k + 1, 0), (2k, 0), (0, 1), (0, 2k + 1)} : k ≥ 0},

See Fig. 1, where the quadrangles for some selected values of k are shown. A bold dot corresponds
to k = 0 (where relevant), a circle to k = 1, and a square to k = 2.
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Proposition 4.1. L4 is the family of all quadrangles obtained from some quadrangle in
⋃10

i=1 Qi by
a certain (a, b)-translation and 2k-dilation.

The proof will be provided in the next section.
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Figure 1: Some quadrangles in L4

9



5 Auxiliary algebraic results

Proposition 5.1. Suppose
r
∑

i=1

Pi(x)xai(1 + x)bi = 0 (1)

for some P1(x), P2(x), . . . , Pr(x) ∈ F2[x], not all 0, of degrees not exceeding 2s, and integers
a1, b1, a2, b2, . . . , ar, br. Then there exist constants c1, c2, . . . , cr ∈ F2, not all 0, and αi, βi ∈ {0, 1}
such that

r
∑

i=1

cix
[ai/2s]+αi(1 + x)[bi/2s]+βi = 0. (2)

Proof: The proof is by induction on s. It will be convenient to prove slightly more than required.
Namely, we shall prove in addition that, if deg Pi(x) < 2s and ai ≡ bi ≡ 0(mod 2s) for some i, then
αi = βi = 0.

For s = 0, all Pi’s are either constant or linear. Those which are constant are already as
required. If Pi(x) = x, take ci = 1 and increase ai by 1 (that is, αi = 1). Similarly, if Pi(x) = 1+x,
take ci = 1 and increase bi by 1. Obviously, these changes bring the equation to the required form.
Moreover, if deg Pi(x) < 20 = 1 for some i, then the corresponding term is already of the required
form, so that αi = βi = 0.

Suppose the proposition has been established when all polynomials Pi(x) are of degree not
exceeding 2s−1, and suppose now that (1) holds, with all degrees not exceeding 2s. Let Pi1(x) be
the polynomial obtained from Pi(x) upon multiplying it by x if ai is odd and by 1 + x if bi is odd.
(Note that Pi1(x) = x(1 + x)Pi(x) in case both ai and bi are odd.) Write (1) in the form:

r
∑

i=1

Pi1(x)
(

x[ai/2](1 + x)[bi/2]
)2

= 0. (3)

If not all polynomials Pi1(x), 1 ≤ i ≤ r, are squares, then differentiate both sides to obtain

r
∑

i=1

P ′
i1(x)

(

x[ai/2](1 + x)[bi/2]
)2

= 0, (4)

where not all derivatives P ′
i1(x) vanish. Since the derivative of any polynomial over F2 is a square,

we may rewrite (4) as
r
∑

i=1

P 2
i2(x)

(

x[ai/2](1 + x)[bi/2]
)2

= 0, (5)
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where P 2
i2(x) = P ′

i1(x), and thus

r
∑

i=1

Pi2(x)x[ai/2](1 + x)[bi/2] = 0. (6)

We have

deg Pi2(x) =
deg P ′

i1(x)

2
≤

deg Pi1(x) − 1

2
≤

deg Pi(x) + 1

2
≤

2s + 1

2
,

and therefore deg Pi2(x) ≤ 2s−1. Employing the induction hypothesis on (6) we arrive at an equality
of the form

r
∑

i=1

cix
[[ai/2]/2s−1]+αi(1 + x)[[bi/2]/2s−1]+βi = 0. (7)

Since [[m/2]/2s−1] = [m/2s] for any integer m, this is in fact an equality as required. Note that,
if deg Pi(x) < 2s for some i, and ai ≡ bi ≡ 0(mod 2s), then Pi1(x) = Pi(x) so that deg Pi2(x) ≤
2s−1 − 1 and [ai/2] = ai/2 ≡ 0(mod 2s−1), [bi/2] = bi/2 ≡ 0(mod 2s−1). The induction hypothesis
guarantees that in this case we shall have αi = βi = 0.

Now assume all polynomials Pi1(x), 1 ≤ i ≤ r, are squares. Pass from (3) directly to (5), and
then to (6), where this time P 2

i2(x) = Pi1(x). Now:

deg Pi2(x) =
deg Pi1(x)

2
≤

deg Pi(x) + 2

2
≤

2s + 2

2
= 2s−1 + 1. (8)

If we could bound the degrees of the Pi2(x)’s from above by 2s−1, the induction hypothesis could be
applied as before. Going over the chain of inequalities in (8), we see that the left-hand side equals
the right-hand side if and only if deg Pi(x) = 2s and both ai and bi are odd. Denote by I0 the set
of those indices i for which all three conditions are satisfied. According to our assumption, if i ∈ I0

then P 2
i2(x) = Pi1(x) = x(1 + x)Pi(x), and therefore Pi2(x) is divisible by x(1 + x). Put

Pi3(x) =











































Pi2(x)
x

, i ∈ I0, ai 6≡ 2s − 1(mod 2s),

Pi2(x)
1+x

, i ∈ I0, ai ≡ 2s − 1(mod 2s), bi 6≡ 2s − 1(mod 2s),

Pi2(x)
x(1+x)

, i ∈ I0, ai ≡ bi ≡ 2s − 1(mod 2s),

Pi2(x), i /∈ I0.

(9)

Reordering the terms in (2), we may assume that the first condition in (9) is satisfied for 1 ≤ i ≤ r1,
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the second – for r1 + 1 ≤ i ≤ r2, and so forth. Rewrite (6) as:

∑r1

i=1 Pi3(x)x[ai/2]+1(1 + x)[bi/2] +
∑r2

i=r1+1 Pi3(x)x[ai/2](1 + x)[bi/2]+1

+
∑r3

i=r2+1 Pi3(x)x[ai/2]+1(1 + x)[bi/2]+1 +
∑r

i=r3+1 Pi3(x)x[ai/2](1 + x)[bi/2] = 0.
(10)

Apply the induction hypothesis to (10). We obtain an equality of the required form, except
that the resulting αi’s and βi’s may seem to be possibly 2 instead of either 0 or 1. To this end, we
note that:

1) For 1 ≤ i ≤ r1 we have [ai/2] 6≡ 2s−1−1(mod 2s−1), and therefore [([ai/2]+1)/2s−1] = [ai/2s].
2) For r1 + 1 ≤ i ≤ r2 we analogously have [([bi/2] + 1)/2s−1] = [bi/2s].
3) For r2 + 1 ≤ i ≤ r3 we are in the special situation where deg Pi3(x) = 2s−1 and [ai/2] + 1 ≡

[bi/2]+1 ≡ 0(mod 2s−1), for which the induction hypothesis ensures that the exponents of x and 1+x
in the resulting equality will be [([ai/2]+ 1)/2s−1] = [ai/2s] + 1 and [([bi/2]+ 1)/2s−1] = [bi/2s] + 1,
respectively.

4) For r3 + 1 ≤ i ≤ r we clearly obtain in the reduced equality terms as required. Moreover,
those terms in (10) which arose from terms in (1) with deg Pi(x) < 2s and ai ≡ bi ≡ 0(mod 2s)
give rise to terms of the form Pi3(x)xai/2(1 + x)bi/2, where deg Pi3(x) < 2s−1, whence the induction
hypothesis ensures that αi = βi = 0.

This completes the proof.

Definition 5.2. A polynomial P (x, y) ∈ F2[x
±1, y±1] is an L-polynomial (L for Ledrappier) if

P (x, 1 + x) = 0. 5)

In other words, L-polynomials are those polynomials belonging to the ideal 〈1 + x + y〉. (In
fact, if P (x, y) ∈ 〈1 + x + y〉, then P (x, y) = (1 + x + y)Q(x, y) for some polynomial Q(x, y), so
that P (x, 1 + x) = (1 + x + 1 + x)Q(x, 1 + x) = 0. On the other hand, if P (x, 1 + x) = 0, then
1 + x is a root of the polynomial R(y) = P (x, y) ∈ F2(x)[y], and therefore P (x, y) is divisible by
y − (1 + x) = 1 + x + y.)

Definition 5.3. A polynomial P (x, y) =
∑r

i=1 xaiybi ∈ F2[x
±1, y±1] is in reduced form if (ai, bi) 6=

(aj, bj) for i 6= j. The length of a polynomial is the number of monomials r in its reduced form.

In view of Proposition 5.1, the main thing we need to do is characterize L-polynomials. This is
relatively easy for “short” polynomials.

Lemma 5.4. There are no L-polynomials of length 1 or 2.

5)Thus, a finite set ((a1, b1), (a2, b2), . . . , (ar, br)) is a special r-gon if and only if the polynomial xa1yb1 + xa2yb2 +
. . . + xarybr is an L-polynomial.
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Definition 5.5. A polynomial T (x, y) ∈ F2[x
±1, y±1] is triangular if

T (x, y) = xayb + xa+2k

yb + xayb+2k

for some integers a, b and k ≥ 0.

Lemma 5.6. A polynomial of length 3 is an L-polynomial if and only if it is triangular.

Proof: The “if” direction is immediate. For the inverse direction, let P (x, y) =
∑3

i=1 xaiybi be
an L-polynomial. Consider the three pairs (ai, bi) modulo (2, 2). We distinguish between cases
according to the distribution of the pairs among the residue classes. It will be convenient to deal
with the cases in the following order:

Case 1: Two of the pairs belong to the same residue class, while the third pair belongs to
another.

Multiplying by some xαyβ we may assume the class containing the two pairs to be (0, 0).
Differentiating both sides of the identity

3
∑

i=1

xai(1 + x)bi = 0,

we are left with a single monomial on the left-hand side, which is a contradiction.
Case 2: The pairs belong to three distinct classes.
Without loss of generality we may assume that (a1, b1) ≡ (0, 0)(mod (2, 2)), (a2, b2) ≡ (1, 0)(mod (2, 2))

and (a3, b3) ≡ (0, 1)(mod (2, 2)). Differentiate to obtain:

xa2−1(1 + x)b2 + xa3(1 + x)b3−1 = 0.

This implies a2 = a3 + 1 and b2 = b3 − 1. Consequently

xa2(1 + x)b2 + xa3(1 + x)b3 = xa3(1 + x)b2(x + (1 + x)) = xa3(1 + x)b2 ,

so that a1 = a3 and b1 = b2. Hence P (x, y) is triangular.
Case 3: All pairs lie in the same residue class.
It suffices to prove our claim for the case where ai, bi ≥ 0 for each i. We do it by induction on

the total degree of P (x, y). For degree 0 the claim is trivial, since there exist no such polynomials
of length 3. Suppose the proposition holds for polynomials of degree not exceeding d − 1, and let
P (x, y) be of degree d. If all ai’s are odd, then the polynomial P (x, y)/x is still an L-polynomial
with all pairs of exponents in the same residue class. By the induction hypothesis, P (x, y)/x is
triangular, and therefore so is P (x, y) itself. Similarly, we may assume all bi’s to be even. Since

3
∑

i=1

xai(1 + x)bi =

(

3
∑

i=1

xai/2(1 + x)bi/2

)2

,

13



the polynomial
∑3

i=1 xai/2ybi/2 is also an L-polynomial, and is of degree smaller than that of P (x, y).
If all its coefficients lie in the same residue class modulo (2, 2), then by the induction hypothesis the
polynomial is triangular, and hence so is P (x, y). In the other case, it satisfies either the conditions
of Case 1 or those of Case 2, and again we are done.

Remark 5.7. Actually, we could have given a simpler proof, as follows. Multiplying by some xαyβ

we may assume all ai’s and bi’s to be non-negative with at least one of the ai’s and at least one
of the bi’s being 0. The two substitutions x = 0 (and y = 1) and x = 1 (and y = 0) show that at
least two of the ai’s and at least two of the bi’s are 0. Thus P (x, y) = 1 + xa + yb. The equality
(1 + x)b = 1 + xa now gives b = a = 2s. However, the proof we have given is more in line with
the techniques we employ in the paper, and is instructive to have prior to the characterization of
L-polynomials of length 4.

The characterization of L-polynomials of length 4 is essentially the contents of Proposition 4.1,
which will now be proved.

Proof of Proposition 4.1: Let P (x, y) =
∑4

i=1 xaiybi be an L-polynomial. Similarly to the
proof of the preceding lemma, two of the ai’s may be assumed to vanish, and so may two of the
bi’s. Thus, there are two cases to consider:

Case 1: 1 + (1 + x)b2 + xa3 + xa4(1 + x)b4 = 0.
Consider the four integers b2, a3, a4, b4. We proceed by looking at how many of them are even

and how many odd.
Subcase 1.i: All four numbers are odd.
Differentiating both sides of the equality we obtain

(1 + x)b2−1 + xa3−1 + xa4−1(1 + x)b4−1 = 0.

According to Lemmas 5.4 and 5.6, this means that we have here some rearrangement of the equality

1 + x2k

+ (1 + x)2k

= 0.

One possibility is having b2 − 1 = a3 − 1 = 2k and a4 − 1 = b4 − 1 = 0. Substituting in the original
equality, we obtain

1 + (1 + x)2k+1 + x2k+1 + x(1 + x) = 0,

which is easily seen to yield k = 1, so that b2 = a3 = 3 and a4 = b4 = 1. This yields the quadrangle
Q1. If either a4−1 = 2k or b4−1 = 2k, then the last summand on the left-hand side of our equality
is a polynomial of degree 2k + 2, while the first three are of lower degree, and therefore we do not
get a solution.

Subcase 1.ii: Exactly one of the numbers is odd.

14



Since three of the numbers are even, three of the terms on the right-hand side of our equality are
squares, and so is their sum, whereas the fourth cannot be a square. Thus this case is impossible.

Subcase 1.iii: Exactly two of the numbers are odd.
The reasoning in the preceding case shows that not both b2 and a3 are even. If b2 and a3 are

both odd, then a differentiation takes us to the case r = 2, which shows that b2 = a3 = 1, which
does not lead to a solution. Suppose b2 and exactly one of a4 and b4 are odd. If b4 is the odd one,
then a differentiation again leads to an L-polynomial of length 2, implying that a4 = 0. This case
is the intersection of Case 1 with Case 2, and will be considered within the framework of Case 2
later. If a4 is odd, then differentiate

(1 + x)b2−1 + xa4−1(1 + x)b4 = 0,

to obtain a4 = 1 and b2 − 1 = b4. The original equality reduces then to

1 + (1 + x)b4 + xa3 = 0,

which by Lemma 5.6 gives a3 = b4 = 2k for some k. Altogether we have b2 = 2k + 1, a3 = b4 =
2k, a4 = 1, which yields the quadrangle Q2. The case where a3 and exactly one of a4 and b4 are
odd may be transformed to the preceding case by replacing x by 1 + x, and gives therefore the
solution b2 = a4 = 2k, a3 = 2k + 1, b4 = 1, namely Q3.

Subcase 1.iv: Exactly three of the numbers are odd.
If the even number is b2, then differentiation shows that a3 = a4, b4 = 1, and substituting in

the original equality we obtain b2 = 2k, a3 = 2k−1. Thus b2 = 2k, a3 = a4 = 2k−1, b4 = 1, that is
the quadrangle Q4. If the even number is a3, then by symmetry b2 = b4 = 2k − 1, a3 = 2k, a4 = 1,
namely Q5. If the even number is a4, then by differentiation:

(1 + x)b2−1 + xa3−1 + xa4(1 + x)b4−1 = 0.

According to Lemma 5.6, this yields three possible solutions. One of these is b2 = 2k + 1, a3 =
b4 = 1, a4 = 2k, leading to Q6. The other two are b2 = 1, a3 = 2k + 1, a4 = 0, b4 = 2k + 1,
and b2 = a3 = 2k + 1, a4 = 0, b4 = 1. Both of these solutions correspond to Case 2 also,
and will be treated there. If the even number is b4, then by symmetry we arrive at the solution
b2 = a4 = 1, a3 = 2k + 1, b4 = 2k, leading to Q7.

Subcase 1.v: None of the numbers is odd.
Divide all four numbers by the largest possible by the largest power of 2, thus reverting to one

of the former cases.
Case 2: (1 + x)b1 + (1 + x)b2 + xa3 + xa4 = 0.
Similarly to Case 1, we separate to subcases according to the number of even and odd numbers

among the integers b1, b2, a3, a4.
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Subcase 2.i: All four numbers are odd.
Multiply both sides by x and differentiate to obtain

(1 + x)b1−1 + (1 + x)b2−1 = 0,

which we know from Lemma 5.4 to be impossible.
Subcase 2.ii: Exactly one of the numbers is odd.
Exactly as in Subcase 1.ii, this yields no solutions.
Subcase 2.iii: Exactly two of the numbers are odd.
A differentiation gives an equality involving only two terms. By Lemma 5.4 the derivative must

then vanish trivially, which means that one of the ai’s and one of the bi’s are 1, say b1 = a3 = 1.
This yields

1 + (1 + x)b2 + xa4 = 0,

and Lemma 5.6 implies b2 = a4 = 2k for some k, which gives Q8.
Subcase 2.iv: Exactly three of the numbers are odd.
After differentiation we revert to the case of Lemma 5.6. If the even exponent is one of the bi’s,

say b2, then this implies a3 − 1 = 0 and b1 − 1 = a4 − 1 = 2k for some k, namely a3 = 1, b1 = a4 =
2k + 1. Then

(1 + x)b2 = (1 + x)2k+1 + x + x2k+1 = (1 + x)2k

,

which gives b2 = 2k. This yields the quadrangle Q9. If the even exponent is one of the ai’s then we
obtain symmetrically Q10.

Subcase 2.v: None of the numbers is odd.
Similarly to Case 1 we may divide them all by the largest possible power of 2, which brings us

back to one of the former subcases.

6 Proof of Theorem 3.3

The proof of Theorem 3.3, to be presented in this section, hinges on Lemma 6.2 below. We will
find it convenient to view in this section the condition of mixing modulo M somewhat differently.
Namely, this condition may be rephrased in terms of the sequences of r-tuples of pairs of integers
for which the intersections we consider converge to the correct limit. Thus, we start by defining
the following notion.

Definition 6.1. A sequence
((

a
(n)
1 , b

(n)
1

)

,
(

a
(n)
2 , b

(n)
2

)

, . . . ,
(

a
(n)
r , b

(n)
r

))∞

n=1
of r-tuples of pairs of

integers, with (a
(n)
i , b

(n)
i ) and (a

(n)
j , b

(n)
j ) growing apart for i 6= j, is mixing if

∫ r
∏

i=1

σa
(n)
i τ b

(n)
i fi dµ −→

n→∞

r
∏

i=1

∫

fi dµ
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for every f1, f2, . . . , fr ∈ L∞.

Note that a sequence
((

a
(n)
1 , b

(n)
1

)

,
(

a
(n)
2 , b

(n)
2

)

, . . . ,
(

a
(n)
r , b

(n)
r

))∞

n=1
is mixing if and only if any

bounded perturbation thereof is such. Clearly, if the system is mixing modulo M, then every se-

quence
((

a
(n)
1 , b

(n)
1

)

,
(

a
(n)
2 , b

(n)
2

)

, . . . ,
(

a
(n)
r , b

(n)
r

))∞

n=1
, with (a

(n)
i , b

(n)
i ) and (a

(n)
j , b

(n)
j ) growing apart

for i 6= j, and the distance of whose elements from M tends to infinity, is mixing according to this
definition. On the other hand, once we characterize those sequences which are mixing according to
this definition, we have actually characterized those sets M for which the system is mixing modulo
M.

For systems consisting of compact abelian groups and endomorphisms thereof, it is usually most
convenient to test mixing properties by studying corresponding properties of the dual action. For
Ledrappier’s system, the condition is given by the following lemma, which we present without proof.
(See [8, p.263] for full details.)

Lemma 6.2. A sequence
((

a
(n)
1 , b

(n)
1

)

,
(

a
(n)
2 , b

(n)
2

)

, . . . ,
(

a
(n)
r , b

(n)
r

))∞

n=1
is mixing if and only if for

any polynomials P1(x), P2(x), . . . , Pr(x), not all 0, the equation

P1(x)xa
(n)
1 (1 + x)b

(n)
1 + P2(x)xa

(n)
2 (1 + x)b

(n)
2 + . . . + Pr(x)xa

(n)
r (1 + x)b

(n)
r = 0 (11)

has only a finite number of solutions n.

Example 6.3. The sequence ((0, 0), (2n, 0), (0, 2n))∞n=1 is not mixing since

1 · x0(1 + x)0 + 1 · x2n

(1 + x)0 + 1 · x0(1 + x)2n

= 0

for each n.

Proof of Theorem 3.3: Let
((

a
(n)
1 , b

(n)
1

)

,
(

a
(n)
2 , b

(n)
2

)

, . . . ,
(

a
(n)
r , b

(n)
r

))∞

n=1
be a non-mixing

sequence, such that
(

a
(n)
i , b

(n)
i

)

and
(

a
(n)
j , b

(n)
j

)

grow part for each i 6= j. We have to show that it

contains a subsequence, consisting of elements which are at a bounded distance from Λr. Indeed,
by Lemma 6.2 there exist polynomials P1(x), P2(x), . . . , Pr(x), not all 0, such that the equation

P1(x)xa
(n)
1 (1 + x)b

(n)
1 + P2(x)xa

(n)
2 (1 + x)b

(n)
2 + . . . + Pr(x)xa

(n)
r (1 + x)b

(n)
r = 0

has infinitely many solutions n. Apply Proposition 5.1 to each of these n’s. Ignoring the other n’s,
and passing to a subsequence, we obtain constants c1, c2, . . . , cr ∈ F2, not all 0, and αin, βin ∈ {0, 1}
such that

r
∑

i=1

cix
[a

(n)
i /2s]+αin(1 + x)[b

(n)
i /2s]+βin = 0. (12)
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Passing again to a subsequence, we may assume that each of the sequences αin and βin is constant

and that each of the sequences
(

a
(n)
i

)

and
(

b
(n)
i

)

is constant modulo 2s, say a
(n)
i ≡ ai(mod 2s) and

b
(n)
i ≡ bi(mod 2s). Reordering the pairs

(

a
(n)
i , b

(n)
i

)

, we may finally rewrite (12) in the form

r′
∑

i=1

x[a
(n)
i /2s]+αi(1 + x)[b

(n)
i /2s]+βi = 0

for some 1 ≤ r′ ≤ r. Raising this equality to the power 2s, we find that

r′
∑

i=1

xa
(n)
i −ai+2sαi(1 + x)b

(n)
i −bi+2sβi = 0.

Thus, the r′-gon
((

a
(n)
1 , b

(n)
1

)

,
(

a
(n)
2 , b

(n)
2

)

, . . . ,
(

a
(n)
r′ , b

(n)
r′

))

is obtained from a special r′-gon by a bounded perturbation, so that the r-gon
((

a
(n)
1 , b

(n)
1

)

,
(

a
(n)
2 , b

(n)
2

)

, . . . ,
(

a(n)
r , b(n)

r

)

)∞

n=1

stays close to Λr. This completes the proof.

7 The structure of Lr

We have seen in Section 4 that the only reason for a sequence of r-tuples of pairs to be non-
mixing is its proximity to some special r-gons (or the proximity of some of its components to
some special s-gons for a certain 3 ≤ s < r). For r = 3, the only special triangles are those
corresponding to triangular polynomials. For r = 4 we have seen that there are several families
of special quadrangles. Most of these, in fact all those obtained from one of the r-gons of the
families Q2, . . . ,Q10 by translation and dilation by a power of 2, correspond to sums of 2 triangular
polynomials. For example, for a typical quadrangle in Q2:

1 + y2k+1 + x2k

+ xy2k

= (1 + x2k

+ y2k

) + y2k

(1 + x + y).

The quadrangle in Q1 corresponds in two ways to sums of 4 triangular polynomials,

1 + x3 + y3 + xy = (1 + x + y) + x(1 + x2 + y2) + y(1 + x2 + y2) + xy(1 + x + y)

= (1 + x4 + y4) + x3(1 + x + y) + y3(1 + x + y) + xy(1 + x2 + y2),
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but may be shown to correspond to no shorter sum of triangular polynomials. Our main result in
this section asserts that any special r-gon corresponds to a sum of triangular polynomials, and the
number of addends is bounded above by some constant depending only on r.

Theorem 7.1. Every special r-gon corresponds to a sum of at most r3 triangular polynomials.

It will be convenient to denote by h(r) the minimal number m such that every special r-gon
corresponds to a sum of at most m triangular polynomials. Thus, the theorem asserts that h(r) is
finite for every r and, moreover, h(r) ≤ r3.
Proof: We proceed by induction on r. For r = 3 the theorem is a weak version of Lemma 5.6.
Assume the theorem holds for polynomials of length up to r − 1, and let P (x, y) ∈ F2[x

±1, y±1]
be an L-polynomial of length r, say P (x, y) =

∑r
i=1 xaiybi. Assume without loss of generality that

ai, bi ≥ 0 for 1 ≤ i ≤ r. For α, β ∈ {0, 1} put

Rαβ = {1 ≤ i ≤ r : (ai, bi) ≡ (α, β) (mod 2)}

and
Pαβ(x, y) =

∑

i∈Rαβ

xaiybi,

so that

P (x, y) =

1
∑

α,β=0

Pαβ(x, y).

Let:
rαβ = |Rαβ| , α, β ∈ {0, 1}.

We may assume that rαβ < r for each (α, β). Indeed, if rαβ = r for some (α, β), then dividing
P (x, y) by xαyβ and taking a square root, we obtain an L-polynomial of length r. Continuing the
process, we eventually obtain an L-polynomial of length r satisfying the extra condition. Expressing
this polynomial as a sum of several triangular polynomials, we easily decompose P (x, y) into a sum
of as many triangular polynomials.

Replacing P (x, y) by one of the polynomials xP (x, y), yP (x, y) or xyP (x, y), if needed, we
may assume that r00 ≥ r10, r01, r11. Next, we note that the polynomial P (y−1, xy−1) is also an L-
polynomial, and by replacing P (x, y) by it we leave the set R00 intact and permute the other three
Rαβ’s cyclically. Hence, using this transformation or its inverse, we may assume that r01 ≥ r10, r11.

Now we introduce a few more polynomials, as follows:

V1(x, y) = x−1yP10(x, y) + P01(x, y) + x−1P11(x, y),

V2(x, y) = P00(x, y) + x−1P10(x, y) + x−1yP11(x, y),

V3(x, y) = (1 + x−1 + x−1y)P10(x, y) + (1 + x−1 + x−1y)P11(x, y).
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All three are L-polynomials. In fact:

V1(x, 1 + x) = (1 + x)
d

dx
P (x, 1 + x) = 0,

V2(x, 1 + x) =
d

dx
((1 + x)P (x, 1 + x)) = 0,

and
V3(x, y) = x−1(1 + x + y)(P10(x, y) + P11(x, y)), (13)

so that
V3(x, 1 + x) = 0.

Note that the length of V1(x, y) is r − r00, the length of V2(x, y) is r − r01, and (13) shows that
V3(x, y) is a sum of r10 + r11 triangular polynomials. As P (x, y) =

∑3
i=1 Vi(x, y), this shows that

P (x, y) is a sum of triangular polynomials.
The construction above yields

h(r) ≤ max(h(r − r00) + h(r − r01) + r10 + r11) ,

where the maximum is taken over all polynomials of length r satisfying our assumptions. In view
of the assumptions on the rαβ’s it follows that:

h(r) ≤ max{h(r − d) + h(r − c) + a + b : a ≤ b ≤ c ≤ d ∈ Z+, a + b + c + d = r, d < r}.

It remains to prove that, for non-negative integers a ≤ b ≤ c ≤ d < r with a + b + c + d = r we
have:

(r − d)3 + (r − c)3 + a + b ≤ r3. (14)

In fact, the constraints guarantee that c ≥ (r − d)/3, and therefore

(r − d)3 + (r − c)3 + a + b ≤ (r − d)3 +

(

2r + d

3

)3

+ r.

We have to show that, for d ∈ [r/4, r − 1], the right-hand side is bounded above by r3. Routine
calculations show that, considered as a function of d in that interval, the right-hand side is decreas-
ing from r/4 up to some point and increases after that. Thus we need to check only the values at
the endpoints r/4 and r − 1, and it is easily seen that both values are bounded above by r3. This
completes the proof.
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Remark 7.2. The upper bound of r3 in the theorem can be easily replaced by a somewhat smaller
power of r, but our method does not yield a bound of r2. It would be interesting to know how
fast h(r) grows as a function of r. The “worst” example (in the sense that it seems not to be
representable as a sum of few triangular polynomials) we have so far is the family of polynomials

1 + xy + x3 + y3,

1 + xy + x3y3 + x7 + y7,

and in general
1 + xy + x3y3 + x7y7 + . . . + x2r−1−1y2r−1−1 + x2r−1 + y2r−1.

Denote the last polynomial by Ur. One easily verifies that

Ur+1 = Ur + x2r−1(1 + x2r

+ y2r

) + y2r−1(1 + x2r

+ y2r

) + x2r−1y2r−1(1 + x + y).

As U1 = 1 + x + y is triangular, this shows that Ur is a sum of 3r− 2 triangular polynomials. Note
that, as Ur is of length r + 2, this example yields an infinite family of polynomials such that the
polynomial of length r is a sum of 3r − 8 triangular polynomials.

Question 7.3. Can any Ur be expressed as a sum of less than 3r − 2 triangular polynomials?

Question 7.4. Assuming that the answer to the preceding question is negative, are there even
sharper examples?

While we have not found an exact expression for h(r), we are able to find, for each special r-gon,
the minimal number m such that the r-gon corresponds to a sum of m triangular polynomials. For
an r-gon R (and corresponding L-polynomial P (x, y)), we denote this number by h(R) (or h(P )).
The correspondence between special r-gons and L-polynomials enables us using geometrical termi-
nology for the latter. In particular, it will be convenient to use the diameter of an L-polynomial,
meaning the diameter of the corresponding subset of Z2. Distances in Z2 will be calculated by the
maximum metric. Denote ∆ = 1 + x + y.

Proposition 7.5. Given a special r-gon R, it is possible to calculate h(R) effectively. Moreover,
if the diameter of R is D, then it is effectively possible to represent the corresponding special
polynomial P as a sum of h(R) triangular polynomials

P (x, y) =
∑

t∈T

xatybt∆2kt
, (15)

where each triangle is of diameter at most 5(5r3)r3
D, and its Hausdorff distance from R is at most

(5r3)r3+1D.
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We first need a lemma.

Lemma 7.6. Let R and P be as in Proposition 7.5, and suppose P has a representation as in (15),
with |T | = h(P ). Suppose there exist integers k and l, satisfying D < 2l/5 and h(P ) < 2l−k/5, such
that for every t ∈ T we have either kt ≤ k or kt ≥ l. Then P (x, y) has an alternative representation
as a sum of triangular polynomials, in which the terms xatybt∆2kt with kt < k are replaced by a
terms of the form xa′

tyb′t∆2kt , while the terms xatybt∆2kt with kt > l are replaced by terms of the
form xa′

tyb′t∆2kt−l
.

Proof: If T is of the smallest possible size, then |T | = h(P ). We can define a graph on T ,
where two triangles in T are adjacent if they share a common vertex. This graph will be denoted
by T as well. Since the partial sum corresponding to any connected component of T is itself an
L-polynomial, we shall assume throughout that T is connected.

Split the set T into two parts, depending on the size of the triangles. Namely, write T = Tb∪Ts,
where Tb = {t : kt ≥ l} and Ts = {t : kt ≤ k}. Let Tb1, . . . , Tbm be the connected components of
Tb and Ts1, . . . , Tsu the connected components of Ts. Note that, shrinking each Tbi and Tsi into a
single vertex, we obtain a bipartite connected graph T.

Put:
Pdi(x, y) =

∑

t∈Tdi

xatybt∆2kt
, d ∈ {b, s}.

Let Rd,i be the union of the triangles in Td,i, where d is either b or s. Note that all first coordinates
of elements in Rb,i are congruent modulo 2l. In terms of polynomials, this means that

Pbi = xãiyb̃igi(x
2l

, y2l

), i = 1, 2, . . . , m,

for appropriate polynomials

gi(x, y) =
∑

j∈Pb,i

x
aj−ãi

2l y
bj−b̃i

2l ∆2kj−l

, i = 1, 2, . . . , m,

where |ãi| ≤ 2l−1, and |b̃i| ≤ 2l−1. Multiplying P by an appropriate monomial, we may assume
ã1 = b̃1 = 0.

For each Tb,i, consider the shortest path from Tb,1 to Tb,i in the bipartite graph T. The change
from the initial values ã1 = 0 and b̃1 = 0 to the final values ãi and b̃i is due to the sets Ts,j in the
path. In fact, if Tb,i0, Ts,j and Tb,i1 are consecutive vertices of this path, then |ãi1 | ≤ |ãi0 | + 2k|Ts,j|.
It follows that |ãi| ≤ 2k|Ts| ≤ 2l/5 and similarly |b̃i| ≤ 2l/5 for i = 1, . . . , m.

Since each Rs,j must intersect some Rb,i, there must be at least one point in Rs,j congruent to
(ãi, b̃i). As the diameter of Rs,j is at most 2k|Ts,j| < 2l/5, the nearest lattice point to all points 2−lw
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with w ∈ Ts,j is the same point (Aj, Bj) ∈ Z2, Furthermore, the distance between (2lAj, 2
lBj) and

any point of Rs,j is at most 2l+1/5.
Let I be the set of all integer pairs (α, β) for which the monomial xαyβ appears in one of the

polynomials gi(x, y). Write gi(x, y) =
∑

(α,β)∈I εi,α,βxαyβ for suitable εi,α,β’s. Then:

P (x, y) =
∑

(α,β)∈I

x2lαy2lβ

(

m
∑

i=1

εi,α,βxãiyb̃i

)

+

u
∑

j=1

∑

t∈Ts,j

xatybt∆2kt

=
∑

(α,β)∈I

x2lαy2lβ





m
∑

i=1

εi,α,βx
ãiyb̃i +

∑

{j|(Aj ,Bj)=(α,β)}

∑

t∈Ts,v

xat−2lαybt−2lβ∆2kt



 .

Notice that every term in the above sum is contained in a neighborhood of radius 2l+1/5 of the
corresponding point (2lα, 2lβ). Since the diameter of P is smaller than 2l/5, one of the terms in
this sum yields P and the others vanish. By the assumption that (0, 0) ∈ R, it follows that P must
equal the term corresponding to (0, 0), namely

m
∑

i=1

εi,0,0x
ãiyb̃i +

∑

{j|(Aj ,Bj)=(0,0)}

∑

t∈Ts,j

xatybt∆2kt
= P (x, y),

whereas for (α, β) 6= (0, 0) we have

m
∑

i=1

εi,α,βxãiyb̃i +
∑

{j|(Aj ,Bj)=(α,β)}

∑

t∈Ts,j

xat−2lαybt−2lβ∆2kt
= 0.

It follows that in the above expansion for P (x, y) we can replace 2lα and 2lβ by α and β,
respectively, and write

P (x, y) =
∑

(α,β)∈I

xαyβ





m
∑

i=1

εi,α,βx
ãiyb̃i +

∑

{j|(Aj ,Bj)=(α,β)}

∑

t∈Ts,j

xat−2lαybt−2lβ∆2kt





=
m
∑

i=1

xãiyb̃igi(x, y) +
∑

(α,β)∈I

xαyβ





∑

{v|(Av ,Bv)=(α,β)}

∑

t∈Ts,v

xat−2lαybt−2lβ∆2kt





=
m
∑

i=1

∑

t∈Pb,i

x(ãi+
at−ãi

2l )y

(

b̃i+
bt−b̃i

2l

)

∆2kt−l

+
u
∑

j=1

∑

t∈Ts,j

xat−2lAv+Avybt−2lBv+Bv∆2kt
.
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Proof of Proposition 7.5: Take a decomposition as in (15) with maxt∈T as small as possible.
Suppose, say, that 2k1 ≤ . . . ≤ 2kh(P ). Set k0 = 0. Let m be the maximal integer such that
2km ≤ 5D. If s ≥ m, and if 2ks+1−ks > 5h(R), the assumptions of Lemma 7.6 are satisfied for
k = ks and l = ks+1, so that the conclusion of that lemma contradicts our minimality assumption.
It follows that 2ks+1 ≤ 5h(P ) · 2ks for s ≥ m, and therefore by Theorem 7.1 we have 2kh(P ) ≤
(5h(P ))h(P )(5D) ≤ (5r3)r3

(5D). Hence every triangle in the decomposition must be within a
radius of

∑

t∈T 2kt ≤ (r3)(5h(P ))h(P )(5D) ≤ (5r3)r3
(5D) from some point of R.

Since the number of decompositions satisfying these properties is finite, this yields an algorithm
for finding a decomposition as required.

8 Higher-order mixing along special sequences

The main theme of this paper is that a sequence
((

a
(n)
1 , b

(n)
1

)

,
(

a
(n)
2 , b

(n)
2

)

, . . . ,
(

a
(n)
r , b

(n)
r

))∞

n=1
is

mixing unless it satisfies certain quite restrictive conditions. In this section we apply our previous
results to study the conditions under which some “natural” sequences, arising from polynomials or
multiplicative semigroups, are mixing. The examples below give further validation to our theme.
We start with the following straightforward consequence of Lemma 6.2.

Proposition 8.1. Each of the following three conditions implies that the sequence
((

a
(n)
1 , b

(n)
1

)

,
(

a
(n)
2 , b

(n)
2

)

, . . . ,
(

a(n)
r , b(n)

r

)

)∞

n=1

is mixing:

1.
∣

∣

∣
a

(n)
i − a

(n)
j

∣

∣

∣
−→
n→∞

∞ for 1 ≤ i < j ≤ r.

2.
∣

∣

∣
b
(n)
i − b

(n)
j

∣

∣

∣
−→
n→∞

∞ for 1 ≤ i < j ≤ r.

3.
∣

∣

∣
(a

(n)
i + b

(n)
i ) − (a

(n)
j + b

(n)
j )
∣

∣

∣
−→
n→∞

∞ for 1 ≤ i < j ≤ r.

In fact, if the first condition in the proposition is satisfied, then we can bound from above the
power of x dividing the left-hand side of (11), if the second condition is satisfied then we do the
same using 1+x, and if the third condition holds then we prove the proposition by considering the
degree of the left-hand side of (11).

The following proposition is an immediate consequence of Proposition 8.1.

Proposition 8.2. Let pi(x), qi(x) ∈ Q[x] be polynomials without constant term such that pi(Z), qi(Z) ⊆
Z, 1 ≤ i ≤ r. Suppose at least one of the following conditions holds:
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1. The polynomials pi(x) are mutually distinct.

2. The polynomials qi(x) are mutually distinct.

3. The polynomials pi(x) + qi(x) are mutually distinct.

Then the sequence ((p1(n), q1(n)), (p2(n), q2(n)), . . . , (pr(n), qr(n)))∞n=1 is mixing.

Denote by Z∗ the multiplicative semigroup of non-zero integers. Let πj : Zm → Z be the j-th
coordinate map, j = 1, . . . , m.

Lemma 8.3. Assume that G is a finitely generated subsemigroup of the m-fold cartesian product
(Z∗)m with a set of generators h1, . . . , ht, such that for all j = 1, . . . , m and i = 1, . . . , t we have
πj(hi) 6= ±2s for s ≥ 1. Let l : Zm → Z be a linear function, and let (gn) be a sequence in G
such that |l(gn)| −→

n→∞
∞. Then, for any fixed integer d and any fixed a0, . . . , ad, there exist at most

finitely many n’s for which l(gn) is of the form
∑d

i=0 ai2
ri.

Proof: Let R = {2, 4, 8, . . .} be the subsemigroup of Z∗ generated by 2. The conditions of the
lemma imply that, for every g ∈ G and j = 1, . . . , m, the set Rπj(g) ∩ πj(G) is finite.

Let (gn) be a sequence in G such that |l(gn)| −→
n→∞

∞. Let l(x1, . . . , xm) =
∑m

i=1 αixi. Replacing

{1, . . . , m} by a subset thereof and passing to subsequences if needed, we may assume that no
subsum of l(gn) =

∑m
i=1 αigni vanishes. Thus we need to prove that the equation

l(gn) −
d
∑

j=0

aj2
rj = 0

has at most finitely many solutions (n, r0, . . . , rd) with no vanishing subsums of
∑d

j=0 aj2
rj . (If

there is a vanishing subsum, replace it by a shorter sum.) In particular, it suffices to prove that

l(2−r0g) −
d
∑

j=1

bj2
rj−r0 = 1, bj = a−1

0 aj

has finitely many solutions (g, r0, . . . , rd) with g ∈ G and ri as above. By [2, Th.1.1], there exist at
most finitely many solutions of

l(g′) −
d
∑

j=1

bj2
sj = 1, g′ ∈ G′,
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without vanishing subsums, where G′ is the subgroup of R∗ generated by G and

{(2, 1, . . . , 1), (1, 2, . . . , 1), . . . , (1, 1, . . . , 2)}.

Since Rπj(g)∩πj(G) is finite for each g ∈ G, it follows that for every such g ′ there are at most finitely

many possible values for r0 such that g = 2r0g′ ∈ G. In particular, l(gn)−
∑d

j=0 aj2
rj = 0 has finitely

many solutions without vanishing subsums. Now we take a general solution of l(gn)−
∑d

j=0 aj2
rj = 0

and rewrite it as a sum of minimal vanishing subsums. We decompose a linear function into subsums
in the form

l(x1, . . . , xm) = α1x1 + . . . + αmxm =
∑

j

lj(x1, . . . , xm),

where T = {T1, . . . , Ts} is a partition of {1, . . . , m} and lj(x1, . . . , xm) =
∑

i∈Tj
αixi. The partition

T can be chosen so that the minimal vanishing subsums are of the form lj(gn)−
∑

i∈Uj
ai2

ri, where

U = {U1, . . . Us} is a similar partition for {0, . . . , c}. For any such pair of partitions (T,U) there are
a finite number of solutions so that the minimal vanishing subsums are actually lj(gn)−

∑

i∈Uj
ai2

ri,

so that there are finitely many solutions of l(gn) −
∑d

j=0 aj2
rj = 0.

Lemma 8.4. Let G be as in the preceding lemma and l1, . . . , lr, l
′
1, . . . , l

′
r : Zm → Z be linear. If

(γn)∞n=1 is a sequence in G satisfying

ρ((li(γn), l′i(γn)), (lj(γn), l′j(γn)) −→
n→∞

∞, 1 ≤ i < j ≤ r,

then the sequence
(

(

l1(γn), (l
′
1(γn)

)

, . . . ,
(

lr(γn), (l′r(γn)
)

)

is mixing.

Proof: If the sequence in question is not mixing, then by passing to a subsequence we may
assume that, say, the sequence (l1(γn) − l2(γn)) is unbounded and is composed of numbers each of
which is of the form

∑d
i=1 εi2

ri, where d ≤ h(r) and εi = ±1 for each i. This contradicts Lemma
8.3, and thus proves our lemma.

Let D ⊆ Z2. A Z2-action (T, S) on (X,B, µ) is r-mixing along D if

µ

(

r
⋂

i=1

T−mi(t)S−ni(t)Ai

)

−→
r
∏

i=1

µ(Ai), A1, . . . , Ar ∈ B,

as (mi(t), ni(t)) ∈ D for each i and ρ((mi(t), ni(t)), (mj(t), nj(t)))−→
t→∞

∞ for i 6= j.

Theorem 8.5. Let Γ be a finitely generated multiplicative subgroup of Z∗. If Γ ∩ {2n : n =
1, 2, . . .} = ∅, then Ledrappier’s system is mixing of all orders along Γ × Γ.

26



Proof: If Ledrappier’s system is not mixing of order r along Γ × Γ, then there exist sequences
(mi(t))

∞
t=1 and (ni(t))

∞
t=1 in Γ, for i = 1, . . . , r, such that

µ

(

r
⋂

i=1

σmi(t)τni(t)Ai

)

−→
t→∞

K 6=
r
∏

i=1

µ(Ai),

and ρ((mi(t), ni(t)), (mj(t), nj(t)))−→
t→∞

∞. Let γt = (m1(t), . . . , mr(t), n1(t), . . . , nr(t)) ∈ G = Γ2n

and apply Lemma 8.4.

Theorem 8.6. Let Γ be as in Theorem 8.5, and pi(x), qi(x) be integer polynomials without constant
term, 1 ≤ i ≤ r, such that the pairs (pi(x), qi(x)) are distinct. Then

µ

(

r
⋂

i=1

σpi(m)τ qi(n)Ai

)

−→
(m,n)→∞

(m,n)∈Γ×Γ

r
∏

i=1

µ(Ai).

Proof: We proceed similarly to the proof of the preceding theorem. If the conclusion does not
hold, then there exist sequences (mt)

∞
t=1 and (nt)

∞
t=1 in Γ such that

µ

(

r
⋂

i=1

σpi(mt)τ qi(nt)Ai

)

−→
t→∞

K 6=
r
∏

i=1

µ(Ai).

Put γt = (mt, . . . , m
M
t , nt, . . . , n

M
t ) ∈ G = Γ2M , where

M = max{deg p1, . . . , deg pr, deg q1, . . . , deg qr}.

Now apply Lemma 8.4.
To present our next result, we first need the following

Definition 8.7. A polynomial p(x) ∈ Q[x] with p(Z) ⊆ Z is 2-exceptional if the diophantine
equation p(m) = 2n has infinitely many positive solutions (m, n).

Lemma 8.8. A non-constant polynomial p(x) ∈ Q[x] with p(Z) ⊆ Z is 2-exceptional if and only if
it satisfies the following conditions:

a. p(x) = 2j(ax + b)k for certain integers a, b, j, k with b, k ≥ 1 and j ≥ 0.

b. a is odd and (a, b) = 1.

c. b belongs to the subgroup of (Z/aZ)∗ generated by 2.

27



Proof: Suppose first p(x) is 2-exceptional. By [11, Th.10.2], the polynomial p(x) has a single
root, so that p(x) = d(ax + b)k for some d, a, b, k with a, k ≥ 1. Clearly, d must be a power of 2,
and we may assume that (a, b) = 1. Also, the arithmetic progression (am + b)∞m=1 must be a power
of 2 infinitely often. For 2n′

to be of the form am + b we need to have 2n′

≡ b(mod a), so that b
must belong to the subgroup of (Z/aZ)∗ generated by 2.

The converse direction is trivial.
Going over the proof, we see that, moreover, given such a 2-exceptional polynomial, it is easy

to characterize the argument values for which it assumes a power of 2 value.
To formulate our next theorem, it will be convenient to use the following notion. Let pi(x) and

qi(x) be integer polynomials for 1 ≤ i ≤ 2. The quadruple (p1(x), q1(x), p2(x), q2(x)) is exceptional
if up to some additive constants it is of one of the forms

(p, 0, 0, p), (0, p, p, 0), (0,−p,−p,−p), (−p,−p, 0,−p), (−p, p,−p, 0), (−p, 0,−p, p), (16)

where p(x) = 2t(ax + b)r, for some integers t, a, b, r with t ≥ 0, r ≥ 1, a odd and b in the orbit of 2
modulo a.

Theorem 8.9. Let pi(x), qi(x) ∈ Q[x] with pi(Z), qi(Z) ⊆ Z for i = 1, 2. Then

µ
(

A0 ∩ σp1(m)τ q1(n)A1 ∩ σp2(m)τ q2(n)A2

)

−→
(m,n)→∞

µ(A0)µ(A1)µ(A2), A0, A1, A2 ∈ B,

if and only if the quadruple (p1(x), q1(x), p2(x), q2(x)) is not exceptional.

Proof: The convergence condition is satisfied if and only if the triangle

{(0, 0), (p1(n), q1(n)), (p2(n), q2(n))}

is not a special triangle, up to some additive constants, infinitely often. Then it must be of one
of the forms in (16), where p(n) must be a power of 2 infinitely often. It follows that p must be
special.

The analogue of Theorem 8.9 for higher-order mixing seems unreachable with the current knowl-
edge on the emerging diophantine equations. We start with

Example 8.10. Consider the polynomials:

p1(x) = 0, q1(x) = 0,
p2(x) = 0, q2(x) = x7,
p3(x) = x7 − x3, q3(x) = 0,
p4(x) = x7 − x3, q4(x) = x3.

According to Theorem 3.3 and Proposition 4.1 (using the quadrangle Q3), the sequence

((p1(n), q1(n), (p2(n), q2(n)), (p3(n), q3(n)), (p4(n), q4(n))∞n=1

is not mixing.
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Thus, a 4-tuple of pairs of polynomial sequences may fail to mix even if some of the differences
are not (up to a constant) polynomials with a single root. The reason is that these polynomials
are allowed to assume values which are sums or differences of two powers of 2, so that [11, Th.10.2]
is not applicable any more. To characterize mixing polynomial sequences of length 4, one would
need to find which polynomials are guaranteed not to assume infinitely often values of the form
2k ± 2l. In view of Theorem 7.1, to characterize r-tuples of pairs of polynomials for which we have
mixing, one needs first to find which polynomials may assume infinitely often values which are
sums and/or differences of up to some fixed number of powers of 2. As even the resolution of the
very special case, of finding which sums/differences of up to three powers of 2 are squares, is quite
recent [12] (see also [4] and [10]), it seems that a lot of work still needs to be done to that end. In
this connection, we raise the following

Question 8.11. Given any constant C, characterize those polynomials p(x) for which the diophan-
tine equation

p(m) = 2n1 ± 2n2 ± . . . ± 2nC

may have infinitely many solutions m, n1, . . . , nC .

Theorem 8.12. If {(a1, b1), (a2, b2), . . . , (ar, br)} is a special r-gon, then:

1. The set {1 ≤ k ≤ r : ak = min1≤i≤r ai} is of even size, and in particular consists of at least two
numbers.

2. The set {1 ≤ k ≤ r : bk = min1≤i≤r bi} is of even size, and in particular consists of at least two
numbers.

3. The set {1 ≤ k ≤ r : ak + bk = max1≤i≤r(ai + bi)} is of even size, and in particular consists of
at least two numbers.

Proof:

1. Suppose min1≤i≤r ai = a, where the minimum is obtained an odd number of times. Then the
coefficient of xa in the polynomial

∑

1≤i≤r xai(1 + x)bi is 1, and in particular
∑

1≤i≤r xaiybi is
not an L-polynomial.

2. This part follows from the preceding part by interchanging x and 1 + x.

3. Suppose max1≤i≤r(ai + bi) = c, where the maximum is obtained an odd number of times. Then
the coefficient of xc in the polynomial

∑

1≤i≤r xai(1+x)bi is 1, and in particular
∑

1≤i≤r xaiybi

is not an L-polynomial.
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Example 8.13.

µ

(

r
⋂

i=1

σni

τnAi

)

−→
n→∞

r
∏

i=1

µ(Ai), A1, A2, . . . , Ar ∈ B.

Example 8.14. If p1(x), q1(x), p2(x), q2(x), . . . , pr(x), qr(x) are polynomials of mutually distinct
degrees, then

µ

(

r
⋂

i=1

σpi(n)τ qi(n)Ai

)

−→
n→∞

r
∏

i=1

µ(Ai), A1, A2, . . . , Ar ∈ B.

Definition 8.15. A set E ⊆ N is rarified if

|{1 ≤ n ≤ N : n ∈ E}| = O
(

(log N)C
)

for some constant C.

We shall sometimes detail further rarified with exponent C when we wish to specify the constant
C in the definition.

Lemma 8.16. If E1, . . . , En are rarified with exponent C, then so is E1 ∪ . . . ∪ En.

Proof: Trivial.

Lemma 8.17. Let f : Z → Z is a function that is at most M-to-1 and satisfying f(n) = O(nR) for
positive constants M and R. If E is rarified of exponent C then so is f−1(E). In particular, the
inverse image in N of a rarified set under a polynomial map, which maps N into itself, is rarified
as well.

Proof: Let K be a constant such that f(n) ≤ KnR and F = f−1(E). Put E(N) = {1 ≤ n ≤ N :
n ∈ E} and F (N) = {1 ≤ n ≤ N : n ∈ F}. Then y ∈ F (N) implies f(y) ∈ E(KNR). Therefore:

|F (N)| ≤ M |E(KNR)| = O
(

[log(KNR)]C
)

= O
(

[log K + R log N ]C
)

= O
(

(log N)C
)

.

Note that this lemma applies in particular to polynomials.

Theorem 8.18. Let pi(x), qi(x) ∈ Q[x], 1 ≤ i ≤ r, be polynomials without constant term, assuming
integer values on integers, and such that (pi(x), qi(x)) 6= (pj(x), qj(x)) for i 6= j. Then there exists
a rarified set E ⊆ Z such that

µ

(

r
⋂

i=1

σpi(n)τ qi(n)Ai

)

−→
r
∏

i=1

µ(Ai), A1, A2, . . . , Ar ∈ B,

as n → ∞ along values outside E.
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For the proof, we need the following fact.

Proposition 8.19. Let
((

a
(n)
1 , b

(n)
1

)

,
(

a
(n)
2 , b

(n)
2

)

, . . . ,
(

a
(n)
r , b

(n)
r

))∞

n=1
be a non-mixing sequence of

r-tuples of pairs of integers. Denote by Dh ⊂ Z be the set of sums and differences of at most h
powers of 2, where h = h(r) is as defined in Section 7. Then, for some pair (i, j) = (i(n), j(n)),

the difference a
(n)
i − a

(n)
j tends to ∞ with n, and is at a bounded distance fron Dh infinitely often.

Note that, by passing to a subsequence, we may assume (i, j) to be constant.
In the proof we shall use the notion of a minimal special r-gon, which is a special r-gon,

containing properly no other special r-gon.

Proof of Proposition 8.19: Obviously, any special r-gon is a union of minimal ones. Let f be
a minimal special r-gon. Write f =

∑h
i=1 ∆i, where each ∆i is triangular. Consider the graph G,

whose vertices are v1, . . . , vh and containing the edge vivj if the triangular polynomials ∆i and ∆j

have a common term. In other words, a term of ∆i may cancel a term of ∆j only if vivj is an edge
of G. In particular, there can be no cancellation between triangular polynomials corresponding to
vertices in different connected components of G. It follows that, if vi1 , . . . , vir are all vertices in
one connected component, then

∑r
u=1 ∆iu is a subsum of f and a special r′-gon. Thus, G must be

connected. Note that we can transform a triple (i, a, b), where xayb is a term of ∆i, to any other
by a sequence of alternating steps of the following types:

1. Replace (i, a, b) by (j, a, b) if xayb is also a term of ∆j.

2. Replace (i, a, b) by (i, c, d) if xcyd is also a term of ∆i.

Only the steps of the second type change the coordinates, and they do so only by a power of 2. By
choosing a simple path in the graph, we see that we need at most h steps of type 1, and therefore
also at most h steps of type 2. Since a special r-gon contains at least 3 non-collinear points, it
follows that every special r-gon contains terms of the form xayb and xcyd, where a − c ∈ Dh. Now
the result follows from Theorem 3.3.

Proof of Theorem 8.18: By Proposition 8.19, if every sequence ai(n) − aj(n) or bi(n) − bj(n)
that tends to infinity gets away from Dh, then the sequence

((a1(n), b1(n)), (a2(n), b2(n)), . . . , (ar(n), br(n)))

is mixing. Note that there exists a rarified set E, such that the sequence x(n) satisfies ρ(x(n), D) −→
n→∞

∞

provided that x(n) −→
n→∞

∞ and x(n) /∈ E. Now the result follows from Lemmas 8.16 and 8.17.
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