Simultaneous Diophantine Approximation and VIP Sets

1. Our starting point is the following celebrated theorem of H. Weyl ([W1], [W2]).

Theorem W. Let f(t) € R[t] be a polynomial having at least one coefficient other than
the constant term irrational. Then for any 0 < o < 8 < 1 there exists an integer x such
that a < f(z)mod 1 < .

A simple consequence of Theorem W is that the set Wopg(f) = {z € Z : o <
f(x)mod 1 < B} is not merely non-empty, but infinite. As a matter of fact, Weyl obtained
Theorem W as a corollary to a limiting theorem which says that the sequence ( f (n))zo_1

is equidistributed mod 1, which in particular implies that the density of W, g(f), defined

to be d = limy_;00 Hﬂ_NSwégfl(m)e(a’ﬁ)}', exists and equals 8 — a. (Replacing the lim

in the definition of density by lim sup or liminf, one obtains the notions of upper density
and lower density, respectively. Note that the family of sets having positive lower density
is closed under supersets, which is a desired feature of any notion of “largeness.” Indeed,
positive lower density is the first of several progressively stronger “largeness” properties
that we shall be concerned with in this paper.)

A set S in Z? is syndetic if the union of finitely many of its additive shifts is all of Z<.
Alternatively, S is syndetic if it intersects non-trivially any large enough d-dimensional
cube; namely, if there exists & such that for all choices of My,..., My, SN H?zl[Mi, M; +
k] # 0. In Z, then, S is syndetic if it intersects non-trivially any large enough interval, i.e.
has bounded gaps.) Syndeticity is a property that is strictly stronger than that of positive
lower density and is the second notion of largeness of interest to us.

Van der Corput provided the following impressive generalization of Theorem W in
[VdC].

Theorem VdC. Let ai,...,ay,,01,...,08, be real numbers and let m € N. For each
k=1,...,n,let fi be a polynomial of m + k — 1 unknowns. If the system

a1 < fi(@1, .. @Tm) —y1 < Br
s < fo(@15 .-, Tm,y Y1) — Y2 < B2
as < f3(@1,. -, Tm, Y1, Y2) — Y3 < B3 (1.1)

O < fro(T1, Ty Y1y e+ 3 Yn — 1) — Yn < Bn

has at least one integer-valued solution then it has infinitely many integer-valued solutions.
Moreover, the set of (z1,...,%,) € Z™ for which there is some ¥y = (y1,...,Yn), ¥i € Z,
so that (z,y) satisfies the system (1.1) is syndetic.

Taking n = m = 1 in Theorem VdC, one obtains that W, g(f) is syndetic.

Note: Syndeticity of W, g of follows from well distribution of the sequence ( f (x))m N’
a concept introduced by E. Hlawka [Hl] and G. Petersen [P] in the mid-fifties. (See also
[F], where well-distribution of the sequence ((f(z)) is established via ergodic consid-
erations.)
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The goal of this paper is to strengthen Theorem VdC in two respects. First we shall
show that, in the case that the set of solutions of system (1.1) is non-empty, then it is
large in a more powerful sense than mere syndeticity. In doing so, we shall be at the
same time extending a result of Furstenberg and Weiss (see [FW]) having a similar flavor.
(We mention that while neither [FW] nor Theorem VdC contain the other, our result will
contain both.) Second, we shall show that our generalization holds for a wide class of
generalized polynomials, namely mappings R™ — R one constructs from the constants and
coordinate maps (x1,...,Z,) — =; using not only the conventional arithmetic operations
of addition and multiplication (as in conventional polynomials), but also the operation of
taking the integer part.

We will presently introduce the notions of largeness germain to our paper. First,
however, we note that a natural way of defining a notion of largeness, say in Z", is to
introduce a family S of subsets of Z™ and declare a set £ C Z to be an §* set if for every
S eS8, ENS # (. For example, if S consists of the sets S in Z having upper density 1
then S* sets are precisely those of positive lower density. If 7 is the family of subsets of
Z" containing arbitrarily large n-dimensional cubes (so-called thick sets), then the 7* sets
are precisely those that are syndetic. For more discussion and examples of this type, the
reader is referred to [F, Section 9.1].

A set S C Z"™ is called an IP set (or finite sums set) if it contains the set of finite sums,
without repetition, of a fixed sequence. (By “without repetition” we mean here repetition
of the indices, not the elements appearing in the sequence. If an element appears multiple
times in the sequence, it may appear an equal number of times in any finite sum. In
particular, any set containing 0 is an IP set by default. This is in contrast the situation in
the semigroup N, where all IP sets have infinite cardinality.)

Let us call a set £ C Z™ an IP* set if E intersects every IP set nontrivially. It is not
hard to see that any IP* set is syndetic, as any set containing arbitarily large n-dimensional
cubes may easily be shown to contain an IP set. On the other hand, it is easy to see that
not every syndetic set is IP* (consider for example the set of odd integers in Z). Therefore
the IP* property is strictly stronger that that of syndeticity.

However, the real strength of the IP* property is that it is preserved under finite
intersections; if Sy,..., Sk are IP* sets then ﬂle S; is IP*. This non-trivial fact follows
from the following theorem due to Hindman ([Hi]) which plays a prominent role in our
paper. (Later, we shall give a different version of Hindman’s theorem.)

Theorem H1. Let R be an IP set, let £ € N and suppose R = R U Ry U---U Rg. Then
some R;, 1 <1 <k, is an IP set.

We now show via Theorem H1 that the IP* property is passed on to finite intersections.
First we note that it suffices to establish this for intersections of two sets. So let A and B
be IP* sets and suppose AN B is not IP*. Then there exists an IP set R in the complement
of AN B, whereby R = (R\ A)U (R\ B). It follows by Theorem H that either (R \ A) or
(R\ B) is an IP set. In either case this is a contradiction as both A and B are IP*.

We shall not, however, content ourselves with the IP* property. An even stronger
notion of largeness may be obtained by considering VIP sets-variants of IP sets having a
“polynomial” nature (see [BFM]).



Let F denote the family of finite, non-empty subsets of N. In a commutative group
(G, +), a sequence indexed by F, say (ve)acr, is called a VIP system if there exists some
non-negative integer d such that for every pairwise disjoint aq, a1, -, g € F we have

Z (—1)tvﬂlu...uﬂt =0. (12)
{ﬁlf"’ﬂt}c{aof"’ad}
Bi#Bj, 1<i<j<t

If (vq)aer is a VIP system then the least non-negative d for which (1.2) holds is called the
degree of the system. VIP systems of degree 1 are called IP systems, and one may easily
show that a set R is an IP set if and only if there exists an IP system F — R. Similarly
we say that R is a VIP set if there exists a VIP system F — R. The distinction between
sets and systems here is very simple. IP sets and VIP sets are sets; IP systems and VIP
systems are functions from F to some group.

A different, though equivalent, characterization of VIP systems is often useful. For
d € N, let F4 denote the family of non-empty subsets of N having cardinality at most d.

Proposition 1.1 ([M, Proposition 2.5]). Let G be an additive abelian group and let
d € N. A sequence indexed by F, (va)acr, in G is a VIP system of degree at most d if
and only if there exists a function from F; to G, written v — n,, v € Fy, such that

Vo = E Ny

’Ycaa’yefd
for all a € F.

We shall prove the following theorem, which contains Theorem VdC as a special case:
Theorem A. Let ay,...,an,,01,---, 8, be real numbers and let m € N. For each k£ =
1,...,n, let pr be a polynomial of m 4+ k£ — 1 unknowns. If the system

a1 < p1(T1, -y Tm) — a1 < B1
ag < P21y - oy Ty Tnt1) — Ttz < Po
a3 < p3(Z1,- -, Tm, Tmt1, Tmt2) — Tmt3 < B3 (1.3)
oy < pn(xla o s Ty Tm41y - - - axm—i-‘n—l) — Tm+n < ﬁn
has an integer valued solution (a1, ..., Gm1n) then the following set is VIP*:
{(s1,...,8m) : 3 a solution (s1+ a1, 82 +a2,...,Sm + A, Smt1y---»Smin) b (1.4)

To formulate the aforementioned result [FW], one considers the special case of The-
orem A where m = 1 and o; < 0 < §; for all i = 1,2,...,n (so that, in particular,
the system (1.3) always has at least one solution, namely the zero solution) and replaces
“VIP*” by “IP*'”



As noted, our Theorem A contains both Theorem VdC and the results of [FW] as
special cases. Indeed, our proof is much different (and shorter), owing to a fortuitous usage
of the language of VIP-systems. Still, we feel that van der Corput’s original proof has quite
a few interesting and neglected facets which deserve to be more widely known. Since [VAC]
was written in German and the proof therein is long and somewhat cumbersome, we take
the liberty of summarizing this proof in an Appendix (section 3 below). In particular,
we would like to attract the reader’s attention to what van der Corput calls “rythmic”
systems of functions—a notion that we feel could perhaps find new applications.

2. Proof of the Main Theorem.

Before proving Theorem A, we introduce some notation as well as a few lemmas. We
denote by F the family of all finite subsets of N. Note that (F,U) is a semigroup. For
a,f € F, we write « < B if ¢ < j for every ¢ € a and every j € . If ()52, C F with
a1 < ag < ---, then the sub-family

FO={Jai:peF}=FU(()2))

1€Q

is called an IP-ring. Notice that (F() U) is isomorphic as a semigroup to (F,U) under
the bijection m(8) = (U, @, and it is often useful to think of them interchangably. For

example, if F(1) is an IP-ring and (24)4ec7(1) are members of a group then we say (Z4)qer0)
is a VIP system if (2,(5))ger is a VIP system.

Here now, as promised, is the second formulation of Hindman’s theorem.

Theorem H2. Let (1) be an IP-ring. For any finite coloring of F(1), there exists a
monochromatic IP-ring F(? ¢ FO),

Hindman’s theorem has important ramifications for a certain mode of convergence
along F we shall define presently. Suppose that {z,}acF is an F-sequence in a topological
space and F(D is an IP-ring. We write

IP-lm =z, =2
acF @)

if for every neighborhood U of z there exists € F having the property that for every
ae FY) with a > B, zq € U.
The following lemma is a simple consequence of Hindman’s theorem.

Lemma 2.1. Suppose that X is a compact metric space and {z,}qcr is an F-sequence
in X. Then for any IP-ring F(), there exists an IP-ring F® ¢ F1) such that

IP-lm z, ==
acF(2)

exists.

Proof. Using total boundedness of X and Hindman’s theorem, for any IP-ring F(!) there
exists an IP-ring G C ) having the property that the the diameter of {z, : a € G} is at
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most €. Therefore, given F(U) we may let F) 5 G 5 G@ 5 GG 5 ... be a descending
sequence of IP-rings such that the diameter of {z, : & € G(™} is at most % for all n € N.
Let now a1 < ag < - - - be an increasing sequence in F with a; € G, i € N, and let F®
consist of the finite unions of this seqgence.

Lemma 2.2. Let (’U((li))ae}' be VIP systems in R, i € N. For any IP-ring () there exists
an IP-ring F® such that

It () =0

for all 2 € N.

Proof. We prove the result for a single VIP system (v (a)) whereupon the general

acF’
result follows by a standard diagonal argument. (v(a) — [v (a)])a crm 15 a VIP system on
the torus [0, 1) under addition modulo 1. Choose 3 ¢ F(1) such that

P-lim (v(0) ~ [o()]) = o

exists. Letting all of the a;’s go to oo in (1.2), we have —vy = 0. This follows from the
simple fact that any finite set has one more non-empty subset of odd cardinality than it
has subsets of even cardinality. At any rate, we are done. ]
Lemma 2.3. Let (U,-(a))aej_. be VIP systems in R, ¢ = 1,2, and let ¢, c2 and k € R with
0 < k < 1. Then there exists an TP-ring F(1) such that the following are VIP systems:

(a) (crv1(@) + covg (a))aE}_.

(b) (vi(@)v2(a)) 4 r-

(C) ([Ul (a) + k])ae}'(l) .
Proof. Write vi(a) = >_ 4 y<a fi(7), ¢ = 1,2. Then crvi(a) + cava(@) = - 4 1y1<d
(C1f1(7) + szz(V)) and v (a)va(y) = Z’yCa,|’y|S2d <271U%:7 f1(71)f2(72)>- This proves
(a) and (b).

For (c), by Lemma 2.1 there exists an IP-ring F() (arising from a sequence a; <

o < ---) such that for all o € F), (v1()) < %, where d is the degree of the

system. Then for any v € F with |y| =d +1,

> (=)Mo (| as) + K|

0#£BCry i€h

| T M ([ (o) + 8 = o (U o)
0£BCH iep er

< Z (_1)|7\ﬂ|<v1(Uai)> <1
0£BCy iep

Therefore, since this quantity must be an integer, it is zero. This establishes that ([Ul () +
k])aeﬂl) is a VIP system of degree d. O



This immediately gives:

Lemma 2.4. (a) Let p(x) be a polynomial mapping R! — R? with p(0) = 0 and suppose
(m(a))ae}_ is a VIP system in R!. Then (p(z())) wer 18 a VIP system in R!. In particular,
if p(z) is an arbitrary polynomial mapping R! — R*? and ¢ € R! is constant then (p(m(a) +
c) — p(c))ae}_ is a VIP system in RY.

Proof of Theorem A. Let (aq,...,am,+,) be any integer valued solution to (1.3) and let
(x(a))ae}_ be any VIP system in Z™. Put

vi(a) = z(a) + (a1, ..., am)

us(a) = p1(v1(@)) — p1(ai, ..., am)

va(a) = (v1(e), [ua(e@) + %] + Gmt1)

Unt1(0) = pn (Un(a’)) —pn(@1,- s Gmyn—1)

n41(0) = (@), [ams1(0) + 3]+ ).

Then by iterated use of Lemmas 1.6 (c) and 1.7, there exists an IP-ring F(!) such that
each (/Uk(a))aef(l) is a shift of a VIP system in Z™**~ by (a1,...,amx_1) and each
(ur(@)) yera) is @ VIP system in R.

Choose € > 0 so small that as41 < Ps+1(@1,---3Gmts) — CGmyst1 < Bsy1 — €, § =
0,1,...,n — 1. By Lemma 2.1 there exists & € F(1) such that <uz(a)> <e 2<1<n+1.
Let (z1,-..,Zm+n) = Unt1(a). Then for k=1,2,...,n+1,

Pe(T1s - Tmik—1) — Tmak =Pk (Vi(@)) — Ttk

1
=up+1(@) +Pe(as; .oy ampk—1) = [Uk41(0) + 5] = amtr
~Pk (a1 - - -y Qmk—1) — Gmts
where we write ¢t ~ s for |t — s| < e. This is enough to show that (z1,...,Zm4n) is a
solution. Moreover, (21,...,Zy) = z(a) + (a1,...,ay), and (a:(a))aey__ was an arbitrary
VIP system. ]

Given | € N, let G; be the smallest set of mappings Z'! — Z that includes, for 1 < i < [,
(n1,...,m;) — ny, is closed under sums and products, and has the property that for all
méeN,ec1,...,0m €ER,p1,...,0m € Grand 0 < k < 1, the mapping n — [>_ o, ¢;p;(n)+k]
isin G;.

Members of G; will be called admissible generalized polynomials, and any map p :
Z' — Z! will be called an admissible generalized polynomial if its coordinate functions are
such. Any map that differs by a constant from an admissible generalized polynomial will
be called a shifted admissible generalized polynomial. Polynomial mappings p : Z! — Z are
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shifted admissible generalized polynomials, and they are admissible if and only if p(0) = 0.
There are of course many other examples, such as

plna, m) = [VB[Vaniny + ~Ing + VITnd + ][V5ns + 17).

The following more general version of Lemma 2.4 may easily be obtained from Lemma
2.3.

Lemma 2.5. (a) Let p(z) be an admissible generalized polynomial mapping R! — R?
and suppose (x(oz))C¥ cr is a VIP system in R!. Then there exists an IP-ring () such
that (p(a:(a)))a cr 15 a VIP system in R!. In particular, if p(z) is a shifted admissible

generalized polynomial mapping R} — R? and ¢ € R! is constant then there exists an

IP-ring F(M) such that (p(z(a) + c) — p(c))aej_.(l) is a VIP system in R?.

We remark that by using Lemma 2.5 in place of Lemmas 2.3 (c) and 2.4, the following
more general form of Theorem A can be obtained by the same method.

Theorem 2.6. Let a1,...,an,01,...,8, be real numbers and let m € N. For each
k=1,...,n, let pr be a shifted admissible generalized polynomial of m + k& — 1 unknowns.
If the system

a1 < p1(T1, -y Tm) — Tmy1 < B1
as < pa(T1y -y Ty Tmt1) — Tt < Po
a3 < p3(T1,- -, Tmy Tmt1, Tmaz) — Tmis < B3
Op < Prl(T1, - oy Ty Tt 1s - -y Tmdn—1) — Tman < Bn
has an integer valued solution (ay, ..., Gmy1y) then the following set is VIP*:
{(31, .++y8m) : there exists a solution (s1 + a1, 82 + a2, .., Sm + Gm, Sma1y-- -, sm+n)}.

3. Appendix: Van der Corput’s proof.

The purpose of this final section is to give a sketch of van der Corput’s original proof of
Theorem VdC, which we presently restate (in its original formulation) as Theorem 3.1.

Theorem 3.1 ([VAC, Satz 1, p. 253]). Let ai,...,an,B1,...,Bn be real numbers and
let m € N. For each k = 1,...,n, let fr be a polynomial of m 4+ k — 1 unknowns. If the
system

a1 < fi(z1, - Tm) —y1 < P1

as < fo(T1, - oy Tm, Y1) — Y2 < B2

az < f3(T1,- -+, Tmy Y1, 92) — Y3 < B3

U < fu(Z1y o Ty Y1 -+ Yn—1) — Yn < Bn

(3.1)
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has at least one integer valued solution then it has infinitely many integer-valued solutions.
Furthermore, there exists L so that in any m-dimensional cube Kj which has edges of
length L and parallel to the coordinate axes, there is at least one point = (z1,...,Zy) €
Ky, x; € Z, for which there is some y = (y1,...,Yn), ¥i € Z, so that (z,y) satisfies the
system (3.1).

Van der Corput’s proof proceeds by way of establishing that the system (3.1) has
the same solutions as a system involving functions (generalized polynomials, in fact) that
are members of a class he calls rythmic (see Definition 3.3 below). He then establishes a
general result of this type for rythmic systems (see Theorem 3.4 below).

Definition 3.2 ([VdC, p. 229]). Let (f,) be a system of real-valued functions defined on
Z™, let € > 0 and suppose = (Z1,...,Tpy) € Z™. An element 7 = (71,...,7y) € Z™
is called a translation vector (Verschiebungspunkt) for (f,) corresponding to €, z, written
T =1(e,, (f,)) if for each h = (hy,..., hn) € Z™ with |h,| <1 p=1,2,...,m), then
inequalities

—e< fule+7+h)— fu(x+h) <e (mod 1), (3.2)
v=1,2,...,n, are satisfied.
Definition 3.3. A system (f,) of real valued functions on Z™, v = 1,2,...,n, is called

rythmic (rhytmisch) if for each € > 0 there exists L = L(e, (f,,)) such that for any x € Z™

there exists a translation vector 7 = 7(g,z, (f,)) in any m-dimensional cube with edges of
length L.

Note that in Definition 3.3, L is not allowed to depend on z. This requirement is
actually illusory, as van der Corput proves in [VAC, Satz 6, p. 233| that if for every
e > 0 and every x € Z™ there is some L having the property that a translation vector
7(e,x, (fnu)) may be found in every cube having sides of length L, then in fact some L
may be shown to work for all z, meaning that (f,) is a rythmic system.

Notice that it follows from Definition 3.3 that any subsystem of a rythmic system is
again rythmic. If the system consisting of f alone is rythmic, f is called a rythmic function.

Examples.

1. Polynomials. It is easy to see that the constant functions and linear polynomials
are rythmic. In fact, by repeated use of Theorem 3.7 below it follows that any set of
polynomials is a system of rythmic functions. As an example, however, let us now see
directly from Definition 3.3 that the function f(z) = /22?2 is rythmic.

Let x € Z and € > 0 be given. Then

fx+h+71)—flz+h) =2V2(z+ )T +V2r%

Since the double sequence (v2n,v2n?), n = 1,2,..., is well distributed mod 1, there
exists a syndetic set of 7 satisfying {2v/27} < ﬁ and {v/272} < ¢/2. For such 7 and

for any h € Z with |h| < 1/e we have
e(z+1/¢)

2v/2 D A i A 2=
+0 < 2V2r(z 4+ h) +V2r <2($+1/€)+5/ g,

_e(xz+1/e)

—€/2= 2(zx+1/e)



which shows that f(z) is rythmic.

2. Generalized polynomials. We show here that f(z) = %[v/22] is rythmic. Let
and € > 0 be given. Let a = max{{v/2(z + h)} | h € Z,|h| < 1/} and let 7 € N with
0 < {¥£27} < 1(1—a), which implies {v/2r} < 1 —a < 1 {/2(z + h)} for all h € Z with
|h| < 1/e and that [v/27] = 2[¥27]. Hence,

1 1 1 2
V(o b 7)) = LV )] = 2V2r] = %27 = 0 (mod 1),
which shows that f() is rythmic. In the same way one can show that g(z) = 2[—v/22]

is rythmic. Note however, that (f,g) is not a rythmic system. For let = h = 0. Then
fl@+h+7)=f(z+h) = 5[V2r] and g(z +h+7) —g(z+h) = 3[-V271] = —3([V271] +1)
so that both cannot be zero for the same 7. This problem at zero disappears if we instead
look at, for example, f1(z) = 2[v2z + 1] and g1(z) = 3[—v22 — 3]. It turns out that
(f1,91) is a rythmic system.

As van der Corput remarks ([VAC, p. 215-216]), the definition of rythmicity is similar
to that of Bohr almost periodicity. A function f(z) is (Bohr) almost periodic if for any
€ > 0 there exists a syndetic set of 7 such that

[f(@+7) - flz)l <e (3.3)

for all . Nevertheless, there is an important distinction between these two notions:
for rythmic functions, the translation vector 7 depends on z, while for almost periodic
functions, 7 is independent of z. Van der Corput calls a function f(x) almost peri-
odic mod 1 if for every e there is a syndetic set T such that for all 7 € T one has
—e < f(x+7)— f(zr) < e (mod1) for all z. If a system (f,) consists of almost pe-
riodic mod 1 functions then for a syndetic set of 7, (3.2) would hold for any h € Z™, not
just for k with |k, | < 1. The reader may wish to check that our first example f(z) = /222
is not almost periodic mod 1.

The importance of rythmic systems for the theory of diophantine inequalities is shown
by the following theorem.

Theorem 3.4 ([VdC, Satz 1, p. 230]). If (f,) is a rythmic system and if the system of
inequalities
ay, < fu(z) < B, (mod 1), v=12,...,n (3.4)

has at least one integer solution Z = (%1, ..., %), then there exists L = L((a,), (8.), (fv))
such that any m-dimensional cube which has edges of length L and is parallel to the
coordinate axes contains an integer solution.

Proof. By assumption a,, < f,(Z) < B,, v = 1,2,...,n, hence there exists ¢ > 0 with
a,+e< fu(r) < By—e,v=1,2,...,n. Since (f,), is rythmic, there exists L = L(e, (f,))
such that any cube with edge L contains z € Z™ with — < f,(z) — f,(T) < &€ (mod 1),
v=12,...,n. Hence, o, < f,, () < B, (mod 1), v =1,2,...,n. O
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Example. Van der Corput illustrates how Theorem 3.1 may be obtained as a consequence
of Theorem 3.4 by considering the following system ([VdC, p. 224)):

e<V2?—y<e, e<V3yl—z<e. (3.5)

Without loss of generality e < %, so that

1 1 1
0<§—€<(\/§$2+§)—y<§+6<1

and therefore y = [v/2z2 + 1]. It follows that (3.5) is equivalent to the system
1
—e < V2% < ¢ (mod 1), —e < V3[V2z? + 5]2 < e (mod 1). (3.6)

Since it turns out that (v2z?%,v/3[v2z% + 1]?) is a rythmic system (see Theorem 3.12 at
the end of this section) and (3.6) has a solution, namely = = 0, it has infinitely many
solutions by Theorem 3.4.

Van der Corput points out that rythmic systems are especially well suited for obtaining
results in the theory of diophantine inequalities, in part because they are invariant under
the following operations ([VAC, p. 212-214)).

(i) Addition. If (f, g) is a rythmic system, then (f, g, f + g) is also a rythmic system
([VdC, Satz 4, p. 231]).

(ii) Composition with continuous functions. If (f,) is rythmic and v is periodic mod 1
and continuous then (f,,v¥(f1,..., fn)) is rythmic; see Theorem 3.10 below. (In particular
(cfy) is rythmic for any ¢ € Z, however note that this does not imply the same conclusion
for non-integer constants c.)

(iii) Formation of “summation”-functions, namely passing to f(z) from the difference
Af(z) = f(z+1) — f(x). Van der Corput proves that (f,) is rythmic if and only if (Af,)
is rythmic ([VAC, Satz 9, p. 247]; see also Theorem 3.7 below).

These facts are important tools for showing that, for example, the generalized poly-
nomial v/3[v/2z? + 1]? mentioned above is rythmic.

Note that functions (of the discrete variable x € Z™) that are uniformly distributed
modulo 1 are not necessarily invariant under any of these operations, and that almost
periodic functions are not invariant under the third operation. For example, f(z) = /22
is not almost periodic mod 1 but A f(x) is.

In order to show that a certain system of generalized polynomials coming from the
polynomials in (3.1) is rythmic, van der Corput constructs a ring R of functions (see
Definition 3.11 below) which contains these generalized polynomials and such that any
finite subset of R is a rythmic system. Note that the set of rythmic functions itself does
not form a ring-indeed, is not closed under addition. (The union of rythmic systems need
not be rythmic in general; hence (i) above need not apply to rythmic f, g when (f,g) is
not a rythmic system. For let f(z) = 1[v/22] and g(z) = 1[—v/2z]. Then f(z) and g(z)
are rythmic but their sum f(z) + g(z), which is 0 at z = 0 and —3 otherwise, is not.)
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In light of the limitations of the class of rythmic functions, van der Corput considers
the following subclass.

Definition 3.5 ([VAC, p. 248]). A function f(z) = f(z1,...,%y) is called absolutely
rythmic (absolut rhytmisch) if for any rythmic system (g,) containing r functions

9p(x) = gp(z1,...,Tm), p=12,...,m7,

the system (g,, f) containing the r + 1 functions g1 (), ..., g,(x), f(z), is rythmic.

It follows from Theorem 3.12 below that polynomials are absolutely rythmic.
The difference operator A, which we now define, plays a crucial role in building up
the ring R.

Definition 3.6 ([VAC, p. 237]). Let f(z) be a function on Z™. Put

Auf(z)=flz1,...,op—1,2p + Ly, .oy Tm) — f(Z1, .00y Tm), w=1,2,...,m.

Notation: If (f,), v =1,2,...,n is a system of functions on Z™ then (A, f,) is the system
consisting of the mn functions A, f,, p=1,2,....m,v=1,2,...n.

Theorem 3.7 ([VAC, Satz 9, p. 247 and Satz 7, p. 251]).

(a) If (f,) is a rythmic system then (f,, A, f,) is a rythmic system.

(b) If (A, f,) is a rythmic system then (f,) is rythmic.

(c) A function f is absolutely rythmic if and only if the functions A, f(z), p=1,2,...,m,
are absolutely rythmic.

Van der Corput’s proof of (a) is straightforward and quite short. For part (b), he
employs a number of preliminary lemmas. The set M, ((f,)) defined presently plays an
important role.

Definition 3.8 ([VAC, Definition 4, p. 236]). For fixed z € Z™ let M,((f,)) be the set
of all v € R™ having the property that for every € > 0 there exists 7 € Z™ such that for
each h € Z™ with |h,| < é, v=1,2,...,m, one has

—e< fulr+7+h)— fu(z+h) —u, <e (mod 1), v=1,2,...,n.

Van der Corput proves that M, ((f,)) is closed, periodic mod 1 and is a module, i.e. is
non-empty and has the property that when u,v € M, ((f,)) then {u+v,u—v} C M, ((f,))-
He then establishes the following.

Lemma 3.9 ([VdC, Hilfssatz 7, p. 244]). Let (Af,) be rythmic. For each € > 0 and each
x € Z™ there exists A = A(e, z) having the property that for every u € M,((f,)) there
exists a lattice point 7 in any cube with edges of length A such that for each h € Z™ with
hul <L p=1,2,....m,

—e< fulr+7+h)= fu(z+h)—u, <e (mod1), v=12,...,n.
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To complete the proof of Theorem 3.7 (b), suppose (Af,) is rythmic. Since M, ((f,))
is a module, it contains 0, hence we can let u = 0 in Lemma 3.9. It now follows from [VdC,
Satz 6, p. 233] (see the discussion following Definition 3.3 above) that (f,) is rythmic.

Finally, in order to prove (c), let (g,) be an arbitrary rythmic system. If f is absolutely
rythmic then (g,, f) is rythmic, so that by (a) (g,, f, Augp, A f) is rythmic. In particular
the subsystem (g,, A, f) is rythmic. Since (g,) was arbirary, (A, f) is absolutely rythmic.

Conversely, suppose (A, f) is absolutely rythmic. By (a), (A,g,) is rythmic, hence
AL f,ALg,) is rythmic and so by part (b), (f,g,) is rythmic. Again, since (g,) is arbitrary,
f is absolutely rythmic. U

If f(x) is an absolutely rythmic function and f(z) ¢ Z for all z € Z™, by the following
theorem [f(z)] is absolutely rythmic.

Theorem 3.10 ([VdC, Satz 5 and remark, p. 250]). Suppose that the functions f,(z) =
fo(x1,...,2m), v = 1,...,n, are absolutely rythmic and v (v1,...,vy) is a periodic mod
1 function which is continuous at all the points (f1(z), ..., fu(z)), z € Z™. Then ¢ (f1(x),
.« +y fn(x)) is absolutely rythmic.

Note that the set of absolutely rythmic functions is not closed under multiplication.
For let f(z) = % and ¢(0) = 1 and ¢(z) = 0, z # 0. Then f(x) and @(x) are absolutely

=32
rythmic but f(z)¢(x) is not rythmic, hence not absolutely rythmic. However, van der

Corput demonstrates how to construct a ring R consisting of absolutely rythmic functions.

Definition 3.11 ([VAC, p. 254]). Let R be the smallest space of real-valued functions on
Z™ having the following properties:

1. R contains the zero function, f(z)= 0.

2. If f,¢p € R then f+ ¢ € R.

3. If g(x) is integer-valued and bounded on Z™ and cg(x) is absolutely rythmic for
any constant ¢, then f(z)g(z) € R for any f(z) € R.

4. If f(x) is a function so that the m differences A, f(z), p = 1,2,...,m are in R,
then f(z) € R.

Then we have:

Theorem 3.12 ([VdC, p. 255]). R has the following 4 properties:
1. R is a ring.
2. Any function in R is absolutely rythmic.
3. R contains all polynomials in m variables.

4. If f(x) € R such that for all z € Z™, f(z) & Z, then [f(x)] € R.

The proof uses the following property of R. For each f(x) € R, f #Z 0, one can find
functions Fi(z),..., Fi(z) such that F} = 0 and so that, putting Fji(x) = f(z), for each
A A=1,2,...,1, at least one of the following three properties holds:

1. There are two functions g(z) and h(x) from the sequence Fi,...,F) so that
Fyxy1(z) = g(2) + h(2).
2. There exists a function h(z) in the sequence Fi,...,F)\ and an integer valued,

bounded function g(z), g(x) having the property that cg(z) is absolutely rythmic for all
c € R, with Fx;1(z) = h(z)g(z).
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3. Forall p=1,2,...,m, A,Fx;:1(x) appears in the sequence Fi, ..., Fy.

The smallest such [ is called the indezx of f(z). To establish properties of R one can
then use induction on the index.

R contains all generalized polynomials f(z) which have the following property: If
[9(z)] appears in the representation of f(x) then for all x € Z™, g(x) ¢ Z. Since all finite
systems composed of function in R are rythmic, Theorem 3.4 applies to these and Theorem
3.1 follows via the general scheme sketched earlier in the text.
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