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1. Introduction

In this paper we deal mainly with the set S of squarefree numbers and its shifts,
namely, sets of the form
S—a={zr—-a:z€S}.

The questions we ask intertwine combinatorial number theory with ergodic theory of
multiple recurrence and are motivated by the natural curiosity related to an important
subset of N as well as by the desire to gain, through the study of S, some additional
(heuristic) insight about the set of primes.

We start this introduction by mentioning some known facts and conjectures about
primes which the reader is invited to juxtapose with the results about S brought up in
this paper.

One of the outstanding open problems related to the set P = {2, 3,5, ...} of primes is
the conjecture that it contains arbitrarily long arithmetic progressions. In this direction
it is known that P contains infinitely many 3-term arithmetic progressions (Chowla,
1944). In contrast we remark that one can show with relative ease that S contains
arbitrarily long arithmetic progressions (see Theorem 2.8 below). (This also immediately
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follows from a celebrated theorem of Szemerédi (1975), which states that every set of
positive upper density has this property.)

Another important type of configurations that we are interested in are the sets of
finite sums. Given a nonempty set £ C N, the set of its finite sums, FS (F) is defined
as the collection of all sums of elements of finite nonempty subsets of E. (The exclusion
of the empty sum, that is, the number 0 from FS (F) helps to avoid some trivial com-
plications. We could also include it here and modify the statements accordingly.) For
infinite E the sets FS (FE) are called IP-sets and play a prominent role in ergodic the-
ory of multiple recurrence and its applications. (See, for instance, Furstenberg (1981),
Furstenberg and Katznelson (1985), Bergelson, Furstenberg and McCutcheon (1996),
Bergelson and McCutcheon (2000)).

We say that a set D of positive integers has 1Py property, if for every k € N there
exists an £ C D with |E| = k such that FS (E) C D. It is known that for any ¢ the set
of shifted primes, P — ¢, does not contain an IP-set (Hegyvary and Sarkozy, 1999). It is
an open problem whether the set P — 1 has IP( property. (We believe it does. It follows
from easy divisibility considerations that P — ¢ does not have this property if ¢ # +1,
see Statement 2.12. A positive answer for ¢ = £1 would follow from the prime tuple
conjecture. This asserts that for any finite collection aq, ..., ar of integers, which do not
contain a complete residue system modulo m for any m > 2, there are infinitely many
integers t such that each ¢+ a; is prime — the simplest case is the twin prime conjecture.
The IPy property for P — 1 is equivalent to the solvability of certain systems of linear
equations in the set of primes. The best known unconditional results in this direction,
due to Balog (1992), are still too weak for our purposes, but perhaps not hopelessly
so.) We will show that for any a € S the set S — a contains an IP set (see Lemma 2.10
below). It is easy to see that if a & S, then S — a does not even have the IP( property,
see Statement 2.12.

A set H C Nis called intersective, if for any set E which has positive upper density,

defined as 5 -
— N
d(F) = limsup | {2 ,n}|’

n—00 n

one has (E — E) N H # (. As a nontrivial example of an intersective set we mention
P — 1 (Sarkozy, 1978b). (P + 1 is also intersective and P — ¢ is not for any t # £1, as
it does not intersect E — E for, say, E = 2|t|N.)

The notion of intersectivity has an equivalent formulation in the language of ab-
stract ergodic theory. Following Furstenberg, let us call a set R C Z a set of recurrence
(or Poincaré set) if for any measure-preserving transformation 7" of a probability space
(X,B, ) and for any A € B with p(A) > 0 there exists an n € R, n # 0 such that
p(ANT™A) > 0. A set R C N is a set of recurrence if and only if it is intersective
(Bertrand-Mathis (1986)), see also Appendix.

We list some further examples of sets of recurrence:
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(1) {f(n)},cN> where f(z) € Z[z] is such that f(0) = 0. (Sdrkézy (1978a), Kamae
and Mendes France (1978), Furstenberg (1977, 1981)).

(ii)) {f(n)}nep—1, where f is as above. (Wierdl, 1989.)

(iii) {f(n)}ner, where f is as above and T' is any IP set. (Bergelson, Furstenberg,
McCutcheon, 1996.)
As was already mentioned, it will be shown in this paper that any set of the form
S —a, a € S contains an IP set. It follows from (iii) above that for any a € S the set
{f(n)}nes—a is a set of recurrence. We shall see below that actually a stronger fact
pertaining to multiple recurrence is also true.

Definition 1.1. Fix d € N and let E C Z% The upper Banach density d*(E)
is defined as

ENII
d*(F) = limsup (sup | |> ,

n—o0 11|

where the supremum in parentheses is taken over all parallelopipeds
II= [al,bl] X ... X [ad,bd]

satisfying b; — a; > n for all 4.

Definition 1.2. A set H C Z% is called intersective, if for any E C Z% with
d*(E) > 0 one has (E — E)N H # 0.

Given d commuting measure-preserving transformations 71, ..., T acting on a prob-
ability measure space (X, BB, 1), we shall use the notation

T™ = T T,
where n = (nq, ...,ng). We call this family (Tn)nezd a measure-preserving Z%-action.

Definition 1.3. A set R C Z% is called a set of recurrence (for Z%-actions), if
for any measure-preserving Z%-action on a probability space (X, B, ) and any A € B
with u(A) > 0 there exists an n € R, n # 0, such that u(ANT"A) > 0.

The examples of sets of recurrence in Z admit natural extensions to Z¢. Let
fi(x), ..., fa(z) € Z[x], fi(0) = 0. (Our statements about polynomials work in general
for the wider class of polynomials f(z) € Q[z] satisfying f(Z) C Z, which includes natu-
ral examples like n(n+1)/2. However, for a finite collection f1, ..., f4 of such polynomials
one can always find a positive integer m such that all the polynomials g;(z) = f;(mx)
have integral coefficients, thus the results would not be truly more general.)

The following are examples of sets of Z%-recurrence.

(a) {(f(n),..., fa(n))}nes—a, Where a € S;
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() {(fi(n), ..., fa(n))}ner, where T is an IP set;
(©) {(fi(n), .., fa(n)) }nep-1.

For more about (a) and (b), see Proposition 3.4 and afterwards. (c) can be shown
by some modifications of the method of Kamae and Mendes France, and we plan to give
details in another paper.

One can show that the notions of Z%intersectivity and Z%-recurrence coincide (see
Appendix).

A related stronger concept got its name after some results of van der Corput on
uniform distribution.

Definition 1.4. A set H c Z% is called van der Corput set, if it has the
following property: whenever for a real sequence (Un)nezd all the difference sequences
(Untn — ’U,n)nezd formed with any h € H are uniformly distributed modulo 1, then
(Un)nezd itself is uniformly distributed.

The van der Corput property implies intersectivity (this is easy, but prehaps not
completely obvious; we plan to return to this and related questions in another paper.)
For d =1 it is known to be equivalent to various other properties, see Ruzsa (1981/82,
1984). It is also known that (for d = 1) intersectivity does not imply the van der Corput
property (Bourgain 1987, Forrest 1991). One can show that examples (a) and (c) above
are actually van der Corput sets. It is an open problem whether, for a general T, (b) is
van der Corput or not.

2. Some properties of squarefree numbers

In this section we prove some properties of certain sets formed from the set of
squarefree numbers. We do not claim originality for any of these simple results. In lack
of a reference we list and prove what we need for our applications.

We will use S = {s1, $2,...} to denote the set of squarefree numbers.

In the sequel we formulate some properties of sets of integers. We allow these sets
to contain 0 or negative numbers (our sets will have only finitely many such elements),
however, we define density by considering the number of elements in [1, N] and letting
N — oo, so the possible negative elements do not affect it.

Definition 2.1. We say that a set A C Z is rational, if for every € > 0 there is
a set B which is a union of finitely many arithmetic progressions and

d((A\B)U(B\4)) <e. (2.1)
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Lemma 2.2.

i) The class of rational sets forms a set algebra (it is closed under taking finite unions,
intersections and forming the complement).

ii) A rational set has an asymptotic density.

Proof. (i) is obvious.
(ii) Indeed, (2.1) implies that the difference between upper and lower density is at
most ¢. W

Sometimes we will need a stronger property.

Definition 2.3.

i) A set A C Zis (m,e)-regular, if its intersection with a residue class modulo m has
always either upper density < ¢/m, or lower density > (1 — ¢)/m.

ii) A set A C Z is inner (m,e)-regular, if its intersection with a residue class modulo
m is either empty, or has lower density > (1 —¢)/m.

Definition 2.4. A set A C N is reqular (inner regular), if for every € > 0 there
is an m € N such that A is (m,e)-regular (or inner (m, )-regular, respectively).

The difference between regularity and inner regularity is that a regular set may
contain a few “exceptional” elements (say only one even number), and an inner regular
one cannot. This property will be heavily utilized below during the proof of Theorem
2.8.

Lemma 2.5.

A regular set always has a density. The density of a nonempty inner regular set is
always positive.

Proof. A regular set is rational, hence has a density. If a set is (m,1/2) inner
regular, the density must be clearly at least 1/(2m). W

We do not know whether the classes of regular and inner regular sets are closed
under finite union and intersection. We expect that they are not, and it would be
interesting to modify the definition to have these properties while still including the
examples to be described below. However, an important special case can be easily
shown.
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Lemma 2.6.

(i) Let A be an inner regular set. Any set, formed from finitely many translations
of A via the operations of union and itersection is also inner (or outer) regular,
respectively.

(ii) Let A be a regular set. Any element of the set algebra, generated by the translations
of A, is also regular.

Proof. (i) The only point to be observed is that if A is inner (m, ¢)-regular, then so
are all its translates, with the same m. Take an intersection B of k translations of A.
If the intersection of B with a residue class modulo m is not empty, then each of the
translations of A involved intersect it, then each contains it save a set of upper density
< &/m, thus B contains it save a set of upper density < ke/m.

Consider now a union C of [ sets, say B, ..., By, each of which is formed as an
intersection of at most k translations of A. Take a residue class modulo m. If some B;
intersects it, then the intersection has density > 1 — ke/m by the previous argument, so
C intersects it with density > 1 — ke/m; if no B; intersects it, then C' does not intersect
it either. Consequently C' is inner (m, ke)-regular.

(ii) The proof follows that of (i) with obvious changes. W

Lemma 2.7.

Let B C N be a set such that 1 ¢ B, any two elements of B are coprime and

Zl/b<oo.

beB

Define A as the set of natural numbers that are not divisible by any element of B. Then
A is an inner regular set of positive density. In particular, S is inner regular (its density
is well known to be 6/7%).

Proof. Take an € > 0, and choose K so that

Y 1fb<e (2.3)

bEB,b>K

Let

m:Hb.

bEB <K

We claim that A is inner (m, €)-regular. Indeed, consider a residue class a (mod m). If
the ged (a, m) is divisible by any b € B, then clearly no integer =a (mod m) belongs
to A.
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Assume that (a, m) has no divisor from B. We show that the density of the numbers
in this residue class and not in A is < €/m. We estimate the number of such integers
up to N.

Such an integer satisfies
n=a (modm), n=0 (modbd)

with some b € B. This congruence is impossible if b < K, and it is equivalent to a single
congruence
n=r7p (mod mb)

for b > K. The number of solutions up to N is hence < 1+ N/(bm). Also, there is no
such number if b > N. Thus the total cardinality of such numbers up to N is

< ¥ (1+b£>§ﬂ+ 1:(3+o(1))N

m m m
beEB,K<b<N beB,b<N

as claimed. Above, in the firs inequality we applied (2.3), in the second we used the
fact that a set whose sum of reciprocals converges always has density 0. W

We cannot decide whether the condition of coprimality is necessary. It is easy to
see that for a set B with a convergent sum of reciprocals the corresponding set A will
always be rational.

Now we look for IP sets in regular sets. We will find slightly more general configu-
rations. An IP set can be thought of as an infinite dimensional cube of side 2; we will
find cubes whose sides tend to infinity. More exactly, given a sequence F = {e1, e, ..., }
of integers, we define FS(E) as the set of all sums of the form Y z;e; with integer
coefficients x; satisfying 0 < z; < 7, not all z; = 0. (The additional requirement z; < 1
gives FS (E).) We will call a set of the form FS (E) with infinite F an TP set.

Theorem 2.8.

Every inner regular set A such that 0 € A contains an IP set (hence a fortiori it
contains an IP set).

Lemma 2.9.

Let A be an inner regular set, ai,...,ax, € A ,l € N. There are infinitely many
positive integers e with the property that all the integers a; + je, 1 <1 <k, 1 <5<
are in A.

Proof. Consider the set
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It is inner regular by Lemma 2.6, and 0 € B by definition. Take ¢ = 1/4/2, and choose
an m for which it is (m, €)-regular. Write

X =mZ)\ B;

we know that d(X) < e/m.

We will show at least half of the multiples of m can serve as a value of e. To do this
we will estimate the number of integers ¢t < T for which mt does not work. This means
that jmt ¢ B for some 1 < j <, so ymt € X. As jmt < ImT, the number of such
integers (for a fixed j) is < 2(e/m)ImT = 2&lT for T > Ty. Since there are | possible
choices for j, the total number of excluded values of ¢ is < 2el?T < T'/2 as claimed. W

Proof of the Theorem. We find integers e; inductively so that always

FS (61, ceey 6j) CS.

If e1,...,ej_1 are already found, we apply the Lemma with [ = j, with k replaced by
(j — 1)! and ay, ..., ax replaced by the elements of FS(ey,...,ej_1) U {0}. Any of the
integers e provided by the lemma is a suitable choice for e;. W

We state separately those corollaries for squarefree numbers that we will need.

Lemma 2.10.

For any ay,...,ar € S, the set (\(S — a;) contains an IP set. In particular, each
S — a, where a € S, contains an IP set.

Lemma 2.11.
If E C S — a is such that d((S — a) \ E) = 0, then E contains an IP set.

Proof. Indeed, if we omit a set of density 0 from an inner regular set, the remaining
set still will be inner regular. W

We complement the above positive results by a negative one which shows why the
assumption a € S was necessary, and also explains a remark in the Introduction about
primes.

Statement 2.12.
(i) If a is not squarefree, then the set S — a does not have the IP, property.
(ii) Ift # +1, then the set P —t does not have the IPy property.

Proof. Consider a set A with IP property. We show that for every m, A contains
infinitely many multiples of m. Indeed, take an E such that |E| = km and FS (F) C A.
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By the box principle, there is a residue class modulo m in which F has at least k
elements. The sum of any m of these numbers is a multiple of m, and (by fixing the
first m — 1 summands and varying the last) we see that there are at least k —m + 1
different m-term sums.

Now to deduce (i), observe that S — a cannot contain a multiple of |a| if a is not
squarefree. To obtain (ii), observe that if ¢ # +1, then the only multiples of |¢| in the
set P —t are +t if ¢ is itself prime, and there is no such multiple at all if ¢ is composite.

3. Application to intersection problems with squarefree numbers

We shall derive now some corollaries from Theorem 2.8 . We present first some
results which will be needed for the derivation of these corollaries.

First we formulate a version of Furstenberg’s correspondence principle, which was
introduced by him in order to derive combinatorial facts, such as Szemerédi’s theorem,
from multiple recurrence results in ergodic theory. For a proof of the particular version
that we are giving here see Bergelson and McCutcheon (2000), Proposition 7.2. See also
Furstenberg (1981), p. 152.

Proposition 3.1.

Let E C Z" be a set satisfying d*(E) > 0 (d* denotes upper Banach density).
Then there exists a probability measure preserving system (X, B, u, {Tn}nezr) and a
set A with u(A) > 0 such that for all k € N and ny,...,ng € Z" one has

d*(EN(E—n)N..N(E—-ng) > p(ANTHAN...NT™A).

Next we formulate Hindman’s finite sets theorem (Hindman, 1974), which has
greatly influenced our work.

Proposition 3.2.

If we partition an IP set into finitely many classes, one of them will contain an
IP set. Equivalently, if we color the finite subsets of an infinite set with finitely many
colors, then there is an infinite collection of disjoint finite subset with the property than
all the finite unions formed from these subsets are all of the same color.

Another tool which will be utilized in the sequel is the IP polynomial Szemerédi
theorem, proved by Bergelson and McCutcheon (2000).
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Definition 3.3. A set E C Z% is called an IP* set, if for every IP set I' ¢ Z¢
one has ENT # ().

Hindman’s theorem (Prosition 3.2 above) immediately implies that any IP* set
contains an IP subset of any IP set.

Proposition 3.4.

Suppose we are given r comuting invertible measure preserving transformation
Ty, ..., T, of a probability space (X, B, u). Let d,t € N and let

pij(:[;b ---,ZL‘d) € Z[.’Iil, ...,:L'd]
with p;;(0,...,0)=0,1<i<r,1<j<t. Then for every A € B with u(A) > 0 the set

t
(TL]_, ...,nd) - Zd ) ﬂ tfii("la-.,’nd)A >0

j=1l:=1
is an IP* set in Z°.

See Bergelson and McCutcheon (2000).

In view of Furstenberg’s correspondence principle, one has the following result

(ibid.)
Corollary 3.5.

Suppose that r, k,t € N, E C Z" with d*(F) > 0 and p; : 7ZF — 72 are polynomials
with p;(0) =0, 1 <4 <t¢. Then

Rp={nez":d"(En(E—p(n)n..0 (E—p(n)) >0}
is an IP* set in ZF.
The following proposition follows from Lemma 2.10.

Proposition 3.6.

The set Rg in Corollary 3.4 has nonempty intersection with S — a for any a € S.

Moreover, for any a1, ...,a € S the set Rg N (ﬂle(S — ai)) contains an IP set.

We mention an interesting special case.

Corollary 3.7.

For any E C Z with d*(E) > 0, any a1, ...,ax € S and any f1,..., fx € Z[x] such
that f;(0) =1 for i = 1, ...,k one can find integers n € ﬂfﬂ(S — a;) such that

EN(E- fi(n))N..n(E - fe(n)) # 0.

Moreover, there is an infinite IP set consisting of such integers n.

There is a less straightforward application of partitional nature.
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Theorem 3.8.

Let k,7r € N, a € S. Let f1,..., fr € Z|x] satisfy f;(0) = 1 fori = 1,....k. If
S —a=J,_, C;, then at least one C; has the following property: there are arbitrarily
large z,y € C; such that

{z, 2+ f1(y), ...,z + fx(y)} C C;.

Proof. Reindexing if necessary, we can assume that C4, ..., C,» have positive upper
density and the C;, ' < 7 < r have density 0, for some 1 < 7’ < r. By Lemma 2.11
the set U:’:l C; contains an IP set, and hence, by Hindman’s theorem, so does one of
the C;, 1 < i < r'. The set C' = C; has the following crucial properties: it has positive
upper density, and it ontains an IP set. Now the claim follows from Corollary 3.6. W

4. Appendix: Multidimensional recurrence and intersectivity

Theorem 4.1.

A set E C Z2 is a set of recurrence if and only if it is a set of Z%-intersectivity.

Proof. In one direction the result follows immediately from Furstenberg’s corre-
spondence principle (quoted above as Proposition 3.1). We need only the case k = 2.

We outline the proof in the other direction. We define the density (if it exists) of
aset E C Z¢ by the formula

d(E) = lim n~YEn[1,n]4.

Lemma 4.2.
Let (Tn)nezd be a measure-preserving Z%-action on a probability measure space

(X,B, ). Let A € B with u(A) = a > 0. Then there exists a set E C Z* with d(E) > a
such that for any m € N and any ny,...,n,, € E one has

p(ANT™ N...NnT™™) > 0.

The case d = 1 is Theorem 1.2 in Bergelson (1985). The proof for general d is
practically the same.
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We now deduce that if a set R is Z%intersective, then it is a set of Z%-recurrence.
To this end take a set E as in Lemma 4.2 above. Then (E — E)N R # () by the
intersectivity. This means that we have n; — ny = r with some ny,ns € F and r € R.
From the Lemma we conclude that

(T ANT™A) > 0.
This is equivalent to

PWANTP24) > 0,
that is, p(ANT*A) > 0 for some r € R as wanted. W

Theorem 4.1 could also be proved along the lines of Theorem 2.2 from Bergelson
and McCutcheon (1998).
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