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Abstract

We prove a polynomial multiple recurrence theorem for finitely many commut-
ing measure preserving transformations of a probability space, extending a polyno-
mial Szemerédi theorem appearing in [BL1]. The linear case is a consequence of
an ergodic IP-Szemerédi theorem of Furstenberg and Katznelson ([FK2]). Several
applications to the fine structure of recurrence in ergodic theory are given, some
of which involve weakly mixing systems, for which we also prove a multiparameter
weakly mixing polynomial ergodic theorem. The techniques and apparatus em-
ployed include a polynomialization of an IP structure theory developed in [FK2],
an extension of Hindman’s theorem due to Milliken and Taylor ([M], [T]), a polyno-
mial version of the Hales-Jewett coloring theorem ([BL2]), and a theorem concerning
limits of polynomially generated IP-systems of unitary operators ([BFM]).
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INTRODUCTION

A celebrated theorem of Szemerédi ([SZ]) states that if a set S C Z has positive

upper density
d(S) = limsu
(5)=Hnswr =N 1
then S contains arbitrarily long arithmetic progressions.
Soon after Szemerédi’s theorem appeared, H. Furstenberg gave in [F1] a new,
ergodic theoretical proof of Szemerédi’s theorem by deducing it from a far-reaching
extension of the classical Poincaré recurrence theorem. A short time later, in [FK1],
Furstenberg and Katznelson proved the following multiple recurrence theorem:

>0,

Theorem 0.1 Suppose that (X, B, u) is a probability space and that Ty, - - -, T},
are commuting measure-preserving transformations of X. For every A € B with
u(A) > 0 we have

lim inf

N-1

1

iminf > wIrmAN - NT " A) > 0.
n=0

As a corollary of this result they obtained a multi-dimensional generalization
of Szemerédi’s theorem for which there is as yet no non-ergodic proof. We will now
formulate this result. The Banach upper density of a set S C Z* is defined to be

1T,
d*(S)= sup limsup RIAR

{II,}nen N0 |Hn| ’
where the supremum goes over all sequences of parallelepipeds
I, = [agzl)absll)] Xoeee X [agzk)abgzk)] C Zkan € Na

with b — a'? = 00, 1<i < k.

Corollary 0.2 ([FK1], Theorem B) Suppose that S C Z* with d*(S) > 0 and
that F' C Z* is a finite configuration. There exists a positive integer n and a vector
u € ZF such that u + nF = {u+nzr:x € F} C S.

The derivation of combinatorial results such as Corollary 0.2 from recurrence
results hinges on a general correspondence principle due Furstenberg.

Furstenberg’s Correspondence Principle Given E C ZF with d*(E) > 0
there is a probability space (X, B, u) and k commuting invertible measure preserving
transformations T}, Ty, - - -, T}, of X such that for any ni,ny,---,n; € Z* one has

d(ENE-n)N(E-n)N---N(E-n)) >p(ANTs, N---NThA),
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2 V. BERGELSON AND R. MCCUTCHEON

where for n = (ny,---,ng), Tn = T7" - - T,

[F1] also contained an ergodic proof of a non-linear number theoretical result
which had been proved independently by Sarkézy ([S]) and by Conze: If S C Z has
positive upper Banach density, then there exist z,y € S with 2 —y = n? for some
n € N. This result is readily extendable to more general polynomials:

Theorem 0.3 ([F2], [KM], [S]) Suppose that p(n) € Q[n] is a polynomial
taking on integer values on the integers and satisfying p(0) = 0. Then if S C Z
has positive upper density d(S) > 0, there exist n € N and z,y € S with z —y =
p(n) #0.

In [F2] this theorem is proved via a polynomial recurrence theorem. Namely,
it is shown that for any invertible measure preserving system (X,B,u,T) with
uw(X) =1, any p(n) € Q[n] with p(Z) C Z and p(0) =0, and any A € B, u(4) >0,
there exists n € N with p(n) # 0 such that u(A N TP A) > 0. What is actually
proved is stronger, namely that

N
Jim % > wANTPMA) >0,
n=1
which follows from the study of certain Césaro averages of polynomial powers of
unitary operators on a Hilbert space, utilizing the spectral theorem. (See [B1] for
a treatment which avoids the use of the spectral theorem.)

More recently, Bergelson and Leibman have proved a polynomial multiple re-
currence theorem. Notice that by taking ¥ = ¢ = 1 in Theorem 0.4 below and
applying Furstenberg’s correspondence principle one gets Theorem 0.3. Theorem
0.1 is a special case as well, corresponding to the case of linear polynomials.

Theorem 0.4 ([BL1]) Suppose that (X, B, u) is a probability space and that
Ti,---,T; are commuting invertible measure preserving transformations of X. If
{pij(n): 1<i<k,1<j<t}CQ[n]satisfy p;;(Z) C Z and p; ;(0) = 0, then for
every A € B with pu(A) > 0 one has

N k t

g S5 ([ ) 20

n=1 i=1 j=1

As a consequence of this theorem and Furstenberg’s correspondence principle,
one obtains a “multidimensional polynomial Szemerédi theorem”:

Corollary 0.5 ([BL1]) Suppose that 7,/ € N and P : Z" — Z! is a polynomial
mapping which satisfies P(0) = 0. If F' C Z" is any finite configuration then for
any subset S C Z! of positive upper Banach density there exist n € N and u € Z
such that u + P(nF) = {u+ P(nz) :z € F} C S.

In [BFM], a different type of refinement of Theorem 0.3 was obtained as a corol-
lary of a general theorem concerning weak IP-convergence of certain polynomially-
generated sequences of unitary operators on a Hilbert space. In order to formulate
the primary results of [BFM], as well as those of this paper, we will need to introduce
some definitions and notation.

Given an infinite sequence G = {g; : © € N} C Z, the IP-set generated by G is
the set

Fz{gil + Gin F g, <2< - <ik,k€N}
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of all finite sums of elements with distinct indices from G. IP-sets in Z*, k > 1,
are defined similarly (for a sequence (g;) C Z*). TP-sets are generally expressed as
indexed sequences. Let F denote the family of finite subsets of N. An IP-set, then,
may be viewed as a sequence indexed by F, (nq)acr, which satisfies nqug = na+ng
for aN B = 0. (See also Section 1, where these ideas are developed more fully.)

The following IP polynomial recurrence theorem is a special case of a result from
[BFM]. It may be seen to be a multi-operator, IP-set generalization of Theorem 0.3.

Theorem 0.6 Suppose that we have an IP-set I' C Z and r commuting invert-
ible measure preserving transformations 77, - - -, T of a probability space (X, B, u)-
Suppose we are given polynomials p;(n) € Z[n] with p;(0) =0, 1 <7 <r. Then for
every A € B with p(A) > 0 there exists n € I such that

r

H(An (HT;”'("))_IA> > 0.

i=1

Although Theorem 0.6 involves multiple transformations, note that it is not a
multiple recurrence theorem, as it guarantees only a single return of the set A to
itself. Theorem 0.4, on the other hand, is not an IP recurrence theorem. Finally,
Furstenberg and Katznelson have a (linear) IP multiple recurrence theorem ([FK1]).
It is our purpose in this paper to extend all of these previous results by proving
an IP polynomial multiple recurrence theorem. This is accomplished via our main
theorem, Theorem 1.3, with one limitation we shall address in the next paragraph.
Theorem 0.4 is completely generalized with a uniform, multiparameter version given
in Theorem 6.13. Theorem 0.6 is generalized by the following.

Theorem 0.7 Suppose that we have an IP-set I' C Z and r commuting invert-
ible measure preserving transformations Ty, - - -, T, of a probability space (X, B, u).
Suppose t € N and that p; ;(n) € Q[n] with p; ;(Z) C Z and p; ;(0) =0,1<i<r,
1 < j <t. Then for every A € B with u(A4) > 0 there exists n € T such that

T

u(ﬁ (HT;’“("))_IA> > 0.

j=1 =1

The limitation we referred to earlier concerns our ability to fully generalize
the IP multiple recurrence theorem of Furstenberg and Katznelson (there are some
interesting open problems related to potential fuller generalizations, as we shall
discuss in Section 8 below). The linear case of Theorem 0.7, that is, the case in
which all of the polynomials appearing there are of first degree, as well as the
linear cases of the other IP polynomial multiple recurrence theorems in this paper,
including Theorem 1.3, follows from Theorem A in [FK1]. This theorem is quite a bit
more powerful, however, in that it allows one to guarantee multiple recurrence along
countably generated IP-systems of commuting measure preserving transformations.
In the non-linear case, we do not see at this time how one should deal with such
general systems. (For a fuller discussion of these matters, see Section 8.) Therefore
in this paper we will be proving results which are at once stonger and weaker than
those of [FK1]. They are stronger in that they are non-linear, and weaker in that
we restrict ourselves to a special class of IP-systems—namely those obtained by
taking finite families of commuting measure preserving transformations to various
polynomial powers.
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The following is the most natural combinatorial consequence of Theorem 0.7.

Corollary 0.8 Suppose that we are given an IP-set I' C Z and a subset E C Z"
having positive upper Banach density. Suppose that t € N and p; ;(n) € Q[n] with
pi;(Z) CZ and p; ;(0) =0,1 <i<r,1<j <t Define vector valued functions

Uj(n) = (pl,j(n)J e 7pr,j(n))7 1<j<t. (01)

Under these conditions, there exists u € Z" and n € T such that u + v;(n) € E,
1<j<t.

One can show that Corollary 0.8 may be used to give a refinement of Corollary
0.5. Namely, one has that if r,] € N, P : Z" — Z! is a polynomial mapping which
satisfies P(0) = 0, and F' C Z" is any finite configuration, then for any subset
S C Z! of positive upper Banach density and any IP-set I' C Z, there exist n € T’
and u € Z! such that u + P(nF) C S. (Confer with the last section of [BL1].)

Given a probability space (X, B, u), a finite set of commuting, invertible mea-
sure preserving transformations Ty,---,T; of X, a set A € B, u(A) > 0, and
polynomials p; j(n) € Q[n] with p; ;(Z) C Z and p; ;(0) =0,1<i<k, 1<j<t,

let
Ry= {n €Z: u(ﬁ (lei”"’j("))_lA) > 0}. (0.2)

j=
It follows from Theorem 0.4 that the set R4 has positive lower density

[Ran{=N,---,N}|
2N +1

d(R4) = liminf >0

N—oo
in Z. We shall explain now in terms of the largeness of the set R4 why Theorem
0.7 gives more.

A subset E C Z*, k > 1, is called an IP*-set if for any IP-set S C Z* one has
ENS # . Tt is not hard to show (see Proposition 6.11) that any IP*-set is relatively
dense, that is, syndetic. (We remark that the notions of syndeticity, IP-set, and
IP*-set have meaning in an arbitrary (semi)group. We will concern ourselves here
only with Z¥. A set E C ZF is said to be syndetic in ZF if there is some finite
set F C Z* such that E+ F = {r+y: z € E,y € F} = Z*. In Z, therefore,
the syndetic sets are those which do not have arbitrarily large gaps. In particular,
syndetic sets have positive lower density.) It is easy to construct sets which have
positive lower density but are not syndetic, or sets which are syndetic but not IP*.
(An example of the latter in Z is the set of odd integers. As a curiosity, we mention
that one can even construct syndetic IP-sets which are not IP*; see Example 7.9.)
Hence we see that the class of IP*-sets is much more exclusive than the class of
syndetic sets.

Furthermore, a consequence of Hindman’s theorem ([H], see Proposition 2.13
below) is that the intersection of any two IP*-sets in Z (or Z*) is again an TP*-set.
This finite intersection property gives us a yet further sense that IP*-sets are quite
“large”. In this sense, then, Corollary 0.8 guarantees “many” (namely “IP*-many”)
n which may act as the parameter for the special type of polynomial configurations
under consideration. In other words, it guarantees, in the notation used there, that
the set

R={n:u+vj(n)e E,1<j<t}
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is an TP*-set. This is an improvement on Theorem B of [BL1], which gives only pos-
itive lower density of the set R, and on Theorem 0.3 of [BM], which gives syndeticity
of the set R in the case r =1 (i.e. for E C Z).

IP*-sets are significantly more combinatorially rich than syndetic sets. One can
show, for example, that if E is an IP*-set in Z* then for any IP-sets S;, Sa,- - -, Sk
in Z one can find arbitrarily large finite sets I; C S;, 1 < i < k, such that I; x
Iy x .-+ x I, C E. One might ask whether one can strengthen this fact by requiring
each set I; to be an infinite subset of S; which is also an IP-set. For a general
IP*-set in Z* the answer is no (see [BH]). However, for the set R4 of (0.2), which
by Theorem 0.7 is already an IP*-set, the answer turns out to be yes. Namely, for
any IP-sets Sy,Ss2,---,S; in Z one can find IP-sets I; C S;, 1 < i < k, such that
I x Iy x - -+ x Iy, C Ra (this is demonstrated in Section 6).

This provides an impetus for studying a class of sets having this property.
Such is the case for a class of sets we call enhanced IP*-sets, or simply E-IP*-sets.
Most of the sets we show to be IP* are actually E-IP*. As a matter of fact, they
have an even stronger property which we call the PE-IP* property, PE standing
for polynomially enhanced. We will give a precise definition of both the E-IP* and
PE-IP* properties in Section 6. For now, we mention only that if a set A is a PE-
IP*-set in Z*, S;,S5,---,S,, are IP-sets in Z, and P : Z™ — ZF is a polynomial
mapping with P(0) = 0 then there exist IP-sets I; C S;, 1 < i < m, such that
P(I; x I x --- x I,,) C A.

As we noted, Theorem 0.7 asserts that the set R4 of (0.2) is an IP*-set in Z.
In fact, it is a PE-IP*-set and moreover we have a natural extension of this fact in
Z* which is also a consequence of our main theorem, Theorem 1.3.

Theorem 0.9 Suppose we are given r commuting invertible measure preserving
transformations 77y, - - -, T} of a probability space (X, B, ). Let k,t € N, and sup-
pose that p; j(ni,---,ng) € Q[ni,---,ng] with p; ;(Z*) C Z and p; ;(0,---,0) =0,
1<i<r,1<j<t Then for every A € B with u(A4) > 0 the set

t r -
R — {(nl,"',nk) c 7k - u( ﬂ (HTfi,j(nl,...,nk)) 1A> > 0}

j=1 i=1

is a PE-IP*-get in Z*.

We remark that a version of the foregoing theorem holds for non-invertible
systems as well (see Theorem 7.12 below).

Because of the strength of the PE-IP* property, Theorem 0.9 is actually equiv-
alent to its own linear version. Namely, it is an easy matter to get Theorem 0.9 in
general provided one has it for the special case in which all of the polynomials p; ;
are linear.

The case t = 2 of Theorem 0.9 was proved in [BFM], at least for the IP*
property. It would not be difficult to get from there to establishing the PE-IP*
property for this, the single recurrence, case.

In order to give the reader a feel for the multifareousness of Theorem 0.9 we
shall give now a few examples of applications of the result and/or its proof to com-
binatorics and ergodic theory. A more comprehensive examination of combinatorial
consequences of this theorem and of our main theorem, Theorem 1.3, which is an
even stronger multiple recurrence result, is deferred to Section 7. We start with
some combinatorics.
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Being a statement about “diagonals” of polynomials of many variables (this
will presently be made clearer), Theorem 0.9 enlarges our knowledge about the
types of configurations which one is always promised to find in any set of positive
density in Z¥, as the following corollary shows.

Theorem 0.10 Suppose r,] € N and let P : Z" — Z! be a polynomial mapping
satisfying P(0) = 0. Let F C Z" be a finite set, let S C Z' be a set of positive
upper Banach density, and let (ng))ae F be arbitrary IP-sets in Z, 1 <7 <r. Then
for some u € Z! and a € F one has:

{u+P(n&1)x1,nSxZ)w2,---,ng)xr) : (z1,22,--,2,) € F} CS.

With a little effort, one may show that Theorem 0.10 generalizes Corollary 0.8
(and therefore Corollary 0.5 as well). As a particular application of Theorem 0.10,
one has that for any set of positive upper Banach density £ C Z and for any IP-sets
(ng))ae]:, 1 < i < k there exist z € E and a € F such that

{2+l z+nPn?, .z +nPn@...n} C E.

The following application pertains to partition Ramsey theory rather than to
density Ramsey theory (for a more general result see Theorem 7.4—cf. also [BM],
Theorem 0.4).

Theorem 0.11 Let ¢ € N and let p;(z,y),qi(z,y) € Z[z,y] with p;(0,0) =
¢i(0,0) =0, 1 <i < t. Suppose that s € N and that Z? = |J_, C; is a partition of
Z? into s cells. Then there exists some L € N and some € > 0 having the property
that in any rectangle B = [Ml, Nl] X [MQ, N2] C Z? with min{N1 —Ml, Ny _MQ} >
L there exists ¢ with 1 < i < s and (n,m) € C; N B such that

d* (Ci N (Ci = (p1(n,m), @1 (n,m))) N---N (C; — (pt(”am);%(nam)))) > €.
In particular, the system of polynomial equations

(5’30;2/0) = (n,m),
(2,92) — (z1,91) = (pr(n,m),q1(n,m))
(z3,y3) — (T1,91) = (P2(":m)7Q2(";m))

(@41, Y1) — (T1,91) = (Pt(nam)a%(";m))

has monochromatic solutions {(zo,y0), (x1,y1), -, (Te41, Ye+1) } with (n,m) choos-
able from any large enough rectangle in Z2.

We pass now to a description of some applications pertaining to ergodic theory.
The first of these has to do with recurrence properties of weak mixing. Recall that
an invertible measure preserving transformation T' of a probability space (X, B, u)
is called weakly mizing if the induced unitary operator Ur defined by (Ur f)(z) =
f(Tz), f € L*(X,B, 1) has no non-constant eigenfunctions. The notion of weak
mixing is in a sense complementary to that of being isomorphic to a rotation on
a compact abelian group and can be characterized in a variety of ways. See, for
example, [Ha], where among other things weak mixing is characterized by the quality
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of the martini cocktail. Also, the notion of (relative) weak mixing is an important
ingredient in Furstenberg’s structure theorem for measure preserving systems, which
was used in his proof of Szemerédi’s theorem ([F1]).

A feature of weak mixing which plays a crucial role in proving results like
Theorem 0.4 is that it implies weak mixing of higher orders. One can prove, for
example, the following theorem:

Theorem 0.12 ([B1]). If (X, B,u,T) is an invertible weakly mixing measure
preserving system, Ao, Az,---, Ay € B and p;i(t),---,pr(t) € Qt] are non-constant
polynomials with p;(Z) C Z and such that p;(¢t) — p;(t) is not constant for 1 < i #
j <k, then for any € > 0 the set

S = {n (Ao N TP Ay (- TP Ag) — p(Ag)u(Ar) -+~ u(Ar)| < e}

has uniform density one, that is

i |Sﬂ{M,M+1,---,N—1}|_1
N Moo N-M -

It is a peculiar fact that although weakly mixing transformations admit no
eigenfunctions, they may allow for so-called rigid functions, namely functions which
for some sequence n; — oo satisfy UJ f — f in L? norm. One can show that the
“typical” weak mixing system (X, B, u,T) has the property that all functions in
L2(X,B, ) are rigid. We shall call such systems rigid. It follows that while being
of uniform density 1, the set S in the formulation of Theorem 0.12 is not necessarily
an IP*-set. For example, if (X,B,u,T) is a rigid weakly mixing system and if for
some A € B with 0 < u(A) < 1 one has Uf*14 — 14 then it is not hard to see that
for any small enough € > 0 the set

{n: |u(A NT"A) — uQ(A)| > e}
contains an IP-set (generated by a subsequence of (n;)$2,). It follows that the set
{n: |u(A NT"A) — /,l,z(A)| <€}

is not an IP*-set.

This should be compared with the easily provable fact (see for example [B2],
Section 5) that for any measure preserving system (X, B, u,T'), any A € B and any
€ > 0, the set

{n:u(ANT"A) > u(A)? — €}

is an IP*-set. Let us call a set £ C Z an IP} -set if E is a shift of an IP*-set.
E-IP -sets and PE-IP? -sets are defined similarly. IP? -sets are, so to say, affine
versions of IP*-sets and share with them many of their features of largeness and
combinatorial richness. In particular, IP% -sets form a significantly smaller family
than that of syndetic sets. Indeed, in Example 7.5 we give a construction of a
syndetic set which is not an IP% -set . (Example 7.8 is even stronger.)

One can easily show that for any «, 8 > 0 there exists a positive constant ¢ such
if (X,B,u,T) is an ergodic system (i.e. there are no non-trivial invariant sets) and
A, B € Bwith u(A) > o and p(B) > f3 then the set {n : u(ANT™B) > c} is an IP? -
set . (One can take ¢ = a2 3%; we do not know whether or not this can be improved.)
The following theorem gives an analogue of this fact for polynomial recurrence of
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so-called totally weakly mizing systems (that is, systems (X, B, t, {Tn}nez-), where
Tn is weakly mixing for all n € ZF \ {0}).

Theorem 0.13 Suppose that (X, B, u) is a probability space and {Th}nez-
is a totally weakly mixing measure preserving Z"-action generated by T1,---,T}.
Suppose that t € N and p; j(z1,---,2x) € Q[z1,--,2x] with p; ;(Z¥) CZ, 1< i <
r, 1 < j <t such that for any 1 < j; # j» < t, the mappings

(lla o alk) — (pl,jl (lli e alk)a s Prga (lla e 7lk))

and

(l17 ot '7lk)_>(p1,j1(ll7 ot 'Jlk)_pl,jg(lh o 'Jlk)7 e 7p7',j1(lla e Jlk)_p'f',j2(l17 o '7lk))

are not constant. Suppose that Ag, A1, As,---, Ay € B with pu(4;) >0,0<i <.
Then the set

t T

Rato 41, = {(nl,---,nk) €zt u(Ao "N (HTfi’j("l""’"’“))_lAi> > o}
J

=1 =1

is a PE—IPi—set.

In the hierarchy of mixing there is a notion, namely that of mild mizing, which
was introduced by P. Walters in [W] and later rediscovered and given an “IP* flavor”
by Furstenberg and Weiss (see for example [FW] or [F2], section 9.4) which falls
between weak mixing and strong mizing (a measure preserving transformation T
on a probability space (X, B, ) is strongly mixing if for every A, B € B one has
limy, 00 p(ANT"B) = p(A)u(B)) and which is characterized by the absense of
rigid functions. Namely, a measure preserving system (X, B, u,T) (or simply T) is
said to be mildly mixing if there are no non-constant rigid functions in L2(X, B, p).

For ZF-actions {Tn}nez+, one says that f € L2(X, B, u) is rigid if there exists
a sequence {n;}*, C Z* with |n;| — oo (where | - | denotes the Euclidean norm)
and Ty, f — f as | = oo0. A system (X, B, pt, {Tn}necz*) is said to be mildly mixing
if there are no non-constant rigid functions. In the present paper ramifications of
mild mixing, or, properly speaking, a closely-related, more general form of mixing
relative to a factor (see Definition 3.5), play a crucial role (as it does in [FK2]
as well). Analogous to the fact that weak mixing implies weak mixing of higher
orders, mild mixing implies mild mixing of higher orders. The following corollary
of Theorem 4.10, which extends Theorem 4.8 of [B1], will be proved in Section
6. For its formulation, we need a notion of linear independence among IP-sets.
A definition will be given later (Definition 6.7), but a sufficient condition (which
is nearly general) for linear independence of the IP-sets (ng))ae F, 1 <4<k, is
that for every ly,---,ly € Z, there are at most finitely many a € F such that
lln((ll) + -+ lkn&k) =0.

Theorem 0.14 Suppose that (X, B, u) is a probability space and {Ty, }nez- is a
mildly mixing measure preserving Z"-action generated by 11, ---,T,. Suppose that
t € N and pi,j(xla"'axk) € Q[wla"'axk] with pi,j(zk) C Z> 1 S 1 S r, 1 S .7 S t
are polynomials having the property that for any 1 < j; # j2 < t, the functions
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(i, 0k) = (prjn (o, -+, k), ooy (I, -+, 1))

and

(lly"'alk)
_>(p1,j1(l17" 7lk) _pl,j2(l17' ot ;lk)a' ot 7p7",j1(l17' 7lk) _pr,jg(lla' ot 7lk))

are not constant. Suppose that Ag, A1, As,---, A; € B with u(4;) >0,0<4¢<t.

Then for any € > 0 and any linearly independent IP-sets (n((xl))ae Fyrr, (n&k))ae F

in Z there exists o € F such that

t T _ T
‘/‘(Ao NN (HTF’“"S)""’"?)’) 1Ai) — [ w4
) .

=1 =1




CHAPTER 1

FORMULATION OF MAIN THEOREM

Recall that we use F to denote the family of non-empty finite subsets of N.
We let Fg = F U {0}. One of the reasons that we are concerned with these objects
is that in order to deal nicely with IP-sets, it is useful to see them as sequences
indexed by either F or by Fp (this will be explained presently). Any sequence
indexed by F (or by Fp) will be called an F-sequence. If G is an abelian group
then any F-sequence (ny)aecr C G for which neug = ng + ng whenever an g =10
will be called an IP-sequence. We will now show that IP-sets may be indexed in
a natural way by F, whereupon they become IP-sequences. Recall that the IP-set
generated by the sequence G = {g; : i € N} C Z is given by

F={gi, +gin+ -+ gi, : 11 <i2<---<ip,keN}

If we set
Moy in,mint = Gin T Gis + 770+ Giy,

then (nq)qcr is an IP-sequence (that is, nqug = nq +ng whenever anN g = @) with
the property that {n, : « € F} = I'. Henceforth, whenever we will be dealing with
IP-sets we will assume that they have the structure of an IP-sequence. However, in
a mild abuse of terminology, we may sometimes still refer to these IP-sequences as
IP-sets. Furthermore, any time we have an IP-sequence (nq)qcr given, we will, if
needed, extend the indexing set to Fy by letting ng = 0.

Suppose that a, € Fy and suppose that for all a € a and b € 8 we have a < b.
In this case, we will write a < 8. (Notice that §) < a < 0 for all a € F.)

Of paramount importance to us is a notion of convergence for F-sequences
which will be defined later in this section. For this mode of convergence, any F-
sequence in a compact topological space will converge along a sub-sequence. In
order to explain what is meant by a sub-sequence of an F-sequence, we introduce,
following [FK2], the notion of an IP-ring. Suppose that we are given a conventional

sequence (;)ien C F with a1 < as < az < ---. Let
PO = {Jar: per).
i€B

Then FU) is called an IP-ring, as is ]-'él) = FM U {#}. Notice that the map

€: F-FV, o) = U a;
i€a
is bijective and structure preserving in the sense that {(a U 8) = £(a) U &(B). In
particular, since F(!) has the structure of F, any sequence (ya)qcs) indexed by

10
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F@) has the structure of an F-sequence and indeed can be identified naturally with
a particular F-sequence, namely the F-sequence (Z4)acr, Where To = yg(q)-

Finally, for m € N we will denote by FZ' ((Fp)?) the set of all m-tuples
(o1, -+, ) in F™ (F*) such that a; < a; whenever 1 <i < j <m.

Definition 1.1 Suppose that k,r € N are fixed. Let PE(1) denote the set of
expressions of the form

.
n ) )
T(a) = [[17" "), a e 7, (1.1)

i=1

where p;(z1,- -, zx) € Z[z1,-- -, 2] with p;(0,0,---,0) =0,1 < i <r. (PE stands
for “polynomial expression”.)
For m € N, let PE(m) denote the set of formal expressions having the form

T
Di (("E,?)lgbgk, 15j5m)

T(ala"';am):HTz 3 (ala"':am)e(}-@)?’

i=1

where p; is a polynomial in a k X m matrix of variables having integer coefficients
and zero constant term, 1 < ¢ < r. For d € N, we denote by PE<4(m) the subset
of PE(m) consisting of such expressions constructed with polynomials p; of degree
< d. (For our purposes, we take the degree of a monomial to be the sum of the
powers of the variables appearing in it. Any polynomial can be uniquely written
as a sum of monomials, no two of which are non-zero constant multiples of each
other. The degree of a polynomial so expressed is the maximum degree of the
corresponding monomials.)

The reader may notice that while the theorems appearing in the introduction
concern themselves with polynomials p(z) € Q[z] for which p(Z) C Z, the expres-
sions of Definition 1.1, which are precisely the expressions dealt with in our main
theorem, Theorem 1.3, are built with polynomials p(z) € Z[z]. The reason for this
is that polynomials in Z[z] are easier to deal with, and the case of polynomials in
Q[z] is easily reducible to the case of polynomials in Z[z]. This reduction will be
carried out in Section 6.

Example 1.2 Suppose for the moment that k = 2 and r» = 2. Taking care not
to confuse superscripts with exponents, one checks that the following is a member
of PE(3):

a1 Ta Tag

Tl(ngll))z-i-n‘(fl) ngZ) —nfl) (ngl?’) )2+5n(1) n(Mn T3 (n[(122))3 —2(n[(111) )anfl) —17(n[(113) )2
2 .

T(ala Qa, a3) =

We will now make a few observations regarding Definition 1.1. First of all,
notice that the object PE(m) depends not only on m, but on k and 7 as well. The
reason that k£ and r are suppressed in the notation is that they will be fixed natural
numbers throughout the entire proof of Theorem 1.3. The notion of PE(m) depends
only on k, r, and m, however. The symbols T;, 1 <7 < r, and ng), 1 <4<k, are
merely placeholders. (We will now explain what this means.)

In essence, elements of PE(m) are just r-tuples of polynomials of km variables
having integer coeflicients and zero constant term. In particular, the element of
PE(1) given by (1.1) corresponds to the r-tuple

(pl(a‘-la"'7$k)7"'7pT(xl7"'7xk))-
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The reason we write members of PE(m) the way we do is to indicate how they are
used, namely to generate sequences of measure preserving transformations indexed
by (.7-'@)7:. (For example, suppose that 11,7, --,T, are commuting measure pre-
serving transformations of a probability space (X, B, ) generating a group 2, and
suppose that (n&l))aej:, e (n&k))aef are IP-sets. Then (taking the case m = 1)
any T'(a) € PE(1) gives rise via equation (1.1) to an F-sequence in 2.) In a slight
abuse of terminology, we will generally identify polynomial expressions with the
F-sequences of measure preserving transformations they give rise to.

However, we point out that PE(m) has a natural group structure which is
independent of any specific family of transformations, or for that matter any fixed
IP-sets. Given k, 7, m, and d € N, PE<4(m) is a finitely generated, free abelian
group under the multiplicative operation which corresponds to addition on the
underlying r-tuples of polynomials. (If the members of PE(m) are taken to be
transformations, then this product is of course just composition.) In PE<4(1), for
example, this multiplication may be written

T T T

(1) (k) (1) (k) (1) (k) (1) (k)
p‘i(na ERRREYL ) qi(na ERMEYLN ) — pi(na 3 Ty )-‘rq,’('ﬂa ERMEYL N )
(I (I - (TI= .

i=1 i=1 i=1
An example of this multiplication in PE(2) is

<T1(”(“11))2“"5323)41’26("91))17("(“12))4) <T1_2(n(“21))3(n(“11))2T2_(n(az1))17(n5*12))4)

(1)Y2 4 ()4 o (2))3 (1, (1))2 (@))17(p(1))4
_T(nal) +(ney) —2(ng))  (ney) T5(na1) 7(ney)
=14y 2 .

The reason we don’t fix transformations or IP-sets in Definition 1.1 is that we
want to avoid non-trivial indentities, or “torsion”, in PE(m). For some choices of
probability space and transformations Tj;, two different polynomial expressions in
PE(1) may give rise to the same F-sequence in 2 owing to non-trivial identities
occuring among the transformations. For example, if Ty = T3, then the polynomial

expression T'(a) = T}' ‘(’)Tz_"‘(’l) yields a function which sends every a € F to the
identity transformation I € Q, yet T(a) is not the identity element in PE(1).
Similarly, having fixed IP-sets (ng))ae F, 1 < i <k, one may find that there exist
non-trivial identities among them, but these do not give rise to identities in PE(m).

(1) 4 (2
For example, if n&) +n'2 = n&®) for all a € F then S(a) = Tlnc‘1 7 and Ua) =

T & are still distinct elements of PE(1) in spite of the fact that for any measure
preserving system (X, B, u) and group of measure preserving transformations
generated by commuting T;, 1 < ¢ <7, S(a) and U(a) induce the same F-sequence
in . To conclude, PE<4(m) is a finitely generated free abelian group depending
only on k,7,m and d. If k = r = 2, then a basis for PE<3(1) is

2 2 2 2
n m n m
(TP, )= T Ty Tiem Te Ty Tate Ty Ty }.

We are almost in position to formulate our main theorem. First, however, we
need to introduce the aforementioned notion of IP-convergence. Suppose that (z)
is an F-sequence in a topological space and F() is an IP-ring. We will write (see
[FK2])

IP-lim z, =2z
acF@)
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if for every neighborhood W of z there exists § € F having the property that for
every a € F1) with o > 3 we have z, € W.

The notion of IP-convergence has a natural multi-parameter generalization.
Suppose that X is a topological space, F(!) is an IP-ring, m € N, and

{.’lf(ah...’am) : (al, .. -,am) S (f(l))?}
is a sequence in X indexed by (F())%. We shall write

I _1' e =
(al’-..,am)elr(r}_‘(l))yg m(al, ) m) z

if for any neighborhood U of z, there exists ap € F(!) such that for all (a1, ---, )

€ (FMN™ a1 > ag, we have Z(a,,...a,,) € U.
Here is our main theorem.

Theorem 1.3 Let d,k,r € N and fix IP-sets (’I’L((Xi))aef', 1 <i <k Let
PE<4(m) be as in Definition 1.1 and suppose that (X, A, u, ) is a measure pre-
serving system, where ) is generated by commuting, invertible transformations
Ty, ---,T.. For every A € A with u(A) > 0 and every m,t € N there exist an
IP-ring F) and a number a = a(A,m,t,d) > 0 having the property that for every
set of polynomial expressions {So,---,S;} C PE<4(m) we have

t
1 3 ... _1
(a1,...,(11,1:)_€11(1}1(1))’2 M(D]SZ(al, ,Oém) A) Z a

Sections 2-5 of this paper constitute the proof of Theorem 1.3. We note that
k and r will be fixed at the beginning of Section 2 and the IP-sets (ng)acr will
be fixed before Example 2.2. The system (X, A4, u,Q) will not be fixed until the
beginning of Section 5.

The strategy of the proof we will employ could be described as a polynomializa-
tion of the proof of the linear IP-Szemerédi theorem in [FK2]. The general idea (also
central to the proofs of the increasingly stronger results in [F], [FK1] and [BL1])
is to exhaust the measure preserving system by a chain of special factors in which
the two complementary notions of compactness and weak mixing are controllably
combined.

Specifically, one shows that if the main theorem holds for a factor (Y, B, v, ()
of our measure preserving system (X,.A4,u, ) then it also holds for some non-
trivial extension of (Y, B,v, ) (which is again a factor of (X, A, u,Q)), and that
furthermore the set of factors for which the main theorem holds has a maximal
element which therefore coincides with (X, A, u, 2).

The structure of the paper is as follows: in Section 2 we establish some ter-
minology and notation and introduce the main combinatorial tools to be use in
subsequent sections, namely Hindman’s theorem ([H]) and the polynomial Hales-
Jewett theorem ([BL2]). Section 3 is devoted to definitions and main properties of
what we call, in keeping with the terminological tradition of [FK1] and [FK2], prim-
itive extensions. These extensions are exactly the ones we will be dealing with in
extending the validity of the main theorem from a factor to a non-trivial extension.
In Section 4 we deal with the phenomenon of relative mizing and show inductively
that this fundamental property of extensions ensures relative polynomial mixing of
all orders. The proof is brought to completion in Section 5, in which it is shown how
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the two phenomena of compactness and mixing combine to push the validity of our
main theorem from a measure preserving system to any primitive extension. Section
6 is devoted to applications of the main theorem to ergodic theory, more specifically
to a fine analysis of the structure of the set of multiple recurrence return times of
weakly and mildly mixing measure preserving systems. Section 7 concentrates on
combinatorial applications, and Section 8 is a short reflection on the possibilities
for obtaining stronger results than those we obtain here. Finally, in an appendix
we prove a multi-parameter weakly mixing ergodic theorem which is needed for one
of the applications of Section 6.



CHAPTER 2

PRELIMINARIES

This preparatory chapter has three sections. The first one attempts to intro-
duce a well-organized notation which will help us later to deal without unnecessary
confusion with the groups PE<4(m) of polynomial expressions defined in Section
1. The second one introduces the combinatorial machinery we will be using in the
proof of Theorem 1.3, namely the polynomial Hales-Jewett theorem ([BL2]). The
third and final part is devoted to a very brief account of some generalities concerning
factors and the disintegration of measures.

This section, together with the next three sections, constitute a proof of The-
orem 1.3. We now select and fix for the whole of this proof £ € N and r € N. It is
these fixed values of k and r which will be assumed in Definition 1.1, the definition
of PE(m).

2.1. Notation, Definitions and Examples.

Note that if T' € PE(m), then T is uniquely expressible in the form
T(oa, ,am) = S(a1)S@ (@) - - - S 2m=1)(q,), (2.1)

where S(ay) is the portion of T'(ay, - - -, @y, ) which depends solely on oy, S(@1) ()
is the portion of T'(a4,- -, @) which depends only on a; and as, but not solely
on a1, and so on. To see exactly what this means, recall that 7" has the form

r pi((ngbj?)1gbgk, 15jgm) m
T(ala"'aam)ZHTj ) (a17"'7am)€(-7:0)<7
i=1

where for all ¢, 1 <14 <r, p; is a polynomial in the km “variables” ng?, 1<b<Ek,
1 < j < m. Equation (2.1) corresponds to the separation of these polynomials into
monomials and recombining these monomials according to the highest value of j
for which «; is appearing in them. For example, we get S(ay) by keeping only the
‘variables” n&bl) , 1 <b< k. Alternatively,

monomials in the *

S(ar) = T(as,0,---,0).

S(@1)(ay) comes from the monomials in n&‘}, 1<j<2,1<b<k which contain at
least one occurence of some “variable” n&’;) . Or,

S (@) = T(ay, 2,0, ,0)S(c1) "
Thus $(@:22) (a3) = T'(ay, az,as,0,---,0) (S("l)(az)S(al))_l, and so on.

15
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Example 2.1 Suppose again that

(nE) 2+ nl) —nG) ()2 4+5nl) nl)n) 3(n$))% —2(n{))?n{) —17(nl)?
T(al,az,ag) = Tl 1 T2 .

Then the expressions S, (@) and §(®1:92) of equation (2.1) are given by

(1)y2 (1)y2,,(2)
Slar) =1y, M) e
(2) ,(1) (2)y3
Moy Pag 3 (Nay)
S () =Ty "1 72Ty (2.2)
@ (D)2 450D W@ _17(n())2
S(a1,a2)(a3) =T1 1 3 1 tag 3T2 3/

We now fix the IP-sets (ng))aef, 1 <4 < k which occur in the statement of
Theorem 1.3. Having done this, note that for any fixed (a1, -+, am—1) € (Fp)™ "
we have, plugging in actual numbers for the “variables” (which we can stop thinking

of as variables now that these are fixed IP-sets) ng’; .),

{S(),8€V(),---, slarmem-1)()} € PE(1). (2.3)

Example 2.2 Suppose that a1, as € F have been fixed and suppose that (for

instance) n&ll) =2, n((llz) =3, and n&zl) = 4. Then from the last line of (2.2) we get

4(n(1))2430n2 __—17(n()?
a1, — a3 @3 a3
Slana2) () =T, T, .

In the course of our proof of Theorem 1.3 we will often be dealing with a fixed
subgroup G of PE<4(1) having the property that any T' € G exhibits some form of
(relative) compactness (by this we mean that the family of operators {T'(a) : a €
FMY exhibits compactness along fibers—see Section 3). The following definition
arises out of the need to isolate those members

T(a, Q) = S(QI)S(al)(%) . ..S(al,~~~,am_1)(am)

of PE(m) which exhibit a similar kind of relative compactness by virtue of the
fact that along some IP-ring the set appearing in (2.3) is eventually contained in G
whenever a7y < as < -+ < Q1.

Definition 2.3 Suppose d € N, G is a subgroup of PE<4(1), and ") is an
IP-ring. Suppose that T € PE(m) has decomposition

T(Ck]_, e aam) = S(al)s(al)(a2) e S(al’m’am_l)(am)a

as in equation (2.1). We will write T € PE(G, F™M) if S € G, and if there exists
g € FU having the property that whenever (ay,---,am_1) € (FO)?™! with
ag < ap we have

{560, slerman-} ¢ 6.

In the sequel, we will make use of the fact that PE(G, F(1) is a group, as well
as of the following result, whose proof we omit:
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Proposition 2.4 Suppose that m < N, T(ay,---,am) € PE(G,F®) and
1<m < --<mny <N. Lt S € PE(N) be defined by S(ag,---,an) =
T(Qn,,- -+ 0p, ). Then S € PE(G, FM) as well.

Suppose that T' € PE(1) is given by

(1) (k)
T(a) HTP (n )" ank ), o € ‘7_‘0_

i=1
Let
i () D () pegen(®) )
S(ala"'aam):HTi ! m ! 0 (O‘17"'7am)€(‘7_—0)r<n
i=1

(2.5)

Then S(ay, -+, am) € PE(m). More importantly, S(ay, -, an) = T(a;U---Uay,)

whenever (ay,---,am) € (Fp)?. Therefore it makes sense for us to write T'(ay U

--Uan) € PE(m).
In order to analyze the expression T'(a; U --- U auy, ), we will need to break it
down in a manner analogous to (but even finer than) equation (2.1).

Definition 2.5 If T € PE(1), write 7® = I, T = T, and let T® ¢

E(2) be determined by T(a; U as) = T(a1)T ()T (a1, as), (a1,as) € (Fy)2
Inductively define T*) for k > 3 by

T(alu"'uak): H T(J)(ﬂ17713])7 (ala"'aam)e(y:@)zl
{517"'7ﬁj}c{a17"'7ak}
(2.6)
Example 2.6 If £k = 3 then (2.6) becomes
TlapUazUa
(e 2Uas) (2.7)

:T(al)T(ag)T(a3)T(2) (061, OLQ)T(Z) (Oél, a3)T(2) (0(2, a3)T(3) (041, a2, 0&3).

n&”)znff)T ) _ 5(n(2>)2

Taking T'(a) = T n (2.7) gives us

T(a1 Uas U 013)

(2R RO 4D g e e 7
—\"1 2
(1)y2,,(2) (1) (2)
(P gl ))
2(n(1))2 (2)

T Mes e nl)—5(n{))* )

Q(H(l))Z (2) (1) 5("(2))
T, )

T @1 e ‘12 @1 T2

(1)y2 (2) (1), (1) 1 (2) (1)y2 (2) (1) (1) n(2 (2) ,(2)
12(n 1) ey tingn +2(ngy ) g Hing nes ny; 210n n )

2(n<1>)2 @ 4400 ) @ 42(nE)2n@ +4n B0 n (2)T_10n£‘21)n£’2;)
2

(Tf(nu))z @ 440U n® n®42(nd)2nE) +4nBnUn <2>T2 10n(2>n§32>)
(T4(n(1> 2B 0@ +n D0l @ 4al)nln (z)))
1
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We remark that if T € PE<4(1) then T®*) = T for k > d.
Suppose now that d € N and T' € PE<4(m), where m > 1. We will define new
polynomial expressions

T(a17..-,am) € PE(al + .. _|_ am)

for any m-tuple of non-negative integers (ay,---,a,,) such that T(evam) — T
whenever
ar + -+ am > d.

We begin with a few starting cases. First set 7(0:050) = I, Let 7(1:0:0::0)(q)
be the part of T'(ay,- -+, &) which depends only on ;. That is,

T(lvoy""o)(al) — T(al’@,w,...,@)_
Let 7(%:1.0::50) be the part of T'(ay, - - -, ) which depends only on as,
T(Ovlaov"'ao)(a2) g T(w’az’@,.. .’@)’

and so on. Let T(01050) (), ap) be the part of T'(ay, - - -, @) depending only on
a; and as, but on neither alone, that is, let

T(1,1,0,...,0) (Oz1, az) — T(al, as, @7 e @) (T(I,O’...,O) (al)T(O’l’O""’O) (012)) 71.
Other expressions T(15%m) q; € {0,1}, are defined analogously.

Example 2.7 Suppose again that

1)\2 2 1 2 1),2 1 1 2 2)\3 « 1),2 2 1),2
() 47 nd) ) () 450 3(n)—2(n)2n) - 17(n1))

5D p(2)
1,11 _ a1 Cag ag
TG (o, oz, 003) = T,y .

T(a1,az,a5) = T") +751753 0nintd e
Then
7100 (g,) = Tl("fxlf)ZTzﬂ("Sf)znfff
T010) () = T;(nffg)s
T (0 ) = T
T(O’O’l)(ag) _ T2—17(ng3>)2
) g
)
)

Now, T'(2:0:0) (agl) , a§2)) is defined to be the part of T(agl) Ua?) ,Q, Ol
which depends on agl) and a§2), but on neither alone. That is,
7200 Y, af?) = T(af” Uaf®,0,- -, 0) (TH0 0 (af )T 100 (af)) .

Example 2.8 For T'(ay,as,as3) as above,

2,0,0) (1) _(2)
T( sUs )(al , 0 )
1 1 2 1
2n( ()1)”’( ()2) 2((na(1))2n( (1)
@ @ 1

) 2 (2) W @ @
LT )7 qyt2n gy oy (0 gyt )
1 1 1 1 1 1 1 A

=T, ' T
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721,00 (oY o{?  ay) is defined to be that part of

T(agl) U a§2)aa27a37 5a7TL)

which depends on {oz1 ,a§ ), as}, but not on any proper subset of this set. In other

words,

TEL0 0 (agY, 0l a0)

=T(af’ Ua{?,az,0,-,0) (T3 (af", a{ ) T (af"))
7(1,0,--,0) (Oég?))T(o,l,o,---,o) (az)T(l,l,O,---,O)(agl)’ () T(1:1:0:--:0) (a?) 7 a2)) -
Hopefully, the following definition will now be marginally accessible.

Definition 2.9 Suppose that T(ay, - -, a,,) € PE(m). Let T = I and
for every m-tuple (ay,---,a,,) of non-negative integers, at least one of which is not
zero, let

Tlaam) (@ ol - ol oD ol el alD a@), - afem))

be the portion of
T(agl) U ag2) U---u agal) (1) U a(2) - U ag‘”), b uaP U ualem))

which depends on no proper subset of

(0,0®, .. ol 4D o) . o) L ) 40 L glan)y

In particular, Definition 2.9 tells us that

T(agl) Uagz) U "'Uagal),agl) Uagm U ...Uag@)’...
.’asrll) Ua%) U...Uagg’m))

= H T(bl’...,bM)(ﬂ£1)aﬂ§2)7"'7 §b1)7 51)7 52)7"'7ﬂ£b2)7"'

ﬂ(l) , Ebi)
C{{a(l), ,a(.a")}}, ,Bg),ﬁg),,ﬂgm)) (28)

1<i<m
2.2 Combinatorial Tools.

We now introduce the combinatorial machinery we will need. The key tool for
this is the following polynomial Hales-Jewett theorem ([BL2]).

Theorem 2.10 Suppose numbers k,d,r € N are given. Then there exists a
number N = N(k,d,r) € N having the property that whenever we have an r-cell

partition
T
F({l,---,k} % {1,...,N}d) =a
i=1
one of the sets C;, 1 < i < r contains a configuration of the form

{Au(Bxsd):Bc{l,---,k}}
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for some A C ({1,---,k} x {1,---, N}¢) and some non-empty set S C {1,---, N}
satisfying
An({L,--+,k} x S%) = .

Definition 2.11 Given a subgroup G < PE<(1), and an IP-ring 7, the
pair (G, FM) is said to be balanced if for every T(ay,---, o) € PE(G, F1) (see
Definition 2.3) and every ay, - - -, a, € NU{0}, we have T(¢1em) ¢ PE(G, FD).

Here is the combinatorial result we need, which is a consequence of Theorem
2.10.

Theorem 2.12 Suppose t,d,l,m € N. There exist numbers N = N(t,d,1)
and w(t,d,1) € N such that for any IP-ring F(1) and subgroup G < PE<4(1) with
(G, F (1)) balanced, and any sets of polynomial expressions

t

{Ri(al, .- .’am)}izl C PESd(G,f(l))

and
t

%

{Wilaa, - am)}

there exist sets of polynomial expressions

- C PESd(m),

w

L={Li(a1, --,an)};  C PE<(G,FV)

and
M = {M;(ay,-,an)},_, C PE<4(N)

i

having the property that for any [—cell partition

l
LxM=|]C;,

i=1

there exist numbers a,b, and ¢, with 1 < a,b < w and 1 < ¢ < [, and sets
S; c{l,---,N}, 1 <i <m, with S; < --- < Sy, such that under the symbolic
substitution 8; = {J,,cg, @n, 1 <4 < m we have, for 1 <4,j <t,

(La(aly'";aN)Ri(BI;"';Bm); Mb(Otl,"',C!N)Wj(,Bl,“‘,ﬂm)) € Cq-

Proof. Let N = mN(t?,d,l) (where N (t2,d,1) is as in Theorem 2.10). If

F({1,--, £} x{1,---,N}) = C;

=1

then one of the cells Cy of this partition, 1 < ¢ <[ contains a configuration of the
form

{Au(Bx (SyU-+-USm)7) :Bc{1,---,t2}},
where A C ({1,---,#*} x {1,--+,N}?) and

- .
(Daésjc{%zvﬂ,---,%zv}, 1<j<m
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satisfy
An({1,--, £} x (S1U---USp)Y) = 0.

Now, for every fixed 4,5, 1 < i,j < t, and E C {1,---,N} with |E| < d,
pick exactly one point zg,;; € ({1,---, N})? whose set of coordinates (a subset of
{1,---,N}) equals E. Write

—1
Ez:Eﬂ{z N+1,---,3N}, 1<z<m,
m m

and put a, = |E;|. Denote the elements of E, by ngl) <0 < nga‘).
We wish to define a function

f: F({1,---,£} x {1,---,N}%) = PE<4(N) x PE<4(N)
having some properties which we will put off mentioning for a bit and which satisfies

f(aup) = f(a)f(B) when anB = @. Any such function will be uniquely determined
once it is defined on singletons. For E,i,j as above, let

(it +j,25,5))

_( pla,am)
—(Ri T oy @) @), O ag) S O O am) ),
1 1 2 2 m m (2 9)
(a1,,am) ’
Wj (angl) ) ) angal) ) anél) 3 ) ang‘w) ) ) anﬁ) ) 3 ang,‘:""))
S PESd(N) X PESd(N)
We mean here, for example, b
) J y
R(m,...,am)(a (15" 5O (ag), O (1),* " * 3y Q (ag)y** 5 QL (1), * s O (am))
'3 nl ) b "1 1) n2 b ) ’Il2 2)) b Nomy ) b nmm b
that element S € PE<4(N) which is defined by
S(Oél,"',OZN)
(a1, am) (2.10)
_Rl E) El (angl)j...7anga1)7angl)7...7anga2)7...70[”571)7-.-7&”557”))_

(This explains why we can say that the range of f is contained in PE<4(N) x
PE<4(N).) On all other singletons in F({1,---,t*}x{1,---, N}¢), that is, on those
not of the form {(it+j, 2k, ;) }, f is defined to be the identity. As mentioned earlier,
f extends uniquely to a multiplicative function on F({1,---,#*} x {1,---, N}9).
Let
L={Lij(a,--,an): 1 <i<w}

be the set of elements in PE<4(N) which occur as the first coordinate in a member
of the range of f. Recall that PE<4(G, F)) is a group, and furthermore (G, F(V)) is
assumed to be balanced (see Definition 2.11). Since R; € PE<4(G, F™M), 1 <i < t,
R§a1""’a’") € PE4(G,FW) for 1 <i <t and a; € NU {0}, 1 <i <m. Therefore,
by Proposition 2.4 the expression S(ay,---,an) of 2.10 which occurs as the first
coordinate in (2.9) is also in PE<4(G, F(1)). Therefore we have L C PE<4(G, F).
Let
M= {Mi(a17"'7aN) 01 SlSUJ}



22 V. BERGELSON AND R. MCCUTCHEON

be the set of elements which occur in the second coordinate. Of course the range of
f is contained in L x M. Suppose now that we have an [-cell partition of L x M,

l
LxM:UCi.

=1
Then
F({la"'atz}x{l:""N}):Uf_l(ci)a
and there exist ¢, 1 < g <m, A C{l,---,t2} x {1,---, N}, and sets
Jj—1 J .
Q;ASJC{ m N+1>5mN}7 1S]Sm,
where

An({1,--+, 8} x (St U---US,,)%) =0,
such that

{Au (Bx (S1U-+-USm)?) :BC {1,---,t2}} c HC,).

Define a,b,1 < a,b <w by (La, My) = f(A), and let §; = U, c5, @n, 1 < <.
Now, as to the additional property of f, the reader should convince himself with
the help of equation (2.8) that for 1 < 4,5 < ¢2,

F(it+4,(S1U--USm)®) = (Ri(Br, -+, B)s Wy (Br, -, Bm))-

It follows that

(La(al;'";aN)Ri(ﬂI;"';ﬂm); Mb(al,"',aN)Wj(,Bl,'",ﬂm)) € an
1<i,j<t
O

A classical combinatorial result which concerns IP-rings was proved by Hind-
man in 1974. One formulation of Hindman’s Theorem ([H]) is as follows:

Theorem 2.13 If 7 is an IP-ring, and if for some r € N, we are given an
r-cell partition of F(1), F) = JI_, C;, then for some i, 1 < i < r, C; contains an
IP-ring F®.

A natural consequence of Hindman’s Theorem is the following:

Proposition 2.14 (see [FK2], Theorem 1.5) Suppose that X is a compact

metric space and that for each n € N, {x&n)}ae F is an F-sequence in X. Then for
any IP-ring F(), there exists an IP-sub-ring 7 ¢ F(1) such that

IP-lim ™ =z,
acF®@)

exists for each n € N.

We will find it convenient to use the following generalization of Hindman’s
Theorem, the Milliken-Taylor Theorem.
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Theorem 2.15 ([M], [T]) Suppose that F() is an IP-ring, m,r € N, and
(FM)m = |J;_, Ci. Then there exists j, 1 < i < r, and an IP-ring F® ¢ F1)
such that (F2)® c C;.

Just as Hindman’s Theorem gives rise to Proposition 2.14, the following is a
consequence of the Milliken-Taylor Theorem:

Theorem 2.16 Suppose that X is a compact metric space, (my)ren C N is
a sequence, and that for each n € N, {:cEZ)l o) (1, ,am,) € (F)Z"} is
Mn

a sequence in X indexed by (F)%". Then, for any IP-ring F(!) there exists an
IP-sub-ring F? ¢ F() such that

(n)

-lim T =z
(A1, Gmy ) E(F @) 2n (o1, ,Qmy, ) n

exists for each n € N.

The following theorem from [BFM] will be used in Section 3 in order to establish
the existence of primitive extensions.

Theorem 2.17 Suppose that H is a Hilbert space, (U;)!_; is a commuting
family of unitary operators on H, (p;(z1,- - - 733’6))::1 C Z[z1,- -, x], pi(0,---,0) =
0,1<i <t and that (nY)acr are IP-sets in Z, 1 < j < k. Suppose F1 is an
IP-ring such that for each f € H,

¢
H Pi("&l)f"y"gﬂ)) —_
EPE_]!-I(I};I (H UZ )f - P(pl"'-vpt)f

i=1
exists in the weak topology. Then P, .. ., is an orthogonal projection. Pro-
jections of this type commute, that is, if also (qi(xl,---,xk))t 1 C 2z, my]

i=

i(0,---,0) =0, 1 <4 <, then Py ) Plasova0) = Plarsea) Plprype)-

We shall need one more proposition which, while not being as purely “combina-
torial” in nature as the others in this section, is concerned with limits along IP-rings,
in particular providing a sufficient condition for showing that an F-sequence in a
Hilbert space converges to 0 weakly along a subring. This proposition is a modifi-
cation of [FK2, Lemma 5.3]. A proof is provided for completeness.

Proposition 2.18 Suppose that (z4)aecr is a bounded F-sequence in a Hilbert
space and F(!) is an IP-ring. If

ey (o Taus) =0
then for some subring 7 c F1),

iy o =0
in the weak topology.

Proof. Let 73 c FU be an IP-ring with the property that

IP-lim z, =u
aceF(2)



24 V. BERGELSON AND R. MCCUTCHEON

exists weakly. We have, for all £ € N,
IP-lim (TayUe-Uag, U) = ||v||2,
(a1,,ar)E(F@)E ! b
from which it follows that for all m € N,

. 1 )
T i S <R;xalu...u%,u> = [[ul]". (2.11)

On the other hand,

1 2
m (al,...,E:_)lel?}(z))g ‘ ‘E kZ=1 Taau-Ua
. . 1
= lim IP-lim — E (Tayu--Uaks Tayu---Ua;)

m— o0 (al,...,am)e(]—‘@))g Pyt

<$a1U---Uak ; -Z'alU---Uaj>

. 1« :
=R 2 e B

m

. 2
= lim — E ||$a1u---Uak|| =0.
m—oo M el

This together with (2.11) gives u = 0.

2.3. Factorization and Decomposition of Measures.

We conclude this section with a brief review of generalities concerning factors
and measurable disintegration. For a more comprehensive treatment, the reader is
referred to [F2].

We will be dealing with measure preserving systems on probability spaces,
denoted by (Y, B,v,Q), etc. in which the group Q of measure preserving transfor-
mations is generated by r commuting transformations 71,75, --,T,.. We will not
usually need to explicitly mention the transformations T;, rather we deal with ele-
ments of PE(m), which we denote by T (a1, -, am), S(a1, -, am), etc. We have
already indicated these may be viewed as F-sequences in ().

Remark 2.19 For the purposes of the proofs of our theorems, we shall always
assume (implicitly) that the measure spaces with which we deal are Lebesgue spaces.
In other words, we shall assume they are measurably isomorphic to a union of
at most countably many (possibly zero) point masses and some (possibly trivial)
interval on the real line endowed with Lebesgue measure. This is done because
many of the constructions we use (decomposition of measures, etc.) require the
underlying spaces to be Lebesgue. Later we will explain why our results hold for
general, possibly non-Lebesgue spaces, given that they hold for Lebesgue spaces
(Remark 5.4).

At times we will be dealing with a system (Y, B, v, Q) which is a factor of some
other system, say (Z,C,~, ). In other words, we have measure preserving actions of
the same group 2 on both spaces, and moreover there exists a measurable function
m:Z — Y, called the factor map, such that v(rm~'(B)) = v(B) for all B € B and
such that 7(Tz) = T'n(z) for a.e. z € Z and every T € ().
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Suppose that (Y,B,v,Q) is a factor of (Z,C,~,Q) and 7 is the factor map.
Then of course Z = {J, ¢y 7 1(y) mod 0. We will identify B with the completion
of the o-algebra {U,p 7~ (y) : B € B} of subsets of Z which consists of all sets
which “sit over” measurable subsets of Y. Therefore we will regularly say “C € B”
if C € Z and C = 7~1(B) mod 0 for some B € B. (In other words, we regard B as
a sub-o-algebra of C.)

There exists a family {y, : y € Y} of probability measures on Z, called the
decomposition of the measure v over Y, having the property that for every f €
LY(Z,C,), the function

E(fIV)() = E(f|B)(y / £(2) duy (=

called the conditional expectation of f given B, is defined a.e., is a measurable
function of y, and satisfies | gy [ dy = J5 E(f]Y) dv for all B € B. Sometimes
we will write v, where z € Z. In this case, we mean vy, (.)-

The conditional product system of Z with itself relative to Y will be denoted by
(Zxy Z,C®pC,7, ). This space arises in the following way. For f,g € L>°(Z,C,~),
write f ® g(z1,22) = f(21)g(22). Define a measure 4 on C ® C by letting

/f®gd7 /EfIY E(g|Y)(y) dv(y)

:/Y/Z/Zf(zl)g(zQ) dryy (z1)dryy(22)dv(y)

for f,g € L*(Z,C,v) and extending to C ® C. If we let 7 : Z — Y denote the
natural factor map, one may show that the measure 4 is supported on the set

Zxy Z={(z1,22) € Z x Z : (1) = m(22) }.

We denote by C®pC the o-algebra on Z xy Z which consists of the members of C®C
intersected with Z xy Z. The group of 4-preserving transformations Qis generated
by the set of r commuting measure preserving transformations {Tl, T }, where

T; is defined by Tj(z1,2) = (Tjz1,Tizs), 1 < i < r. If T € PE(1 ) is given by
() oo () . .
T(a) =[[_, TF iname”) then we will write 7' for the F-sequence in ) defined
by
- o pa(n) . )
T(Oé) HTP 3t
i=1

When there is not cause for confusion, however (i.e. when it is clear that the
sequence of transformations lies in ), we may simply use T instead of T. (See for
example Definitions 3.5 and 3.6, where this is the case.)



CHAPTER 3

PRIMITIVE EXTENSIONS

Recall that (see the discussion near the end of the introduction) the crucial step
in the proof of our main result is showing that if everything holds for sets in some
proper factor of our system then it holds for sets in some non-trivial extension of this
factor. The non-trivial extensions we will be finding for which it is possible to prove
this fact are so-called primitive extensions. Loosely speaking we call an extension
Z of Y primitive if for some d € N there exists a subgroup G < PE<4(1) having
the property that Z-measurable functions exhibit certain rigidity properties along
members of G on an appropriately chosen IP-ring, while exhibiting certain mizing
properties along members of PE<4(1) \ G. This of course is a rather imprecise
explanation and the intention is merely to offer some of the flavor of this section.

The following definition makes somewhat more precise what we mean by “rigid”
behavior. It is modelled after Definition 6.1 of [FK2], although it is somewhat more
cumbersome than the definition appearing there. Our definition of course takes into
account polynomiality, but even in the linear case it is weaker than Definition 6.1
in [FK2] and applies to a possibly larger class of functions. Our reason for choosing
the present formulation is that at some point we will want to show the existence of
almost periodic functions (see Theorem 3.11), and this is more easily accomplished
with the weakened definition, which is still strong enough for our later purposes.
The corresponding portion of the proof of Furstenberg’s and Katznelson’s linear
IP multiple recurrence theorem, namely Lemmas 7.1, 7.2 and 7.3 of [FK2], uses
linearity of the expressions, and while that proof could probably be adapted to the
polynomialized situation, we are choosing to take an easier road home, sacrificing
a bit of simplicity in the definitions in order to shorten the proof.

We remind the reader that all measure spaces we work with are assumed to be
Lebesgue spaces.

Definition 3.1 Suppose that (Y,B,v,Q) is a factor of (Z,C,v,Q), d € N,
G C PE4(1) is a subgroup, and F() is an IP-ring. We say that f € L*(Z,C,~)
is almost periodic over Y for G along FU), and we write f € AP(Z,Y,G,FW), if
for every € > 0 there exist g1,---, g € L*(Z,C,7) and D € B with v(D) < e such
that for every § > 0 and every T(a, -+, a,) € PE(G, F1)) there exists ag € F*)
having the property that whenever (ai,---,an) € (F))® with ap < ay we have
aset £ = E(ay, - ,a,) € B, with v(E) < §, such that for all y ¢ (D U E), there
exists j = j(ay, -, am,y) with 1 < j <[ satisfying

[T(ar, -+ am)f —gi]], < e

We realize that this definition is quite involved. However, it strikes a balance
between being both strong enough to include the properties we desire and weak

26
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enough to simplify the task of showing that almost periodic functions are abundant
under the proper conditions (this is the content of Theorem 3.11).

Remarks 3.2

(i) AP(Z,Y,G,FD)N L®(Z,C,7) is a T-invariant algebra which contains |g|
and g whenever it contains g.

(ii) If f € L*(Z,C,~) and for every € > 0 there exists h € AP(Z,Y,G,F1))
with ||f — h||y < eforae y€eY,then f € AP(Z)Y,G,FW).

(iii) If h € AP(Z,Y,G,FM) and E € B then 1gh € AP(Z,Y,G,FW).

(iv) AP(Z,Y,G,F™M) need not be closed; however, if f € AP(Z,Y,G,F1)
then for any € > 0 there exist g1,---, g1 € L>(Z,C,~) (select them first in L?(Z,C, )
and then truncate) such that for every T(ai,---,am,) € PE(G,F(") there exists
ag € FM) having the property that for every (au,---,am) € (FM)? with ag < oy
we have a set E = E(ay,--+,0,) € B with v(E) < € such that for all y € E° there
exists j = j(au, -, am,y) with 1 < j <1 satisfying ||T(oa, -+, am)f — gj|ly < €.
(Notice the absence of D and § in this weaker property.)

The following theorem is the first of three theorems in this section which will
be used in the main proof (Section 5). Basically it allows us to assume without loss
of generality that, subject to constraints which we are able to ensure are satisfied
there, 14 is almost periodic.

Theorem 3.3 Suppose that 14 € AP(Z,Y,G,FD) (closure in L?(Z,C,~))
and & > 0. Then there exists a set A’ C A with u(A\ A") < § such that 14 €
AP(Z)Y,G,FW).

Proof. For each € > 0, we can find h € AP(Z,Y,G, F) and a B-measurable
set E with v(E) > 1 — e such that for each y € E, ||1A — h||y < e. We have, by
Remark 3.2 (iii), 1gh € AP(Z,Y,G,FM), and furthermore ||14np — lEh||y <e
for a.e. y € Y. Replace A by AN E. Repeat this process countably, for a sequence

of €’s whose sum is less than §. We are left with a set A’ which, by construction
and Remark 3.2 (ii), has the properties we require.

O

Our next task is to define primitive extensions. First we need two preliminary
definitions. The first of these comes nearly verbatim from [FK2].

Definition 3.4 If (Y, B, v) is a factor of (Z,C,~), then a function H(z1, 22) €
L>(Z xy Z,C ®pC,7) is called a %—kernel if

/H(zl,zz)dfyzQ (z1)=0
for a.e. zp € Z. For £ kernels H we define, for ¢ € L*(Z,C,7),
H 4 9(a) = [ Hor,2200(2)dn ()

IfHisa %—kernel, then for a.e. y € Y, ¢ — H * ¢ defines a Hilbert-Schmidt
operator on L*(Z,C,,). If H is self-adjoint, that is if H(z1,22) = H(22,21) a-e,
then for a.e. y € Y, ¢ — H x ¢ defines a self-adjoint Hilbert-Schmidt operator on
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L*(Z,C,7y) with real spectrum (X;(y)).—,, A ()| > [A2(y)| > ---. Also, we may
write

H(z1,29) Z)\k )i (21) i (22),

where {¢}32, C L*(Z,C,) is, for a.e. y € Y, an orthonormal (in L*(Z,C,~,))
family of eigenvectors for this operator associated with the eigenvalues \;(y) (see
[FK2] for details). If for all k& we have Ay > 0 a.e., H is said to be non-negative
definite.

As mentioned earlier, there are two components to primitive extensions; rigid-
ity, which is exemplified in the phenomenon of almost periodicity, and mizing, which
we now address.

Definition 3.5 Suppose that F() is an IP-ring, (Y,B,v,Q) is a factor of
(Z,C,~,9Q), and S € PE(1). S is said to be mizing on Z relative to Y along F1)
if for every H € L?(Z xy Z,C ®5 C,#7) satisfying E(H|Y") = 0 we have

IP-lim S(a)H =0
acF@)
weakly. A set A = {S1,S52,---,St} C PE(1) will be said to be a mizing set on Z

relative to Y along F) if S; and SiS; ! are mixing on Z relative to Y along F),
1<i#j<t

Finally we are in a position to define primitive extensions. We point out that
our approach to this matter is somewhat different from that in [FK2]. There, the
density of almost periodic functions is taken as part of the definition of primitive
extension and the bulk of the work is showing that a particular class of extensions
(namely, those arising in a prescribed manner) have this property. We, on the other
hand, start by defining an extension to be primitive if it arises in this (suitably al-
tered because of polynomiality, of course) manner, and prove the density of almost
periodic functions (for this prescribed class) as Theorem 3.11. The effect is that
the task of showing that primitive extensions exist (Theorem 3.15) is correspond-
ingly simplified. The difference between these two approaches, we remark, is more
ornamental than fundamental.

Definition 3.6 Suppose that (Y,B,v,Q) is a factor of (W, D,£,Q), d € N,
G < PEq4(1) is a subgroup, F (1) is an IP-ring, and there exists a non-trivial
self-adjoint non-negative definite %—kernel H such that for all T € G we have
IP-lim T(a)H = H.
acF1)
Suppose an Q-invariant o-algebra C C W is complete with regard to & and is

contained in the least Q-invariant o-algebra containing B with respect to which the
functions

{H+¢: ¢ eL*(W,D,6)}

are measurable. In this case, the factor determined by C, say (Z,C,~, ), is said to
be a compact extension of Y with respect to G along FV). Suppose in addition that
T is mixing on Z relative to Y along F(!) for all T € (PE<4(1) \ G). In this case
(Z,C,~,Q) is said to be a primitive extension of Y along FO with compact part G.

Notice that the definition does depend in a critical way on d, so that it would be
perhaps more precise to say “d-primitive extension”. However, in Section 5, where
these notions are applied, d will be fixed and there won’t be cause for confusion.
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Remarks 3.7
(i) If H (the H of Definition 3.6, that is) is given by

H(wy,ws) Z)\k )i (w1) pr (w2),
then for w; in the fiber over y we have:

1 gi(w) = [ (2 Ae() w0 02)) ), (05) = 2505 00)

where {£, : w € W} represents the disintegration of £ over the factor V. It
follows that the functions ¢; must be Z-measurable. In particular, H is a %—kernel.
Moreover, if ¢ € L2(W,D,§) and ¢' = E(4|Z) then (¢, dr)w = (¢', dk)w a.e., sO
that

H % ¢(wn) / (Z)\k Vr (wr ¢k(w2))¢(w2) déy, (w2)
= Z)\k ¢k wl ¢ ¢k>w1
_Z/\k ¢k 11)1 ¢7¢k)w1 =H*¢'(w1).

Hence C must be contained in the least {}-invariant o-algebra containing B with
respect to which H * ¢ is measurable for all ¢ € L?(Z,C,v). But {H*¢ : ¢ €
L?(Z,C,v)} is an algebra. Hence

L*(Z,C.y)={H*¢: ¢ € L*(Z,C,7)}. (3.1)

(ii) We now follow the construction of Definition 3.6 with W = Z xy Z. Con-
sider the ZX¥Z.kernel H' € L?((Z xy Z) xy (Z xv Z)) given by

H’(Zl,22,23,24 Z)‘k ¢k Zl)¢[(22)¢k(23)¢l(24)

Then

IP-lim T(a)H' = H'
acF1)

for all T € G. Furthermore,
{H'x¢: ¢ €L*(Z xvy Z)}

is dense in L2(Z xy Z,C ®5C,#), so that Z xy Z is a compact extension of ¥ with
respect to G along F(1),

(iii) If T € PE(1) is mixing on Z relative to Y along F) then for any H;, H, €
L?(Z xy Z), with either E(H,|Y") =0 or E(H,|Y") = 0, the function

H(Zl,Z2,23,Z4) = Hl(Zl,Zz)HQ(Z3,Z4) S L2((Z Xy Z) Xy (Z Xy Z))

satisfies

IP-lim T(a)H =0
aeF 1)
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weakly. As linear combinations of such functions H are dense in
{HeL?((Z xy Z) xy (Z xy Z)) : E(H|Y) =0},

T is mixing on Z xy Z relative to Y along F1).

In light of Remarks 3.7, we have the following.

Proposition 3.8 If (Z,C,v,) is a primitive extension of (Y, B,v,) along
FU with compact part G, then (Z xy Z,C ®5C, 7, ) is also a primitive extension
of (Y,B,v,Q) along F) with compact part G.

We now turn our attention to showing (Theorem 3.11) that if (Z,C,v,Q) is a
compact extension of (Y, B, v, Q) relative to G along F(!) then for some refinement
(i.e. subring) F® c FO, AP(Z,Y,G,F®) is dense in L*(Z,C,~). The following
proposition is the key.

Proposition 3.9 Let (Z,C,v,Q) be an extension of (Y,B,v,Q). If d € N,
G < PE4(1) is a subgroup, F(!) is an IP-ring and there exists a ¥ -kernel H such
that for all ' € G we have

IP-lim T(a)H = H,
aeF )

then there exists a refinement ) c F( such that for all T(ay, --,a,) €
PE(G,F®) and all € > 0 there exists ag € F? far enough out that whenever
(a1, am) € (FP)? with ag < a; we have

||T(a1,---,am)H—H|| < €.
Proof. By Theorem 2.14, we may choose a refinement 7 ¢ F(1) with the

property that for every polynomial expression T(ay,---,a,) € PE(m), we have
existence of the limit

(al)m,Iaw:)liEI%lf(l))? ||T(Oél, e Oém)H - H| |

We need only show that, for arbitrary T(as, - - -, am) € PE(G, F®) (which we now
fix), this limit is zero. To do this, it suffices to find, for arbitrary ¢ > 0 and an
arbitrary refinement F® c F®) (both of which we now fix), some (ay,---,an) €
(F®)7 with

||T (0, -, am)H — H|| <.

Recall that we have
T(oq, -, 0m) = S(a1)S@) (ay) - -- Sl am=1) (g ),
where S € G, and where for some ag € F®) we have, for any fixed
(a1, 0m_1) € (}-(3))7271

with a7 > Qp,
{S(al), ceey S(ala"'yam—l)} C G_
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As S € G, we may fix a1 > ag with
€
|[S(ar)H — H|| < —.
m
As now S(@) ¢ G, we may fix as € F®) with ay > ay such that
|5 (an) H — H|| < =.
m
As S(e1:22) € G we may fix as, etc. Finally, we have oy, € F®), a, > a1, with
||Sterem—) () H — H|| < =,
m

Now we have

||T(as, -, am)H — H||

=[S(e1)S (@) - - - Sler@m=1) () H — H|

< |[S(e1) S (az) - - S =) () H = §3) (ag) - -- St m=1) () H |
+ ||5(a1)(a2) L Glenem—) (g YV H — §(01:02) () .. .g(al’---,am—l)(am)H”
+ oo ||Slerem =) (g, ) H — HI|

=|[S(a)H - H|| + ||S®)(e2)H — H|| + -+ + |[Sler =1 (ap)H — H|| < €.

O

The content of the following lemma is more or less a relativized extension of the
fact that the range over a bounded set in a Hilbert space of the operator induced
by a bounded kernel is pre-compact. It is needed for Theorem 3.11.

Lemma 3.10 Suppose that (Z,C,v,) is an extension of (Y,B,v,Q), H is a
%—kernel, and e > 0. There exist functions gi,---,g; € L*(Z,C,7) and a set D € B
with v(D) < € having the property that for every f € L>®(Z,C,~) with ||f| |00 <1
and every y € D°, ||H*f—gj||y < € for some j, 1< j <.

Proof. We may assume without loss of generality that ||H||_ < 1. Let
B, = {f €IX(Z.C) ¢ 1]l < 1.

Let (h;)®2, be a sequence of functions dense in L?(Z,C,7) (therefore dense in
L*(Z,C,,) for a.e. y € Y). Then (H x h;)®, is dense in H % B, for a.e. y. But
H x By is totally bounded in LZ(Z,C,yy) for a.e. y, so for some [ € N, (H * h;)l_,
is an e-net for H x B, for every y outside of a set D € B with v(D) < e. Put
gi=Hxhy, 1<i<l

O
Here now is the second of three theorems from this section to be used later.

Theorem 3.11 If (Z,C,~,Q) is a compact extension of (Y, B,v, ) with re-
spect to G along FU) then there exists a refinement F* c FM such that
AP(Z)Y,G,F®) is dense in L*(Z,C,~).
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Proof. According to Definition 3.6 and Remark 3.7 (i) there exists a Z-kernel
H with
IP-lim T(a)H = H
acF1)

for all T € G, and

12(Z,C,7) ={H*¢: ¢ € L*(Z,C,7)}.

By Proposition 3.8, we may select a refinement F) ¢ F() having the property
that for every T(aq,---,am) € PE(G, F®) and every € > 0 there exists ag € F®)
such that whenever (a1, ---,am) € (F®)? with a; > ag, we have

||T (a1, --,am)H — H|| < €.

Suppose now that ¢ € L®(Z,C,v). We claim that H = € AP(Z,Y,G,F?).
Having established that, the proof will be complete. We may assume that |[¢||cc =
1.

Let € > 0. By Lemma 3.10 there exist functions g1,---, g, € L*(Z,C,~) and a
set D € B with v(D) < e such that for all f with ||f|| <1 and all y € D° there
exists j = j(f,y) such that

€
||H*f_g-7||y < 5

Suppose now that § > 0 and T'(ay, - - -, am) € PE(G, F®). There exists g € F)
such that whenever (au,---,am,) € (F®)2, a1 > ag, we have

2
||T (a1, -, am)H — H|| < %

This implies that there exist sets E(ay, -, an) € B of measure < § having the
property that

1T (ar, - am)H = HI|, <

for all (g, -+, ;) € (.7(2))7: with a; > ag and y € E(ay, -, amn)C.
Note that T(a1, -+, am)(H *x9) = (T(aa, -, am)H) x (T(ar, -, am)).
Therefore, if y € (DU E(ay, -+ ,am))c then

T (@1, m) (H %) = gjr(ar,—amvm ||,
S||(T(a1; oo Jam)H) * (T(a17 to Jam)w) —Hx (T(al’ o ’am)¢)||

+ ||H *T(ala T 7am)¢ - gj(T(al,---,am)d),y)Hy < % + % = €.

y

It follows that H ¢ € AP(Z,Y,G, F®).
O

Having established the density of almost periodic functions for primitive exten-
sions, we turn to the matter of establishing their existence. The following lemma
illustrates how one may replace an arbitrary kernel by a self-adjoint non-negative
definite one.



A POLYNOMIAL IP SZEMEREDI THEOREM 33

Lemma 3.12 Let (Z,C,~, ) be an extension of (Y, B, v, ). Suppose that 0 #
H € L*(Z xy Z,C ®5C,7) satisfies E(H|Y) = 0. Let d € N and let T € PE<4(1).
If 7 is an IP-ring with the property that

IP-lim T(a)H = H,
aeF 1)

then there exists a non-trivial self-adjoint non-negative definite %—kernel K with

IP-lim T(Oz)K =K.
acF@)

Proof. Truncating the function H(z1, 22) if necessary, we may assume without
loss of generality that H is bounded. Also we may assume that H(z1, 22) is not a
function of zy alone (otherwise, since H is not constant, H is not a function of z;
alone and proceed similarly). In this case,

Bz, 2) = H(z, 20) — / H(t, 25) dvy (t)

is not a function of z alone. Furthermore, for fixed 22,
/ﬁ(zl,zz) dyy(z1) =0,

so that H is a non-trivial %—kernel which satisfies, as is easily checked,

IP-lim T(a)H = H.
acF1)

For z1, 2o in the fiber over y we let

K(z1,20) = | H(z1,t)H(22,t) dy,(t).

K(z1,2) is self-adjoint and K = HH* as an operator, hence it is non-negative
definite. K is a %—kernel, for

[ Kz dyte) = [ [ at) dy (o) diy o)

We claim that

IP-lim T(a)K = K.
acF@)

To see this, note that

/ / / T (@) (2, 1) — H(z )| dy (1) dry (2)dr(y) — 0.

Therefore, for all a sufficiently far out, most y’s (with respect to v) will have the
property that for most 2’s (with respect to 7,,)

||T(a)ﬁ(z=) - I?[(z?)Hj, = / ‘T(a)ﬂ(zat) - E[(zat) ’ d’Yy(t)
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is small, which implies that for most pairs (z1, z2) (with respect to vy, X ,)
T(@)K (z1,20) ~ K (21, )| = [(T(@)H(21,), T(@) Az, ), — (A (1, ), Az, ), |
is small, which is what we need.
O
The next two lemmas demonstrate the impossibility of trivializing a non-

negative definite, self-adjoint kernel by passing to an IP-limit along a compact
polynomial expression.

Lemma 3.13 Suppose that (Z,C,v,{?) is a compact extension of (Y, B, v, ()
with respect to G along F). Suppose that T € G and f € L*(Z,C,~) satisfy

IPlim [ (T(a)f @ T(@))(9©9) &7 =0

for all g € L*(Z,C,~). Then f = 0.

Proof. Let 6 with 0 < § < 1 be small enough that ||f - h||2 < 26 implies
(£, )| > W Let € > 0 be small enough that €? < § and

/ ||f| |zdu(y) < dfor all E € B with v(E) < e. (3.2)
E

Choose by Theorem 3.11 a refinement F) ¢ F®) such that AP(Z,Y,G,F®) is
dense in L?(Z,C,~). Since f € AP(Z,Y,G,F®) we may by Remark 3.2 (iv) find
g1, .91 € L®(Z,C,v) and ap € F@ such that whenever a > ag we have a set
E(a) € B, v(E(a)) < €, with the property that for all y € E(a)°, there exists
j = j(a,y) with 1 < j <[ such that

||T(a)f — Gj(a,y) | |y <e€ y € E(a). (3.3)

For every o € F®), a > ay, let h, be the function equal to Jj(a,y) On the fiber
over y when y € E(a)¢, and equal to zero on fibers over y € E(a). Each h, is
measurable, and by (3.2) and (3.3) we have

||T(O‘)f _ha||2 = // |T(a)f — ho[|2 dy, dv(y)
— oV FI12 dy D 2
_/E(a) IT()f|], d (y)+/E(a)c IT(0)f = gjtam| [ dv(y)

<6 +€ <26

Therefore we also have ||f - T(a)’lha| |2 < 24, whence

g

>
- 2

(T (@)1, ha) (3.4)

= [(£,7(@)  ha)
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=| [ [ 7(@)sha ar, avty)
/‘/ ) fTa dvy‘dy

/Z‘/ ) f7; dfyy‘du

)

_Z</ a)f ®@T(a )f)(§®g)d:y) 0.

On the other hand,

(T(@),ha)

It follows that || f || = 0, as desired.
O

Lemma 3.14, which is what we really need, is just an elaboration on Lemma
3.13.

Lemma 3.14 Suppose that (Z,C,v,) is a compact extension of (Y, B,v,(2)
with respect to G along FV). If T € G and H is a self-adjoint, non-negative definite
%—kernel satisfying

IP-lim [ (T()H)(g7) dj =0 (35)

for all g € L*(Z,C,~) then H = 0.
Proof. Suppose that H is given by

H(z1,29) Z)\k )i (21) i (22)-
For any j € N we have

[@@mesg &
_Z//\k a)gr ® T(a)r) (9 ©7) d

_Z//\k ‘/ ¢kgd’7y‘ dv(y (3.6)

/ ‘/ Q) gd*yy‘ dv(y
= [ T@0f4) e T@OS T @ 9) .

In light of (3.5) and (3.6) we get that

IP-lim (T(a)(/\j% ¢j) ® T(a)(&%_j)) (9®79) dy =0,
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1
which together with Lemma 3.13, gives A/ ¢; =0 for all j, which implies that

H(z1,2) Z)\k )b (21)r(22) = 0.

O

Finally the groundwork has been laid for establishing the existence of primitive
extensions. Here is the idea: suppose that a system (Y, B, v, Q) is a factor of another
system (X, A, i, Q) and suppose that () is an IP-ring. Suppose d € N and let
G < PE<4(1) be a subgroup maximal with respect to the property that for some
refinement 72 C F) and some non-trivial self-adjoint non-negative definite -
kernel H we have, for all T € G,

IP-lim T(a)H = H.

acF®@)
Let (Z,C,7,Q) be the resulting extension of (Y, B,v,) which is compact with
respect to G along F(?). By Proposition 2.14 there exists a refinement F(3) ¢ F(2)
such that for every B € L*(Z xy Z,C ®5C,7) and every T € PE4(1)

PrB = ﬂf;—}l(rgr)l T(a)B

exists weakly (since PE<4(1) is countable and L?(Z xy Z,C ®g5C,7) is separable).
By Theorem 2.17, the operators {Pr : T € PE<4(1)} are commuting orthogonal
projections.

Let T € (PE<4(1) \ G). We claim that T is mixing on Z relative to Y along
F©). To prove this, we must show that for arbitrary B € L*(Z xy Z,C ®5 C,#)
satisfying E(B|Y) =0,

PTB_IOLPG_}-‘I(EI)I T(a)B =0.

Suppose then that for some such B, PrB # 0. By idempotence of Pr, we have
IO‘P;—jlg(rsr)l T(a)PrB = Pr(PrB) = PrB,

so by Lemma 3.12 there exists a non-trivial, self-adjoint, non-negative definite %—
kernel K with
PrK =1P-lim T(ao)K = K.
aeF®)

Let {S1,---,S5;} be a generating set for G. One easily checks that the property of
being a self-adjoint non-negative definite Z-kernel is preserved under the action of
2 and under passage to weak limits, so

L=Pg, ---Ps. K

J

is a self-adjoint, non-negative definite %—kernel. Meanwhile by Lemma 3.14 L is
non-trivial, and for every S in the group generated by {T,S1,---,S;}, PsL = L.
This contradicts the maximality of G. We have thus proved (writing F(?) for F(3))
the following theorem (which is the third of three theorems from this section to be
used in Section 5).

Theorem 3.15 Let d € N. If (Y, B, v, Q) is a proper factor of (X, A, u, Q) and
FM) is any IP-ring then there exist a factor (Z,C,~,Q) of (X, A, u,Q), a subgroup
G < PE<4(1), and a refinement 7 c FU such that (Z,C,v,Q) is a primitive
extension of (Y, B, v, Q) along F(? with compact part G.



CHAPTER 4

RELATIVE POLYNOMIAL MIXING

We now will treat the role of mixing in primitive extensions. The theorem we
are at the moment aiming for is Theorem 4.10. A brief sketch of our plan is as
follows: in Proposition 4.1 we give the most fundamental consequence of relative
mixing, and Proposition 4.2 is a natural extension of this. After a few examples
serving to illustrate the inductive setup we will use in the proof of Theorem 4.10,
we introduce a notion which generalizes that of polynomial expression and prove
a couple of lemmas (Lemma 4.8 and Lemma 4.9) centered around this notion. A
large part of these efforts are undertaken in order to manage the algebraical nature
of our present dealings, namely with regard to a primitive extension whose compact
part is a subgroup G of PE<4(1). Finally we prove Theorem 4.10 and its corollary,
Theorem 4.12, which is what we will need for our proof of Theorem 1.3.

Proposition 4.1 If 7() is an IP-ring, (Y,B,v,9Q) is a factor of (Z,C,, ),
and T € PE<,(1) is mixing on Z relative to Y along F(), then if f,g € L*(Z,C,~)
with either E(f|Y) =0 or E(g|Y) = 0, then

IP-lim [|E(T(8)glY)]| =o0.

Proof. We use the fact that T is mixing on Z xy Z relative to Y along F!)
(see Remark 3.7 (iii)). We have

Pl [|BUTE)9Y)|[

=ieam [ | [1@)g [ a

BeFM

— IP-lim / (F e HTB) g ®7) &5

BeF1)

=Pl / E(f @ JIY)T(8)E(g ®3|Y) dv = 0.

O

Proposition 4.1 shows that if T is a relatively mixing polynomial expression
then T'(8)g approaches fiberwise orthogonality with any f. What we will need is
the somewhat stronger fact that T'(8)g actually approaches fiberwise orthogonality
with the whole “compact orbit” of f. This is the content of Proposition 4.2.

Proposition 4.2 If (Z,C,~,Q) is a primitive extension of (Y,B,v,{2) along
F) with compact part G, T € (PE<4(1)\ G), U®) € G for all B € FM, and

37
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f,9 € L®(Z,C,~) with either E(f|Y) = 0 or E(g|Y) = 0, then for some IP-ring
F@ c F),
IP-li HE (8) H o
(ﬁ,oz)e(lfrg)p< U P()f T(B)glY) 0

Proof. Fix f,g € L*(Z,C,~). Using Theorems 2.16 and 3.11, let 72 ¢ F1)
be a subring with the property that

[BE@®@@f TE)9Y)||

IP-lim
(B,2)e(FPNZ

exists and such that AP(Z,Y,G,F®) is dense in L*(Z,C,7). Let € > 0 and
ag € F? be arbitrary. We will find (8,a) € (F®)2 with 8 > ap such that
||E(UP () f T(B)g|Y)|| < e. This will suffice for the proof.

Let § > 0 be so small that

(l]l%, + 4115 gl 1)+ < e

By Remark 3.2 (iv), there exist functions g1, ---,g; € L*(Z,C,~) and an F-sequence
(ag)gere C F® such that for every o, 3 € F with a > ag there exists a set
E = E(a,8) € B with v(E) < ¢ having the property that for each y € E° one has
a number j = j(a, 8,y), 1 < j <1, such that

||U(ﬂ)(a)f —gj||y < 4.

Moreover, if E(f|Y) = 0 a.e. the g; may be chosen with E(g;|Y) = 0 a.e. (One
simply replaces g; by g; — E(g;|Y) and checks that the distance between g; and
U f cannot thereby increase in L?(Z,,) for a.e. y.)

Having made this observation, it is now the case that either E(g|Y) = 0 or
E(g;]Y) = 0 for i = 1,---,1. By Proposition 4.1, there exists fo € F?) with
Bo > o and having the property that for all 8 € F? with 8 > B, we have

! 1
(S lEGTEm|[)” <
j=1
Letting 8 > fp and a > ag,

[B@®@)f TB)IY)|

<||B(@O@1 = 9560 T@9IY) || +|[E 16080 TB)91Y)|

:(/ ‘ /(U(ﬁ) (@)f = 9i(a,8,0)T(B)g d%r du(y)>

' </ ‘ /gj("’ﬁ’y)T(ﬁ)g d“ry‘2 dV(y)> %

1

<([ 101 = syann ] ll 2 dvts) )
+ (/;‘/Qﬂ(ﬂ)g d’)’yr dV(y))%

1 ! 1
<(#llolze + 811715 ol )" + (X 1B@r @) ) < e
j=1

1
2
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O

We now introduce the inductive scheme we will be using to establish relative
mixing properties, which we call PET-induction (for polynomial exhaustion tech-
nigque). A version of such an inductive technique seems to be unavoidable when one
deals with multiple recurrence along polynomials. (See, for example, [B1], [BL1],
[BL2], [BM].)

Let d € N. For non-trivial

LN CO N ()
T(a) = [[ 77" € PE<4(1), (4.1)

i=1

we define the weight w(T) of T to be the pair (a,b), where 0 # b = degp, and p; =0
ifa < i < r (mneumonic device: “(last T, last degree)”). We write (ay,b1) > (a2, b2)
if ay > ag or if a; = ay, by > by. In the following examples we are using the symbol
z; in place of ng), 1<i<k.

Example 4.3 TI“““T;"’zg has weight (2,3), and T;éT;“”““ has weight
(5,2) > (2,3).

If T is given by (4.1) and

)

L n)
S(a) = [[78=""") € PE<4(1)
i=1

is another non-trivial polynomial expression, we write T' ~ S if T' and S have the
same weight (a,b), and if furthermore the polynomials p, and ¢, coincide in their
bth-degree terms. ~ is an equivalence relation.

Example 4.4 T3 TP 720054200 | poopaizataitTay ) poeatTes

Suppose now that A = {Si,---,S;} C PE<4(1). For each weight (a,b), 1 <
a <r,1<b<d,let mgy be the number of equivalence classes (under ~) represented
by elements in S of weight (a,b). The r X d matrix (m,;) will be called the weight
matriz of A.

Example 4.5 Let d = 4 and suppose for the moment that » = 5. The weight
matrix of the family

2 4 2 2
T1T2T2T3 mTomdrs+2T1T2 T1T1AT1T2+HT3+H221 z3®122+T3+7T2 zixe+TTo
{Tl T2 ) T2 T5 ’ Tl T2 T3 ’ T2 T3 ’ T3 }

is

OO oo o
o N OO
S oo ~=O
OO oo o

The 2 appearing in the (3, 2) position of the above matrix comes from the last
three polynomial expressions, which are all of weight (3,2) and which fall into 2
equivalence classes (see Example 4.4 above).

If a finite family A C PE<4(1) has weight matrix (mq,) and another finite
family B C PE<4(1) has weight matrix (n4s), then we will write A < B, and say
that A precedes B, if there exists a weight (i, j) such that m;; < n;; and map = ngsp
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whenever (a,b) > (i,7). < is a partial order on the collection of finite families in
PE<4(1) which arises from a well-ordering on the set of weight matrices. Therefore,
in order to show that some assertion W(A) holds for all finite sets of polynomial
expressions A, it is sufficient to show first that W(A) holds for any A with the
minimal weight matrix

N (4.2)

and then that W(A) holds provided W(B) holds for every B preceding A. After
some brief preliminaries, we will use this method to prove Theorem 4.10.

Definition 4.6 Suppose F( is an IP-ring, t € N, {p;(21,---,zx) : 1 <i < t}
is a set of polynomials in Z[zy,---,zx] and {y1,---,y:} is a basis for a group T
which is isomorphic to Zt. A map F() — T,

¢
S(ﬁ) = Zpi(nél)a e 7nék))yi7
i=1
will be called a polynomial form of rank 1 on I'. Suppose that m € N, and

{pi((“’g'b)hgbgk, 15j5m) :1<i<t}

is a set of polynomials in the k x m-matrix of variables (mgb))lgbgk,lgjgm- A map
(FO)™ 5 72,

t
b
G(Breibm) = Zpi((n'(@c))lgbgk, 1<c<m)Yis
i=1
will be called a polynomial form of rank m on I'. In either case, if the polynomials
p; have zero constant term, the map will be called an integral polynomial form.
(n) . ()

Note that the “polynomial expressions” T'(a) = []i_, T7 i(na’me?) may them-
selves be seen as polynomial forms on Z". One reason for making a distinction be-
tween the two notions is the different role we have in mind for “polynomial forms”
(which will always for us have range in PE<4(1), in contrast to polynomial expres-
sions, which have range lying in Q).

Remarks 4.7

(i) Any polynomial form expressed in terms of one basis {y1,---,y;} may be
expressed in the same manner as above in terms of any other basis (with different
polynomials). Since PE<4(1) is isomorphic to Z! (for some t), we may speak of
polynomial forms of rank m on PE<4(1), or on a subgroup G < PE<4(1). It is easily
seen that any such polynomial form S(%1>#m) must be of the form $F1fm) (q) =
T(B1,---,Pm,a), where T' € PE(m + 1). Conversely, if T € PE<4(m + 1) and we
define SBvBm) (@) = T(B1,-- -, fm, ) then SP1-Bm) will be a polynomial form
on PEgd(]-)

(ii) Tf S(B1-B4) is an integral polynomial form on T’ and H is a subgroup of
T of finite index, [I' : H] < oo, and F () is any IP-ring, then restricted to some
suitable refinement F(? ¢ F(U) §(1.-8:) ig an integral polynomial form on H.
(This is another consequence of Theorem 2.13.)
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We will now take the opportunity to discuss the polynomial exhaustion tech-
nique in a bit more detail. The most fundamental use of the technique (see [B2])
involves a single polynomial p(n) € Z[n] and the simple observation that if r € Z
is fixed then, letting ¢(n) = p(n + r) — p(n), one has degg < degp. If it is
more convenient to work with integral polynomials, i.e. p(0) = 0, then letting
g(n) = p(n+r) — p(n) — p(r) we have degq < degp and ¢(0 ) = 0 For example, if
p(n) =n®*+n?andr =1then g(n) = (n+1)*+(n+1)? —n®—n? -2 =3n%+n.

To extend this idea, suppose p(n1,---,ng) € Z[ny,---,ng] with p(0,---,0) =0
and let (ry,---,7) € Z*. If we put

q(nla"'ank) :p(nl + 7N +’f’k) _p(nla"'7nk) —p('f'l,"',’f'k),

then ¢(0,---,0) = 0 and degq < degp. (To prove this, consider that it suffices to
show it for monomials p(ni,---,ng) = ni* ---ny*, which is easy.)
r pi(nl) ... n(*))

Letd € Nandlet S(a) =], T, = * /7 € PE<4(1). For fixed § € F, set
SB) (@) = S(aUB)S(a)~1S(B)~L. (Recalling equation (2.6) of Definition 2.5, this is
equivalent to saying that S (a) = $®®(a, 8).) Then S is a polynomial form on

g7 (n ) B () (k)
PE,(1). Moreover, S¥)(a) = [[I_, T} * 7, where ¢;”’' (ng’,---,na’) =
p,(n&l) +n(1) - ,ngk) +n(k)) pl(n((ll), ,n(k)) pl(ng), ,n(ﬁk)) By our earlier
observations, namely that deg q(ﬂ) < degpi, 1 < i <7, we have w(S®) < w(9).
This decrease in weight lies at the heart of our inductive procedure.

Lemma 4.8 Suppose t € N and G < Z! is a subgroup. Then there exists a
subgroup J < Z! such that JNG = {e} and [Z! : G ® J] < o0.

Proof. Among all groups H < Z! satisfying H NG = {e}, let J be chosen so
that the free portion of the quotient group %‘;J is of minimal dimension. We claim
this dimension is zero. Otherwise, there exists some x € Z! such that for all n € Z,
" € G J. It follows that the group J' generated by J and z satisfies J'/NG = {e}

and the free portion of GEB + has dimension one less than the free portion of G@ 7

a contradiction. Therefore Ge; 5 is a torsion group, and, being finitely generated, is
finite.

O

The conclusion of Lemma 4.8 obviously continues to hold if Z? is replaced by
any finitely generated free abelian group, in particular a subgroup of PE<4(1).

Lemma 4.9 Suppose G < PE<4(1). There exists a subgroup J < PE<4(1)
with GNJ = {I} and [PE<4(1) : G ® J] < 00, such that w(WU) > w(W) for any
UeGand W € J.

Proof. Let w1 < wa < --- < wp be the complete set of weights occuring in
PESd(l). For 1 S ) S b, put

H;, = {T S PESd(]-) : U)(T) < w@'}.

Then Hi < Hy < --- < Hy = PE<d( ) Also put G; = H; NG, so that G; < +-- <
Gy =G.

By Lemma 4.8 there exists a subgroup J; < Hj such that Gy NJ; = {I} and
[Hy : (G1 & J1)] < 0. We have J; NGy = {I} and (G2 ® J1) < Hy. Again by
Lemma 4.8 there exists J, < Hy with JoN (G2 ® J1) = {I} (so that GoN(J1 ® Jo) =
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{I}) and [Hy : (G2 ® J1) ® J2] < co. We now have Gz N (J1 @ J2) = {I} and
(G3 ®J1 D Jz) < Hj. There exists J3 < Hs with J3 N (Gs o J1 P Jz) = {I} and
[Hs : (Gz3dJ1®J2)®J3] < 0o. Continue in this fashion until Jy, Ja, - - -, Jp have been
chosen. Let J =J1 ®Jo ®---@® Jy. Then GNJ = {I} and [PE<4(1) : G® J] < 0.

Suppose now we are given U € G and W € J. Suppose w(W) = w;. Then W ¢
(GoJi®Jo®---®J;_1), from which it follows that WU ¢ (GO J1 ®J2®--- D J;—1).
But WU € (G J1 ® Jo®--- @ J;). Therefore w(WU) > w; = w(W).

O

We are now ready to use our inductive method to prove that “relative mixing
implies polynomial relative mixing of all orders”. We give four versions of the
statement, not out of intrisic interest (only the second is utilized) but because of
the method of proof, which proceeds by a helical string of implications involving
these four formulations along an increasing sequence of orders corresponding to the
weight matrices of the systems under consideration.

Theorem 4.10 Let d € N.

(1) If (Z,C, v, Q) is a primitive extension of (Y, B, v, Q) along F™) with compact
part G7 {fO: f17 B ft} C LOO(Z707’7)7 and {Sla ] St} C PESd(]-) isa miXing set,
then setting So = I, there exists a refinement F ¢ FM) such that

IP-lim (/HS )fidy — /HS E(f:]Y) du) =0.

(2) If (Z,C, v, Q) is a primitive extension of (Y, B, v, Q) along F) with compact
part G, {fo, f1,---, fr} C L>(Z,C,7), and {S1,---,S:} C PE<4(1) is a mixing set,
then setting S = I, there exists a refinement F? c F1) such that

IP-lim HE(ﬁS,-(a)f,-w) HS f,|YH 0.
i=0

acF @)
(3) If (Z,C,~, Q) is a primitive extension of (Y, B, v, Q) along F) with compact
part G, {f9: 0<i<t,0<j<s}CL®ZCn),{UY:0<i<t0<j<

s} C G, and {Si,---,S:} C PE<4(1) is a mixing set, then setting Sy = I, there
exists a refinement 7(® C F(1) such that

t

e |[2( U 5@ ([[vE @s)y) T[S E( [ 2 @5 |y)]| =0

3=0 =0 =0
(4) If (Z,C,~, Q) is a primitive extension of (Y, B, v, Q) along F™') with compact
part G, {fV : 0<i<t,0<j<s}CL®ZC), {UY: 0<i<t,0<5<

s} C G, and {S1,---,S5;} C PE<4(1) is a mixing set then setting Sg = I, there
exists a refinement F c F(1) such that

wp (f s (I[r9es) o
/ HS H U(J) fz'(j)|Y) dl/) =0
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Proof. The proof is by induction on the weight matrix of the set A =
{S1,---,5t} C PE<4(1) using the ordering established earlier in this section. Hav-
ing established a particular case for a certain weight matrix, validity of that case
will be assumed for mixing families of that particular weight matrix in any primi-
tive extension (Z,C,~,Q) of (Y,B,v,). In particular, for mixing families of that
weight matrix in the product system (Z Xy Z,C ® C,y Xy v,). (This will only be
important in passing from property (1) to property (2).)

First we see that (1) holds when A has minimal weight matrix as given by (4.2).

@ ... pk)
In this case, every polynomial expression in A has the form S(a) = TP« ")
) k)
with degp = 1. Furthermore, given two members of A, say Sy (o) = TP (" me")
M) ... k)
and Sy(a) = T} 2(narenma ), the polynomials p; and p, must agree in their first
degree terms. Since they are integral polynomials (p;(0,---,0) = p2(0,---,0) = 0),
we have p; = po. In other words, A has only one element, which we denote by

(OIS
S(a) =17 (e By employing the identity

foS(a)fi — E(fo|Y)S(a)E(f1]Y)
=(fo— E(fo|Y))S(@)E(f1]Y) + foS(a)(f1 — E(f1]Y)),

we may suppose that either E(fy|Y) = 0 or E(f1|Y) = 0. Under this assumption
it is easy to see that (1) follows from Proposition 4.1, completing the initial case.

Our strategy is now as follows: we first show that (1) holds for all A of a given
weight matrix provided (4) holds for every finite set of polynomial expressions B
preceding A. Then, for a given weight matrix, we proceed to show that (1) — (2) —
(3) = (4) (for A of this weight matrix). When this has been achieved, the proof
will have been completed.

(4) = (1). Welet A = {S1,---,S:} be a mixing set and assume that (4) is
valid for every mixing set which precedes A. Without loss of generality we may
assume that || f,~||Oo <1, 0 <<t Initially, we will also assume that for some i,

0<ip <t, E(fi,|Y) =0. Let F® be a refinement of F) such that

t
IP-lim /Z [ sessan

exists. We must show that this limit is zero. It is sufficient to show that for some

refinement F3) of f(2)7
t

T [l Sie)f=0
1=

weakly. By Proposition 2.18, we can get this by exhibiting a refinement F(3) ¢ F®)
with (again, see Definition 2.5 for the notation ng))

t t
IP-lim Si(@)fi || Si(aup)fi d
(B,0)e(F®)2 /211;11 (a)f. };[1 (aUp)fi dv .

t t
=IP-Ii () f; TT Si(a)s™® (B)F;) dy = 0.
srim [ [T s [T Si@s(a, 8) (S0)F) dy =0
If we write Si(ﬁ) (o) = Sz@) (a, B) then the maps 8 — Slw), 0 <i < t, are integral
polynomial forms on PE<4(1). Furthermore, our earlier observations imply that
for all 8 € F®, one has w(SZ-(B)) <w(S;),1<i<t
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By Lemma 4.9 there exists a subgroup J < PE<4(1) with GNJ = {I} such that
[PE<4(1) : (G®J)] < oo and such that forany U € G and W € J, w(WU) > w(W).
Since [PE<4(1) : (G ® J)] < o0, by Remark 4.7 (ii) we may choose our refinement

FB) < F@ gsuch that along F® all the S§B ) are integral polynomial forms on

G @ J, so that in particular
s® — W(B)yv(ﬁ))

where Ui(ﬂ ) are integral polynomial forms on G and Wiw ) are integral polynomial
forms on J, 0 < i < t. By the properties ascribed to J earlier,

w(Sy) > w(S?) = wWPUD) > wWw®), 1<i<t, feF®.

Since multiplication by a polynomial expression of lesser weight cannot affect the
conjugacy class of S; it follows that S; ~ S,-Wz-(ﬁ), 1<i<t,feFO.
Using Proposition 2.13, we may further require of F) that

wP ¢5,57'q, 1<i<j<tBeF® (4.4)

and

WP W)t ¢ 8;571G, 1<i<j<t feFO. (4.5)
What enables us to do this is Theorem 2.15. For fixed ¢ and j with 1 <i < j <#¢, it
is impossible to choose an IP ring along which Wi(ﬂ ) (or Wi(ﬁ )(Wi(ﬁ ))*1) is always in
S;S;'G. Hence Hindman’s theorem allows us to choose a subring along which they
are never in there. Similarly, we may require of F®) that for all i, 1 < i < ¢, either
Wz-(ﬁ ) = I for all g eF® or Wi(ﬁ ) # I for all 8 € F®). We now permute the indices
{1,---,t} so that the indices ¢ for which I/Vi(ﬂ ) =1 along F©) come first; that is
there exists w with 0 < w < ¢ such that Wi(ﬁ ) = I if and only if 1 < ¢ < w. At the
same time, we will require (for bookkeeping purposes and depending on whether

the minimal weight occurs in the first or second group) that either S; or S, has
minimal weight among the S;’s. By (4.4) and (4.5), for any 8 € F) the set

A(B) = {Sla te aSta Sw+1W’lE)ﬁ21’ o ’StWt(B)}

is a mixing set, and furthermore this set has the same weight matrix as A (since
Si ~ S,-Wz-(ﬂ), w+1<i<t). Assuming the limits exist, as Theorem 2.16 allows us
to do (since there are countably many expression involved), we may rewrite (4.3)
as

IP-lim / HS (£: U2 (@) (8:8)F7))

ﬁa)e(f“))2
(4.6)
I S S@w? ) (VP @ (Si8)F)) dv

i=w+1

Recall that either Si or Sy+1 has minimal weight among the S;’s. Hence there are
two cases to consider. We will confine ourselves to the case that S; has the minimal
weight. (The other case is similar and even a bit easier, hence we shall omit it.)
For any 8 € F®), the set

STTA® = (8,871, ST Suwst WL ST, S P 81
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is a mixing set which precedes A®) and hence precedes A. The reason for this
is that Sy is of minimal weight, and multiplying throughout by S; 1 will decrease
the weight of every expression which is equivalent to S;, while failing to change
the weight of the other expressions, or for that matter the conjugacy of any two
other expressions. Hence the resulting family has one less conjugacy class at the Sy
weight and the same number at greater weights as the origial family. (This is the
only point in the proof of Theorem 4.10 in which we create a family of lesser weight
matrix from an existing family and is the core of the inductive technique.)

By hypothesis, (4) holds for the family S;*A®¥). Utilizing this fact, and notic-
ing that in the limit below a — oo for each fixed f, (4.6) may be written as

(ﬁ,(]%)e_(l;f%y / (fl U1 () ( ) HS Sy (fz U?(a )(S,(ﬂ)ﬁ))

I sisr swis; @) (U@ (Si(OF)) ¢

i=w+1

—IP-liny / B(f U0 (@) (ST IY)H551 VE(1: U (@) (SiBF)Y)

(B,0)E(F®)2

I 88 @EGY) S0, @B (U @ (SETIY) d

i=w+1

Recall that E(f;,|Y) =0. If w+ 1 < iy < ¢, the above limit is zero (consider that
for fixed 8 the expression tends to zero as a — oo) and we are done. Otherwise,
since we are assuming that || f,|| <1, 0<i<t, the limit is still not greater than

s ety (| @@ @R

S [B(OD) Vs s0@Taly) | =0

(We have used Proposition 4.2.) We are done in the case where E(f;,|Y) = 0 for
some i9. We reduce the general case to this special case by employing the identity

Ha,—Hb = (ao — bo) Hb + ag al—bl)H (Ha,) a; —b) (4.7)

under the integral, with a; = S;(a)f; and b; = S;(@)E(f;|Y), 0 <i <.

(1) — (2) As in the previous case, we may assume without loss of generality
that for some 4o, E(f;,|Y) = 0. Recall that we are assuming the validity of (1) for
every family in every primitive extension having the same weight matrix as A. In
particular, we may assume that (1) holds for the family A = {T : T € A}, which is
mixing on Z xy Z relative to Y along F(!) and has the same weight matrix as A.
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Thus:

1P-lim ||B( HS VY[

acF(2)

~eum [ |/ gsi(a)fidwy\ dv(y)
t ~ J—
= IP-lim / ITsie)(s: 7 ¢

= IP-lim /H Si()E(f; ® filY) dv

aeF 3

= IP-lim /HS E(f)|Y)E(fi|Y) dv = 0.

acF(2)
(2)—(3) We may assume without loss of generality that ||fi(j) | |Oo <1,0<i<t,

0 < j < s. By Theorem 3.11 there exists a refinement F® c F) such that
AP(Z,Y,G,F®) is dense in L2(Z,C,~). We may further require of F(* that

e [[P(I] s (109 @) - I si@s( T @s21r)|
=0 j=0 i=0 =0

exist. We will show that this limit is zero by showing that for any § > 0 we have

(s o) - [T scm(Lo s )| <

for all « far enough out. Let § > 0 be arbitrary and let % > € > 0. By Remark 3.2
(iv), there exist functions gq,---,g; € L*(Z,C,v) (we may assume that ||g;||coc < 1,
1<i<l)and ag € }'(2) such that for each a € F), o > ay, there exists E(a) € B
with v(E(a)) < 77 having the property that for 0 < ¢ < ¢, 0 < j < s, and
y € E(a)°, there exists v = v(4,j,a,y) with 1 <wv <1 such that

€

Doy @ H —
‘ () f; u(i,j,ay) y< (s+1)(t+1)"

Suppose that a;, b; € L*(Z,C,~,), 0 < j < s. Then
|TLes - ITn
7=0 =0 Y
ZH(ao—bo)bl---bl—f—ao(al—bl)bz--'bl+"-+aoa1 “Qg— 1( b)

; 8
< b ( . . )
;H% ill, S {fasll s |1ei]] L}

Employment of this inequality with a; = Ui(j) fi(j) and b = gy(ijay), 0 < J <s
gives us

‘ Y

B . . B € ] .
TIve 5o - Hgv(i,j’a,y)Hy <og 0<i<t a>ag yeB). (48)
L] b
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Let hq,---,hny be an enumeration of all products of the form Hj’:o gn;, where
1<n; £,0<L 5 < s '_[’henofcourse||hi||OQ <1,1<i< N. Let u:
{0,1,---,t} x {a € F® :a > ag} x E(a)® = {1,---, N} be defined by

u(z a,y) — H 9(v(i4,0,y))" (49)
Then .
HHS HUm wq_n&@mmege
=0 Y

whenever a > o and

y ¢ D(a) = | Si() ' E(a).

i=0
Note that v(D(a)) < e. Thus,
t t
H I1 5 (H U9 (a f(’)) — I Si(@hugiam) H <2< g (4.10)
i=0 =0

On the other hand, by (4.8) and (4.9) we have

‘E( f[ Ui(j)fz'(j) |Y) (y) - E(hu(i,a,y) |Y) (ZI)‘ < 7 j_ 1
7=0

for a > ag, y € E(a)® and 0 < i < t. Again using identity (4.7) and recalling that
v(E(a)) < g, we have

t
; )
HHS Um ﬁpW)—H$WWWW@MWH<%<gaa>%-
J 0 i=0
(4.11)
However, since (2) is valid for the family {S1,---,S;}, and (h;), is a finite set, we
have

meHﬁ&@mww—ﬁ&@ﬂ%mmnW
=0

a€F©2)
=0

¢ t 2
=12y || TL5@hson = I 5@ s o

<y [3 | Isiom - ITs@eom||

j=1 =0
“mm 3| Tsn - Ts@swm| o

Hence, for a far enough out,

H f[ Si(0) hui.onyy — ﬁ () Ehy(iap|Y) ‘ ‘2 < g
i=0 i=0
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Combining this with inequalities (4.10) and (4.11) gives, as required,

t

HE(f[si(a)( [V @19) v) - [I () 5( [V @) v)|| <
=0 j=0

i=0 3=0

(3) = (4) Obvious. Strong convergence implies weak convergence.
O

Theorem 4.10, which deals with a mixing set in PE(1), is not quite what we
need for the proof of Theorem 1.3, in which the polynomial expressions come from
PE(m). This fact motivates the following definition and Theorem 4.12 to come.

Definition 4.11 Suppose that (Z,C,~,?) is a primitive extension of (Y, B, v, 2)
along F) with compact part G and suppose we are given a non-identity polynomial
expression

S(Oq, sy, Oém) € PESd(m)

Write, in the standard way,
S(ayg, -, am) = W(a) W) ()W) (qg) ... (e mam=1) (g ),

where W € PE<,4(1) and W(@1) ... W(atwem-1) are integral polynomial forms on
PE<,(1). We will say that S(ay, -, an) is mizing on Z relative to Y along FO) if
there exists ag € F(!) with the property that whenever (aq,- -, @m,_1) € (FM)2™1
with aq > ap it is the case that W, W) ... W(atam-1) are all either the
identity element of PE<4(1) or are mixing on Z relative to ¥ along F().

A family of polynomial expressions

{Sl, .. ',St} C PESd(m)

will be called a mixing set on Z relative to Y along F(1) if S; and Sz-Sj_l are mixing
on Z relative to Y along F™) 1 <i#j<t.

Theorem 4.12 Suppose that (Z,C, v, () is a primitive extension of (Y, B, v, 2)
along F(U) with compact part G and that {S;,---,S;} C PE<;(m) is mixing on Z
relative to Y along F). Let Sy = I. If f; € L®(Z,C,v), 0 < i < t, there exists a
refinement ) ¢ F() with the property that

IP-lim
(a1,---,am)6(}‘(2))’<"

t t
E(HSi(al,---,am)fi|Y) - HSi(al,---,am)E(fi|Y)H =0.
i=0 i=0

Proof. We use induction on m. The case m = 1 is just Theorem 4.10 (2).
Assume that the statement is true when m is replaced by m — 1. Without loss of
generality we will again suppose that ||f,| |Oo <1,0<i<tandthat E(f;)|[Y)=0
for some ig. We will show that for every § > 0 and every refinement F® c F()
there exists (a1, -+, ) € (F®)? satisfying

t
“E(i];[()si(al,---,am)fi|1f)H <. (4.12)
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This will be sufficient by Theorem 2.14. Suppose then that 3 ¢ F( is an
arbitrary refinement. Write

Si(an, -+ 0m) = Wilan) W (az) W (ag) - W01 (a,).
Consider the set of polynomial forms
W = {Wlemem=1) ] < < ¢}

As the polynomial forms Wi(al""’a’"‘l) need not be distinct, ¥ may have less
than ¢ elements. Reindexing if necessary we will assume that the distinct ones
are represented in indices 1,---,b. There exists ag € F* such that whenever
(a1, 1) € (FP)2~! the members of W, evaluated at (ay,- -+, 1), form
a mixing set in PE<4(1). Furthermore, for each j, 1 < j <b, the set

Aj={S(a1, -, am 1) = Wi(al)Wi(Oél)(az)Wi(alyaQ)(ag) .
Wi(al’“.’am_2)(am_1) . 1 S l S t, Wi(al,...’am_l) — Wj(ahn.’am_l)}

is mixing on Z relative to Y along F() in accordance with Definition 4.11. Notice
that

b
{S1,--, 81} = {S(ar, -, am- )W (e : S € 4y},
j=1
Reindex the f;’s in the manner suggested by the previous display (namely reindex

fi as fs,; where S € A; and S;(a1, -+, am) = S(a, - -,am_l)W]-(al""’a”‘l)(am)).
We can rewrite (4.12) as

b

BT em) (T St wsam)fss)[¥)|| <6

j=1 SEA;

Recall that E(f;,|Y) = 0 for some 4. Let Sy and jo be the new indices for f;,,
so that E(fs,,j,|Y) = 0. By the induction hypothesis and the fact that A;, C

PE.4(m — 1) is a mixing set, there exists (a1, -,y 1) € (F®)?~! such that
)
HE( H S’(al, e ;am—l)fs,jo |Y) H < 5
Sed;q

Since we are assuming that all of our functions are bounded by 1, this gives

H f[W].(al""’a’"‘l)(am)E( I S(al,-",am—l)fs,j|Y)H < g (4.13)
j=t :

J
for all oy, € F® satisfying am > 1.
On the other hand, for this fixed choice of (a1, -,am—1), by Theorem 4.10

(2) and the fact that {W %=1 ... Wb(al""’am‘l)} is a mixing set there exists
some a,, € F® with a,, > a,,_1 such that

(T e I Ston 073
. o (4.14)

_ ﬁWj(al"“’a’"‘l)(am)E( I1 Stes,+ am-fsalY)]|| < g

j=1 S€eA;
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(4.13) and (4.14) combine to give (4.12), as desired.
(|

We are nearly to the point where we can start directly in with the proof of
Theorem 1.3. The two main tools will be Theorems 4.12 and 2.12. We do have one
more piece of business (of an algebraical nature) to take care of, however, before it
will be possible to use Theorem 2.12. The reader is asked now to recall Definitions
2.3 and 2.11. The content of the following proposition is that in the case of a
primitive extension we may select an IP-ring along which the “partial derivatives”
of polynomial expressions with compactness properties have compactness properties
as well.

Proposition 4.13 Suppose (Z,C,~,) is a primitive extension of (Y, B, v, Q)
along F) with compact part G. Then for some refinement F ¢ F() the pair
(G, F?) is balanced.

Proof. Throughout the course of this proof we will be using equation (2.8):

T(agl) U ag2) U---u a§‘“),a§1) U a§2) U---u aga2), o dDuaP U ualem)
- H T(bl""’b’")(,B?) IB§2) BYH)

B0, B a0l 1<i<m

i

Bél)i 52)’ T )IBébZ)J o Jﬂv(rpaﬂg)a Tt Jﬁr(rlm)m))
(2.8)
According to Lemma 4.9, there exists a subgroup J < PE<4(1) with GNJ = {I}
and with [PE<4(1) : G ® J] < oo. By Theorem 2.16 and Remark 4.7 (ii), we
may select a refinement F(2 ¢ F() with the following property: for every integral
polynomial form S(@1:>@m) on PE<4(1) there exists ag € F such that either

(i) S(@ram) € G for all (ar,- -+, am) € (FP)T with ag < ar,
or
(ii) Steram) € (G@ J) \ G for all (ar, -+, ) € (FP)T with ap < a;.

We must show that for every m € N, every T(ay,---,a,) € PE(G, F®), and
every ai,---,a,; € N we have

Tl em) ¢ PE(G, FP).

The proof of this for general m is not hard, but it is somewhat complicated, at least
notationally. For convenience, we will only show this for m = 1 (to give a very
general flavor) and for m = 3 (all the ideas for the general case are present here).

First, consider the case m = 1. That is, suppose that we have been given
T(a) € G. We must show that T(® ¢ PE(G,F®) for all a € N. We start by
showing that T (a1, as) € PE(G, F®). Writing S(®)(ay) = T® (ay, a), SV
is an integral polynomial form on PE<4(1). Therefore, it satisfies either (i) or (ii).
A moment’s reflection makes it clear that what we are trying to show is in fact that
it satisfies (i), so all we must do is show that it cannot satisfy (ii). Suppose then
that it satisfies (ii). We will arrive at a contradiction.

Recall (see Definition 3.6) that we have a Z-kernel H with the property that

IP-lim ||U(a)H — H|| =0
acF(2)
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for all U € G and

IP-lim U(a)H =0 (4.15)

weakly for all U € (PE<4(1) \ G). In particular,

IP-lim |[U(a)H - H|| = V2||H||, U € (PE<i(1) \ G). (4.16)

Consider the following inequality.

[ () - ]|
:| |T(2)(a1,a2)H - H||
§||T(2)(a1,a2)H —T(oq U ozz)H|| + ||T(a1 Uan)H — H||
=||H — T(c1)T(a2)H|| + ||T (a1 Uaz)H — H||
<||H = T(a2)H|| + ||T(c2) H = T(1)T(a2)H|| + ||T (1 U a2) H — H]|
=||H = T(a2)H|| + ||H — T(a1)H|| + ||T (1 U a2) H — H||.

(4.17)

The right hand side of (4.17) goes to zero as (a1, a2) € (F (2))2< goes to infinity,
hence the left hand side must go to zero as well. But if $(®) ¢ G then (4.15)
implies that

IP-lim ||S*V(a)H - H|| = v2||H||.

acF ()

Hence (4.17) contradicts the assumption that S(®1) ¢ G for all oy far enough out.
Therefore we have established that S(®) € G for all ay far enough out, that is,
T € PE(G,F®).

One goes on to show that T(®) € PE(G, F®)) by considering the inequality

||T(3)(a1,a2,a3)H - H||
§||T(3)(a1,oz2,a3)H —T(ay Uas U ag)HH + ||T(a1 Uas Uaz)H — H||
=||H — T(1)T(a2)T (3)TP (ar, a2) TP (e, 03)T (g, 03) H ||
+ ||T(a1 UaQUa3)H—H||.

The righthand side goes to zero by the previous case. The suggestion is that one
gets T(®) € PE(G, F®) for all a > 3 by induction. This is in fact so, though we
leave out the details and move on to the case m = 3.

Suppose, then, that we are given

T(al,ag,ag) € PE(G,]‘—(Q))

We will show that T(a1-e2,a3) ¢ PE(G,F (2)) for all non-negative integers a1, a and
az. As was the case for m = 1, this is accomplished by induction, but before we
can begin the inductive process we need to establish it separately for all choices of
a; € {0,1},1<i < 3.

Since T(ay, a2, a3) € PE(G, F®), we may write (see Definition 2.3)

T (o, az, a3) = S(a1)S@) (az) S22 (), (4.18)
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where S € G and such that, for some ag € F?, we have §{®) € G and §(*122) € @
whenever (a1, ;) € (F®)2 with ag < a;. On the other hand, we have

T(al, a9, 043) =T(1,0,0) (al)T(O’l’O) (QQ)T(l’l’O) (al, OzQ)T(O’O’l) (a3)

4.19
T(l’o’l)(al,as)T(O’l’l)(O@,a3)T(1’1’1)(a1,a2,a3)_ ( )

(This is a consequence of equation (2.8).) Comparing (4.18) and (4.19), we see that
7100 = S e G.
Again comparing (4.18) and (4.19), we have
S (ag) = TP (ax) T (@, as).

We may write 7119 (a;, a0) = U(®1)(a), where U(®1) is an integral polynomial
form on PE<4(1) which therefore satisfies either (i) or (ii). It follows that U(®1) is
eventually contained in G @ J. (Recall that J is a subgroup of PE<4(1) such that
JNG = {I} and [PE<4(1) : G ® J] < 00.) We therefore have U(®1) = R(e1) |y (1))
where R(@1) and W(e1) are integral polynomial forms with R(®1) € G eventually
and and W(®) € J eventually.

Recall that S(®) € G eventually. For (aq,as) € (F (2))1 far enough out we
have

{R(al)7R(QQ),T(07170)R(a1)W(al)(= Gle1)) p(0.1,0) plaz)pprlez) (= S(az))} caG.

Since G is a group, it follows that W (@) (W)=l ¢ G. But W) (W)=t ¢
J as well, meaning that W) = W) for all (a1,a2) € (.7-"(2))2< far enough
out. Since any (eventually) constant integral polynomial form must be the identity,
W) = [ and TH10(qy, ) = U®) = R(®1) € G for a; € F? far enough out. It
follows that

710 ¢ PE(G, F?). (4.21)

This also tells us that 7010 = g(e1) (U("‘l))_1 € G. In particular,
719 ¢ PE(G, F?). (4.22)
Comparing (4.18) and (4.19) yet again, we have
§ler02)(qg) = TOOD (0 ) TLOD (qr, a3)TOLY (ap, a3) THHY (o, s, a3).
We now employ a strategy very similar to the one we just used. Namely, write

T (ay, a3) = U1 (a5) = Ri™ (03)W{* (a3),
T (az,03) = U™ (as) = ™ (00) W3 (a),
T(l,l,l)(a17a27a3) — U3(a1,a2)(a3) — Rgal,az)(a3)W3(a1,a2)(a3),

where the R’s are integral polynomial forms eventually contained in G and the W’s
are integral polynomial forms eventually contained in J.
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Then, for (a1,---,a4) € (F@)L far enough out we have
() e ) e

Reasoning as before we may conclude that W(e1.22) = Wl(al)WQ(”)Wéal’aQ) = I

But W{*), W) and W{*"***) correspond to the decomposition of the polynomial
form W(a1:22) into the parts of it that depend on a1, on as, and on both, respec-
tively. It is easily seen that these parts must all be the identity if their product is
to be the identity. Hence we must have

Wi = wies) = wiered) = 1.
We now may routinely arrive at
{T(I,O,l),T(O,l,l)’T(Ll,l),T(O,O,l)} C PE(G,}"@)). (4.23)

(4.20-23) establish that T(e12:%) ¢ PE(G,F®) whenever {a1,as,a3} C
{0,1}. The induction may now proceed. First one uses the fact that 7(1:%% € G to
start an inductive process that proves that T(#1:0:0) ¢ PE(G, F®) for all a; € N.
This is exactly like the case m = 1 above. Proceed the same way in the other
two coordinates as well, concluding that T(0:¢2:0) 7(0.0:a3) ¢ PE(G, F®) for all
as,as € N.

The next step is to use the fact that T(M10) e PE(G,F®) to get that
T(@1:020) ¢ PE(G,F®) for all a;,az € N. The induction here is on the sum
a1 + az, again using inequalities (recall the case m = 1 above) involving the kernel
H. Equation (2.8) is crucial here. For example, when a; = 2 and ay = 1 we have
the inequality

72390 2, oyt - |
S| |T(2’1’0) (agl)a a§2) ) Olg)H - T(I’LO) (agl) U Oég2), a2)H| |
[T af? )t - |
:| |H — T(2a070) (a:(ll) , a:(l2))T(1’0’0) (agl))T(l,0,0) (a§2))T(071a0) (az)

T(l’l’o)(agl), az)T(l’l’O)(a?),aQ)HH + ||T(1’1’0) (agl) U a?’, a)H — H||
(4.24)
We are using here the identity

7(1:1,0) (agl) U a?) , Q)
11009, o, 03 709 oY) )79 (D)
T(I,0,0) (ag2))T(07170) (ag)T(l’l’O) (agl), az)T(laLO) (a§2) , a2)‘

which is a case of equation (2.8).
(4.24) allows us to conclude from previous cases that

[T @), o), a3)H — H|| =0,

im
(af",a{? as)e(F@)2

Suppose now that T®19) satisfies (ii). Then for (a{,a{?) € (]—"(2))2< far enough
out, T(2’1’0)(a§1),a§2), -) € G, which mean that

Py (|20l 0f? it — 1] = v ]
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a contradiction. Therefore T(?:1.0) ¢ PE(G, F®).

One proceeds in the same manner with the other pairs of indices, then goes
finally to triples T(21:92:%3) g a5, a3 € N (by induction on a; +as + as). The same
sort of inequalities play a key role the whole way. This completes the proof (or at
least a sketch of a proof) in the case m = 3. As we said, the case of general m is
completely analogous, so we have established that (G, F (2)) is a balanced pair.

O



CHAPTER 5

COMPLETION OF THE PROOF

We are now ready for the final steps in the proof of Theorem 1.3, which we
now restate.

Theorem 1.3 Let k,7,d € N and fix IP-sets (n\))aer, 1 < i < k. Let
PE<4(m) be as in Definition 1.1 and suppose that (X, A, u, ) is a measure pre-
serving system, where (2 is generated by commuting transformations 74, - - -, T,.. For
every A € A with pu(A) > 0 and every m,t € N there exist an IP-ring ™) and a
number a = a(A4,m,t,d) > 0 having the property that for every set of polynomial
expressions {Sy,---,S:} C PE<4(m) we have

t

IP-lim ,u( m Si(aq, - -,am)_lA) > a.

((11,"'7O¢m)€(~7:(1))? ieo

Recall that k,7 € N and the IP-sets (ng))aef, though arbitrary, have been
fixed since Section 2. Our plan is to verify that the conclusion of Theorem 1.3
holds for these fixed quantities and an arbitrary system (X, A, u, Q) for which the
underlying space is separable. Having done this, it will be evident that the conclu-
sion also holds for an arbitrary, possibly non-separable system. This is because the
IP-ring F() in the formulation is allowed to depend on the set A. Therefore, having
chosen A, one may before choosing F(!) replace (X, A, u, Q) by the separable factor
generated by the iterates of A under the transformations of 2.

Fix a Lebesgue (in particular, separable) system (X, A, 1, ), where Q is gener-
ated by commuting measure preserving transformations 77,75, -- -, .. In Remark
5.4 we will show that, having established the result for Lebesgue systems, it follows
for general separable systems. As we have mentioned, the proof of the validity of
the conclusion to Theorem 1.3 for the system (X, A, u, Q) is accomplished by the
method of exhaustion of the o-algebra 4. In particular, we achieve it by passing
the following property through a transfinite sequence of sub-g-algebras of A:

Definition 5.1 Suppose that d € N, B C A is an Q-invariant o-algebra,
and F) is an IP-ring. The pair (B, F1) is said to have the IPPSZ property of
degree d if for every A € B with u(4) > 0 and every ¢t,m € N there exists a
number a = a(4,m,t,d) > 0 having the property that for every set of polynomial
expressions {Sy, -+, S} C PE<4(m) we have

(al,...,(}f)'eh(r}l(l))? N( O Si(az,-- -,am)—lA) > a.
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The reader should convince himself that in order to show that the conclusion
of Theorem 1.3 holds for the system (X,A, u, ), it is sufficient to show that for
some IP-ring G, the pair (A, G) has the IPPSZ property of degree d. This is what
we will show. Note however, that Definition 5.1 is tailored for a separable system
(X, A, i1, Q). We are not claiming that a similar property may be passed through
a non-separable system. (The point here is that in Definition 5.1 the IP-ring does
not depend on A, as it does in Theorem 1.3. Therefore in the non-separable case
there is no way to ensure that all of the IP-limits under consideration even exist.)

The groundwork for the proof that (A,G) has the IPPSZ property for some
IP-ring G has been laid. Let us now fix an IP-ring F") and a number d € N.
In order to use our exhaustion technique, we need the following partial order on
the set of pairs (B, F®), where B C A is an Q-invariant, complete (with respect
to p) sub-o-algebra and F® < FO) is an IP-ring. If By, By are complete, Q-
invariant sub-c-algebras of A, and F®, F®) are refinements of (), we will write
(B1, F?) < (B, F®)) if By C By properly (in the sense that B, # By mod 0) and
if there exists ag € F® such that for each @ € F® with a > ap we have a € F?),
(That is, F®) ¢ F?) asymptotically.)

Proposition 5.2 Among all pairs (B, F?), where F(?) ¢ F( is a refinement
and B C A is a closed Q-invariant o-algebra, having the IPPSZ property of degree
d, there exists a pair which is maximal with respect to the order described above.

Proof. We will use Zorn’s Lemma. Suppose that (B;,G(?) is a totally ordered
chain of pairs having the IPPSZ property of degree d. We may, by separability
of (X, A, ), assume that this chain is countable. (Indeed, it must be.) Let C be
the p-completion of the Q-invariant o-algebra generated by J, B;. Then |J; B; is
an (-invariant algebra which is dense in C. Let F (2) be an IP-ring of the form
F@ = FU({B1,B2,---}), where ; € N;—, G and i < B2 < ---. Notice that
F@) is asymptotically contained in F; for all i € N. Since (X, A, u) is separable,
by passing to a subring if necessary we may assume that

(a1, ,aIm)e(]-'(l))m (ﬂS (ar,--, m)flA)

exists for every A € A and every set {So,---,S;} C PE<q(m). We claim that
(C, F?) has the IPPSZ property of degree d.

Let (Z,C,~,9) be the factor of (X, A, u, ) determined by C. Suppose now
that A € C with v(A) > 0 and ¢,m € N. We can find a fixed number i € N and a
set A; € B; such that

v(4)

8(t+1)

Let B = B; and let (Y, B,v,Q) be the factor of (Z,C,v,Q) determined by B. Let
v = [~y dv(y) be the regular decomposition of y over Y. We have

(AN 4) <

A\ A) = [ 1= () o) < JE

It follows that
1 7(4)
l/<{y€Ai: 1—7y,(A) > 2(t+1)}) <
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Hence there exists a set A} € B with A} C A; and v(A}) > 0 such that for all y € Aj,
’Yy(A) >1- 2(,5}{_1)'
Recall that (B,G(®) has the IPPSZ property of degree d. Let a = a(A},m, t,d)

be as guaranteed by Definition 5.1. We claim that for every set {So,---,S:} C
PE<4(1),

1
(a1, ,aIm)e(f(Z))m (ﬂ S 0‘17 , & ) 1A) > Za'

This will be sufficient for the proof, as we can then put a(A,m,t,d) = ia. Suppose
then to the contrary that for some set {So,---,S:} € PE<4(m) we have

t
IP-1i ) ce 14 —
(al,---,am)el(r;@))’g H(]D()Sj(al, , Q) ) <

Since F?) is asymptotically contained in G, we may pass to a subring F®) c
G N F® such that

u( ﬁ Sj(al,---,am)_lA) < =
j=0

for all (ai,---,am) € (F®)2
On the other hand, by hypothesis we can find some (a1,- -+, an) € (FG)2
(which we now fix) satisfying

V(jfjo Sj(ar, -+ ,am)*lAD > =

For y € ﬂ] _o Sj(an,- -, am) " A}, we have Sj(ay, -+, an)y € A}, 0 < j <t s0
that )
(o, AY>1———, 0<j<t.
’YSJ(ali 7am)y( Z) > 2(t+1)7 0 SJ)s
This is the same as
_ 1 .
’Yy(Sj(Oq,---,am) 1A2)>1_m, 0<j <t

It follows that

t t
’Yy( ﬂ Sj(ala" '7am)71A;) > %7 Y€ ﬂ Sj(ala" '7am)71A;"
j=0 =0

But V(ﬂ] o Sjlar, -+, am) " AL) > 1a, whence

t
fy( ﬂ Sj(al,---,am)*lA) > %a,
=0

a contradiction.
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All that remains in order for the proof of Theorem 1.3 to be completed is to
show that the IPPSZ property passes through primitive extensions, which we do
now.

Theorem 5.3 Suppose that B C A is a complete Q-invariant proper sub-o-
algebra and that F() is an IP-ring such that (B, 7)) has the IPPSZ property of
degree d. Then there exists an -invariant o-algebra C C A, with B C C properly
(B # € mod 0), and a refinement F* ¢ FM) such that (C, F®) has the IPPSZ
property of degree d.

Proof. Let (Y,B,v,Q) be the factor of (X, A, u, ) determined by B. The-
orem 3.15 guarantees that we can find a refinement F*) c FM) a proper exten-
sion (Z,C,v,Q) of (Y,B,v,Q) (which is a factor of (X, A4,u,Q)), and a subgroup
G < PE<4(1) such that (Z,C,v,9) is a primitive extension of (Y,B,v,(2) along
F® with compact part G. By Lemma 3.11 we may further require of F(?) that
AP(Z,Y,G,F®) be dense in L?(Z,C,~). By Theorem 2.14 and the separability of
C we may assume that for all A € C and all finite sets {So,---,S;} C PE<4(m) we
have existence of the limit

¢

. -1
(al,---,(}f)_eh(rarflm)g N(Q)S’(al’ 1 am) A)'

We claim that (C, F(*)) has the IPPSZ property of degree d.

Suppose that ¢, € N and A € C with pu(A) > 0. Fix a number a =
a(A,m,t,d) > 0 which will be determined presently. Let {So,---,S;} C PE<4(m).
(It is not practical for us to write down now what a is. However we will check when
we do write it down that it does not depend on the set {So,---,S:}.)

What we have to show is that

(o1, 70¢Im)€(.7~'(2))m (ﬂs ot PR m)_lA) >a

Suppose that this is not the case. Then by Theorem 2.15 there exists an IP-ring
F®) ¢ F@ such that

t
. .. 71
M(D)S,(al, an) 'A) <a

for every (ay,--+,am) € (.7-"(3))?. We will contradict this by exhibiting a single
m-tuple (ay,---,am,) € (F®)? with

t
v(gsxal,---,am) '4) > q,

whereupon the proof will have been completed. We may assume without loss of
generality (by multiplying throughout by S;') that Sp = I.

As usual, we let J < PE<g4(1) be a subgroup with J NG = {I} and with
[PE<4(1):G® J] < oc0. Fori=0,1,---,t write

Si(ay, -+, am) = Uz’(al)Ui(al)(OQ) Tt Ui(al’m’am_l)(am)a (5.1)
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as in (2.1). Now let Sz(j) € PE<4(1) be the portion of S; that depends only on
aj, 1 < j < m. In other words, Sl(l) = Sg1,0,---,0)7 Sz-@) = SZ-(O’I’O""’O),---, Si(m) =
SZ-(O""’O’I). Finally, we set

S-(al) — U-(al) (S~(2))_1
i i i ’
S(al,ag) — U'(oq,az) (51(3))—1,

(3 2

Sgal,...,am_l) — Ui(al,-..’am_l) (Sz(m))fl‘
This gives us the following alternate decomposition of S;:

Si(an, -y am) = S (@) -+ 8™ (@) 8% (@) - - SV (). (5.2)

K3 K3
The reason we prefer this decomposition to that given in (5.1) is that the poly-
nomial forms appearing in (5.2), namely Si(al), e ,S§a1’“"“m—1), are integral poly-
nomial forms on PE<4(1). Of course Sgl), .-+, 8™ are fixed elements of PE<4(1).
Let W be a set of coset representatives, containing I, for PE<4(1) modulo G.
We may write
SY =ROWY 0<i<t, 1<j<m,

where jo) € G and Wi(j) € W. Since [PE<4(1) : G® J] < 00, according to Remark
4.7 (ii) we may pass to a suitable sub-IP-ring (which we continue to call F(3)) along

which Sgal’m’aj) is an integral polynomial formon G& J,1<i<t, 1< j < m.
By Remark 4.7 (i) we may therefore write
S(ala"'aaj) — Rgala"'vaj)W.(ala"'7a.7‘) 0<i<t 1 <J <m

K 1 ’ — — 7 — ’

7

where Rgal’m’aj) is an integral polynomial form on G and Wi(al""’aj) is an integral
polynomial form on J.
Let

Ri(on, - am) = R (1) - B™ (am) R (ag) - -- RV 2D (q,), 0<i<t.
Obviously R; € PE(G,F®), 0 <i <t. Now let
Wilan, - om) = Wi(l)(al) .. Wi(m)(am)Wi(al)(a2) . Wi(a1,---,am_1)(am)‘

Then
Si(ala"'aam) = Ri(ah"'7am)Wi(al7"'7am)7 0 S i S t.

We claim that there exists some refinement G of F(3) having the property that
if Wi(ai1,---,any) is not the identity then it is mixing on (Z,C,, Q) relative to
(Y,B,v,Q) along G, 1 <14 < t. Indeed, suppose this were not the case. Then by an
application of the Milliken-Taylor theorem to the definition of mixing we would be
able to choose some i, j, and a refinement G C F®) such that Wi(j) Wz-(al""’aj‘l) is
a non-identity polynomial form on G (notice that this polynomial expression when
evaluated at «; is the part of Wi(au,---,an) which depends only on aq,---,q;

but not on ay,---,a;_1 alone). This implies that Wi(al"”’aj‘l) is a non-identity
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polynomial form (remember Wi(j) € W, so if it is in G then it is the identity).
If (a1, aj-1), (Bi, -+, Bj1) € (g)jgl then Wi(al,---,aj—n(Wi(ﬁh---,ﬁjﬂ))ﬂ ca.
On the other hand since Wz.(al""’aj 1) ig a polynomial expression on J, and J is a
group, Wi(alv"'aaj—l) (Wi(ﬁlr",ﬁj—l))*l € J. But GnJ = {I}, so Wi(al,“waj—l) —
Wi(ﬁl""’ﬂj‘l), which since (a1,---,a;-1) and (B1,---,3j_1) are arbitrary elements
of GL ', implies that Wi(al""’aj‘l) is a constant non-identity integral polynomial
form (an impossibility). This contradiction establishes the claim.

Hence we may, by passing if necessary to a subring, assume that F®) has the
property that if W;(aa,---,am) is not the identity then it is mixing on (Z,C,~, Q)
relative to (Y, B,v, Q) along F®), 1 < i < t. A similar argument can be used to show
that we may also assume of F®) that if W;(a1, -+, am)W; (a1, - -, ) ! is not the
identity then it is mixing on (Z,C,, Q) relative to Y along ), 1 <i,j < t. We
may by renumbering (if necessary, and leaving Sy = I) assume that the distinct,
non-identity members of the set {Wy, Wy,---, Wy} are represented in the indices
{1,---,v} (with Wy = I). Then the set {Wy,---,W,} is a mixing set along F(3).

By Lemma 3.3, we may pass to a subset of A (which we continue to call
A) having measure at least half that of the original A and for which f = 14 €
AP(Z,Y,G,F®). There exists a number ¢ = c(u(A)) > 0 and a set B € B with
v(B) > ¢ such that v,(A) > ¢ for all y € B. We now pick a number ¢ satisfying
0<e<gande< 4(,51—+1)\/c“+1.

Since f € AP(Z,Y,G,F®), there exist functions gi,---,g € L*(Z,C,~) and
set D € B with v(D) < € such that for every 6 > 0 and every T'(ai1,---, ) €
PE(G, F®) there exists ap € F© such that for every (ai,---, ) € (FO)T
with a; > ag there is a set

E=FE(a, ,a,) €B

with v(E) < § such that whenever y € (D U E)°, there exists j = j(a1, -+, @m,y)
with 1 < j <1 such that

||T(a1,---,am)f—gj||y <e

Let B' = (BN D®). Then v(B') > &.
By Theorem 2.12, there exist natural numbers N = N(t,d,[) and w = w(t,d, 1),
and sets of polynomial expressions

L={Lio, --,an)};, C PEG,F?)

and
w

M = {M;(eu,---,an)},_, C PE<a(N)

having the property that for any I—cell partition L x M = Ui'=1 C; there exist
numbers a, b and ¢, with 1 < a,b<w and 1 < ¢ <1, and sets

AiC{].,"',N}, 1§Z§ma

with A1 < --- < Ap, such that under the symbolic substitution 8; = |J,c4, on,
1 <1 < m, we have

{(La(ala"'7aN)Ri(/Bla"'a,8m)a
Myfan, -, an) Wi (Br, -+, Bn))  0<isj <t} C Gy
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We may assume that Li(aq,---,an) = Mi(oq,---,an) = 1.
(B, F™M)) has the TPPSZ property of degree d, and v(B') > 0. Let

a1 = a(B',N,w?,d) >0 (5.3)

and let Q = w?I2NV™. We are now finally in a position to make the value of a
explicit:
alcv-{—l

16Q -
One may check that a doesn’t depend on the set {Sp,---,S;}. Indeed, a; depends
on (B',N,w,d), v is at most ¢, @ depends on (w,l,N,m), ¢ depends on A, B’
depends on B and D, N and w depend on (¢,d,l), B, D and [ depend on A. (Thus
reducing a to dependence on (A,m,t,d).) We now pass to a refinement of F(3)
(again we will continue to call it 7)) having the following properties:

(i) (See Definition 3.1.) For every (ai,---,an) € (F®)¥ there exists a set
E = E(o, -, an) € B with v(E) < £ such that whenever y € (D U E) there
exist numbers j; = j;(a1,- -+, an,y) such that

a=a(4,m,t,d) =

[Lion, o) f = gill, <& 1<i<w.

(i) (See Theorem 4.12.) For every (aq,---,am) € (F®))™ we have

Cv+1

E(TIWiter. - am V) =TT Witan, - am) B < &
i=0 =0

ai

1Q

According to (5.3) there exists an N-tuple (ay,---,ay) € (FG)Y (which we
now fix) satisfying

I/(ﬂ ﬂ (Li(al,-.-,aN)Mn(al’...,aN))—lB,) > 4.
Let .
“- (ﬂ N (Li(al""’O‘N)Mn(m,-..,aN))_lB')

\ U (Mj(al, - -,OéN))ilE(al, s ,aN).

Then C € B, and since v(E(ay, -+, an)) < &, v(C) > 4. For every y € C and
every i,n satisfying 1 <i,n <w we have L;(aq,---,an)My(a1,---,an)y € B', so
that in particular there exists a number j = j(i,n,y) with 1 < j <1 such that

||Li(a17 et JaN)f - gj||Mn(a1,"~,aN)y <e

Moreover (recall that Ly = I), My,(aq,---,an)y € (B'\ E(aq,---,ay)). Finally
we note that C C B' C B (since Mj(aq,---,ay) = I as well).

The function j(i,n,y) induces, for every y € C, an [-cell partition L x M =
U;Zl C, by the rule (L;, M,,) € C,, if j(i,n,y) = p. Hence, there exist numbers p, b
and ¢, with 1 < p,b <w and 1 < g <1, and sets Ay,---, A, C {1,---, N} with
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Ay <--- < Ap (depending on y) such that, under the substitution 8; = {J,,c 4, on,
1 <i < m, we have

{(Lp(a17---JaN)Ri(/B].J---JBm))Mb(ali---JaN)WTL(Bl)---JBm)) :
0<n<wv, 0<i<t}cC,CLxM.

This implies that for 0 <n <wv, 0 <17 <,

There are not more than w?I12¥™ = Q choices for p,b,q, A1, -, Ap. It follows that
there exists a set C' C C with v(C') > 35> and fixed p,b,q, A, -+, A, such that
(5.4) holds for all y € C".

Having fixed p and b, it will be convenient for us to adopt the following notation:
Fory € Y, write § = Ly(a1,---,an)Mp(ai1,---,an)y. Now (5.4) can be written as
follows:

[BeBrs - B Wa(Ba, -+ Bun)f = Wa(Br-- B (Lplon, - an) 'gy) | <
(5.5)

Lp(ala"':aN)R’i(/Bla"':Bm)f_gq < €. (54)

My (a1, an)Wr(B1,:8m)Y

This holds for 0 <n <wv,0<i<tand y € C'. Taking i = 0 in (5.5) gives
HW”(’B“ o B)f = Wa(Buy e+ Bm) (Lp (o, - .,041\,)—1911)H?7 <e (5.6)
for 0 <n <wvandy € C'. Combining (5.5) and (5.6) we obtain
[ RiCBr, = B Wa(Brs - B)f = WP, B || < 26
which holds for 0 <n <wv,0<4i<tand y € C". Since f is {0,1}-valued and since

for all 4 with 0 < ¢ < t there exists n with 0 < n < v such that W; = W,,, we can
observe that

I ﬁsi(ﬂh“-,ﬂm)f | WaBi, -+ B ||
i=0 n=0 v

:H ﬁR"(ﬂlv'-‘:ﬂm)Wi(ﬂl,"',ﬂm)f _ ﬁWi(/Bla"';ﬂm)ng (5.7)
= i=0

<2(t+1)e, ye .

Recall that C' C C, and for y € C we have L;(ay,---,an)M,(ai, -, an)y €
B' C B for all L; € L and M,, € M. In particular, since

Mb(ala'"aaN)Wi(/Bla"'a/Bm) € Ma OSiSU,
we have, for 0 <i <w,

Wz(ﬂbn@m)g = Lp(ala"'JaN)Mb(aly'"7aN)Wi(B17'”7Bm)y € B.

Recall as well that on B, E(f|Y) > ¢. Because of this, for all y € C' we have

TIWilBu,- -, B EUSIY)@)| > e+,
=0
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On the other hand, from (ii) (see above) we can see that for all y outside of a

set of measure at most ZC}W

cv+1

\E(HW By, Bu) fIY) () HW (B, Bu) E(FIY)@)| <
But v(C") > 74. Hence there exists C" € B with C"" C " and v(C") > ¢4 such
that for all y € C",

Cv+1
2

B(IIWis w1V ) @) > (5.8)
i=0
Here is a general fact: for {0,1}-valued functions f and g, |f — g| = |f — g%,

sothat ([ f—[g) < [|f—gl=[If—g> =1/||f — g||- Therefore by (5.7) we see
that for all y € C" (in particular, for all y € C"),

E(ﬁSi(ﬂl, B fIY) @ >E(HW (Br,--,Bu) 1Y) (@) = 4(t + 1%

Together with (5.8) this gives (recall that € < 4(t+1) Vertt), for all y € O,

v+1

E(ﬁsiwl,---,ﬂm)fw)(g) >
i=0

This, since v(C") > is sufficient to guarantee that

©|~

v+1

<f3 st ) 2 =

O

Remark 5.4 Our work so far establishes Theorem 1.3 for Lebesgue spaces.
The theorem holds for spaces which are not Lebesgue as well. Let (X, A, u, Q)
be a measure preserving system where the underlying space is not Lebesgue. As
we have stated, it suffices to assume that the system is separable. Let us identify
two measurable sets A and B if u(AAB) = 0. The measure algebra of the system
(X, A, i1, Q) is the set of equivalence classes represented in A under this identifica-
tion. It is well known that any probability measure preserving system is equivalent
(via an isomorphism of the measure algebras which commutes with the measure
preserving actions) to a system (X', A, u', Q') whose underlying space is Lebesgue.
(See, for example, Chapter 15 of [R] or Theorem 5.15 of [F2].) Since validity of
the conclusion of Theorem 1.3 is clearly preserved by measure algebra isomorphism
(even when that isomorphism does not come from a pointwise map), its truth for
(X, A, u, Q) follows from its truth for (X', A, u', Q").



CHAPTER 6

MEASURE THEORETIC APPLICATIONS

This section is devoted to applications of (special cases of) our main theo-
rem to properties of multiple recurrence return times. The first thing we shall
do is show, as promised in Section 1, how one reduces the case of polynomials in
Q[z1, - - -, 1] which take on integer values on the integers to the case of polynomials
in Z[zy,---,zy]. For example, consider Theorem 0.9:

Theorem 0.9 Suppose that we have r commuting measure preserving trans-
formations Ti,---,T; of a probability space (X,B,u). Suppose k,t € N, and
pi,j(wla' . '5$k) € Q[mla' o ,.'L'k] with pz,J(Zk) CZ and pl,J(Oa 50) = 03 1<:< T,
1 < j <t. Then for every A € B with u(A) > 0 the set

r

tam ooz o ) L))

i=1

is an TP*-set in ZF.

Let us show how to derive this result from Theorem 1.3. Let N be a natural
number which is a multiple of every denominator of every coefficient of every poly-
nomial p; j, 1 <i<r,1<j<t Thenforalliand r with1<i<rand1<j<t
the polynomial

i,j (@1, k) = pij (N1, -, Nog)

isin Z[zy,- -+, zk]. Suppose (n,)aecr is an IP-set in Z¥. Write n,, = (n&l), . (k)).

Then (n&))aef is an IP-set in Z for all 4, 1 < i < k. Let C; = {a € F : n(l) =
¢ mod z}, 0 < i < N. One may easily check elementarily that Cy contains an
IP-ring. Alternatively, F = Ué\;l C;, so by Theorem 2.13 one of the cells of this
partition must contain an IP-ring. Furthermore, it is easily seen that Cj is the only
cell which can possibly contain an IP-ring. Therefore Cy contains an IP-ring, say
FO_ FOU has the property that the (k&l))aefm C Z, where k&) = %n&l). By a
repetition of this argument in the remaining indices we may require of F) that
the IP-sets (k&i))aef(l), 1 <i < k, are all contained in Z, where k{) = +n n$,

Let d be the maximum degree of the polynomials p; ; and let PE<4(1) be as
in Definition 1.1 (that is, for these fixed values of k, r, and d). Put

T
- (k) L p(R)
Sit@) = (JI "), 1< <.
i=1

Then Sj € PESd(]-); 1<y <t

64
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According to the case m = 1 of Theorem 1.3, there exists @ € F) such that
¢
u( ﬂ Sj(a)_lA) > 0.
j=1

In other words,

w(N (H otk ) ) 5

j=1 =1

which is the same as

u(ﬁ (ﬁTf"’j("g)"“’n‘(’k)))_IA) > 0.

j=1 =1

Hence n, € R4. Since the IP-set (ny),c ) was arbitary, we have shown that R4
is an IP*-set.

O

The reduction to polynomials in Z[x1, - - -, 2] may be accomplished in an iden-
tical fashion in all of our remaining applications. Henceforth, we will not carry this
reduction out explicitly, but rather simply assume without loss of generality that
we are dealing with polynomials with integer coefficients.

The following definition is made for the purpose of showing that the set R4 of
Theorem 0.9 (for example) has in fact a stronger combinatorial structure than does
the typical IP*-set.

Definition 6.1 Suppose k € N. A set S C Z* is said to be an enhanced
IP*-set, or an E-IP*-set, if for any m € N and any m IP-sets (n&’))aef@, 1<i<m
there exists an IP-ring F() such that

{n‘(jl) +n&22) + ---+n‘(£“n) s (o, 0,) € (fq(,l))m} C8S.

S C ZF is said to be a polynomially enhanced IP*-set, or a PE-IP*-set, if for any
m € N, any m IP-sets (n(()f))aefw C Z*, 1 < i < m, and any polynomial mapping
P : Z™ — 7Z* having integer coefficients and satisfying P(0) = 0 there exists an
IP-ring F™) such that (recall that né)i) =0)

{P(ngll),ngi),---,ng?) (o, -+, am) € (fél))m} C S.
We call a set S C Z* an IP? -set if some shift of S is an IP*-set. That is, if for
some u € Z*¥, u+ S = {u+s:s5 € S} is an IP*set. Similarly, if S C ZF and
u+ S ={u+s:s € S}is an E-IP* (respectively PE-IP*-) set for some u € Z*
then S is said to be an E-IP -set (respectively PE-IP? -set ).

IP? -sets are clearly syndetic, but the IP% property is stronger than syndeticity,
as we show in Example 7.7.

It is a consequence of Hindman’s theorem that the intersection of any two IP*-
sets is an IP*-set. E-IP*-sets and PE-IP*-sets have the finite intersection property
as well, although this is a very elementary observation which does not require Hind-
man’s theorem. Examples will be given in Section 7 which show that the notions
of IP*, E-IP* and PE-IP* are distinct.
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Notice that in the previous definition, we consider m-tuples (ai,---,am) €
(Fp)™ which need not be in (Fp)”?. Our motivation for doing this is the following
lemma and its corollary, Theorem 6.3. Notice that Lemma 6.2 is, in one sense, a
strengthening of Theorem 1.3. In its formulation we need to expand the definition of
a polynomial expression to take for its argument any m-tuple (a1, -, an) € (Fg)™.
Recall (Definition 1.1) that a polynomial expression in PE(m) is of the form

r
Di ((ngbj)hgbsk, 15j5m)

T(ab'"aam):HTz ) (a17"'7am)e(‘7_—@)?'
i=1
One need merely note that the above form of T'(ay,- -, ;) makes just as much
sense (as a function onto measure preserving transformations) for all (aq,- -, am) €

(Fp)™. Indeed, the reason we did not allow for this possibility sooner is that when
writing such expressions as S(ai,a2) = T(a1 U az), we wanted to ensure that

S(ay,a2) € PE(2). This required that nfj&ﬂ = n((,f) + ng), 1<i<k.

Lemma 6.2 Let k,7 € N and let PE<4(m) be as in Definition 1.1. Suppose

that (ng))aef are IP-sets, 1 <1 < k, and let (X, A, u, ) be a measure preserving
system, where () is generated by commuting invertible transformations 71, - - -, T}.
If So,- -, S; € PE<g(m) and F() is any IP-ring then there exists an IP-ring 7 C
F@) such that for all (ay,---,am) € (.7-'0(,2))” we have

t

u( ﬂ Si(ag,--- ,am)_IA) > 0.

=0

Proof. We will inductively construct a sequence (8;)ien C F®) with f; <
B < --- such that the IP-ring F?) = FU{(B;)ien } has the properties we require.
Specifically, we will construct a sequence (8;);en and a sequence of measurable sets
A= A9 D AL DAy D with u(4;) >0 for all i € N having the property that for
all i € N, every z € A;, and every choice of v1,7v2,- -, Ym € FUp{fB1,---,Bi} we
have
Sj(’)’l;"';’)’m)x € AJ 0<j<t.

Let Ag = A and let 71 be the family of all polynomial expressions of the form
T(a) = Sj (Xl(a)v T 7Xm(a)) )

where 1 < j <t and for 1 <4 < m, either x;(a) = a or x;(a) = §. By Theorem
1.3 there exists 8; € F1 such that the set

A= () T(B) A

TET:

satisfies u(A;) > 0. One may easily check that for all x € A; and every choice of

Y1572, Ym € FU@{ﬂl} = {@,,81} we have Sj(’Yl," 77m)$ S A7 0 S] S t.
Suppose now that £1,82,---,8; and A;,---, A; have been chosen. Let T;41 be
the family of all polynomial expressions of the form

T(Ot) = S] (051 U Xl(a)7 Ty, Om UXm(a))Sj(ala o '7QM)717
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where 0 < j <, a1, -+, am € FUp{B1,---,B;} and for 1 < i < m, either x;(a) =
or x;(a) = 0. By Theorem 1.3 there exists f;41 € F) with 8;1; > f; such that

the set
Aipr = ﬂ T(Biv1) " A
TeTi+1
satisfies p(A;+1) > 0. We claim that for all z € A;4; and every choice of 71,72, - -,
Ym € FU@{ﬂhﬂ% Tt 7/8i+1} one has
Si(vi, -, ym)r €A, 1<j<t
Indeed, let ay, =¥, \ Biy1, 1 <n < m. Then

Sj('yl,---,'ym)Sj(al,---,am)_lw c Az C Sj(al,---,am)_lA, 1 SJ <t.

In particular S; (71, e ,'ym)az € A, 1< j<t, as required. Therefore,

t
N( ﬂ Si(’)’l,‘ e a’Ym)_lA) >0
=0

for every choice of v1,v2, -+, vm € FUyp{B1,P2, -, Bi+1}- Continue choosing the
B;’s in this fashion. Finally, let F(?) = FU{p1, B2, -}

O

We now present our main theorem pertaining to largeness of sets of polynomial
multiple recurrence return times.

Theorem 6.3 Suppose that we have r commuting invertible measure preserv-
ing transformations T4, - - -, T, of a probability space (X, B, u). Let k,t € N, and as-
sume that p; ;(z1,---,7x) € Q[z1,- -, zx] with p; ;(Z*) C Z and p; ;(0,---,0) =0,
1<i<r,1<j<t. Then for every A € B with u(A) > 0 the set

t
Ra= {(nl,.. i) € ZF (ﬂ (HT””(’”’"”’“)) A) > 0}
j=1 =1
is a PE-IP*-set in Z*.
Proof. We may assume without loss of generality that
pi,j(m17"'7xk) € Z[mla'”7$k]7 1 S i S r, 1 SJ S t.

Suppose that m € N and let (n&l))aef, e (ngm))ae}' be IP-sets in Z. Suppose

that P : Z™ — Z* is a polynomial mapping with integer coefficients and with

P(0) = 0. We have to find an IP-ring F) such that P(n&ll), - (m)) € Ry, or
equivalently
£ (m)
u(m (HTle(P(ncclv Mg )) A) >0,
j=1 =1

for all m-tuples (0117 - ,am) € (fél))m
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Let g;j =pijoP,1<i<4,1<j<t, and put

r
- () (m)
2i,5(Ney s Nam)
Sj(ah"':aﬂ’L):HTi ! ™
i=1

Then S; € PE(m), 1 < j < t, so by Lemma 6.2 there exists an IP ring F(*) such
that for all m-tuples (a1, -, ay,) € (FM))™ we have

u(ﬁ (ﬁTim,xP(ni}f,---,nSZB)))—IA) =u('

T
j=1 =1 Jj=

Sj(ou,-- -,am)*lA) > 0.
1

According to Theorem 6.3, the set

t r B
Ry = {(nI, . ,nk) S Zk : u( m (HTiPi,j(nl,...’nk)) IA) N 0}
1 =1

Jj=

is a PE-IP*-set. We now would like to investigate under what conditions one may
say something about the set

t r _
RA07A1,"',At — {(nl’ . 'ank) € Zk . /J/(AO n ﬂ (HTipi,j(nl,...,nk)) 1AJ> S 0}’
j=1 =1

where Ag, A1,---, Ay € B are any positive measure sets.

In the caset =1, 7 =1, k =1, p1,1(n) = n, one may show that the set R4, 4,
is in fact a shift of an IP*-set provided that T' = T3 is ergodic.

In fact, when T is ergodic, for any € < p(Ao)u(A1) the set R = {n : u(4o N
T-"Ay) > 62}, which is a subset of R4, 4,, is an IP7 -set. To see this, consider
that by ergodicity there exists & € Z such that u(4o N T7*4;) > e. Let now
B = (AgNT7%A;). Tt is well known that (since €2 < u(B)2) the set S = {n :
uw(BNT~"B) > €2} is an IP*-set (see, for example, [B2]). However, n € S implies
n+ké€R,sothat SC R—k and R — k is an IP*-set.

The situation is different in the case of polynomial powers, when ergodicity of
T is no longer sufficient to guarantee, for example, even a single non-zero number
n € Z for which p(4o N T~ A;) > 0. (Consider the system X = {0,1,2}, with
p({i}) = %,4=0,1,2 and T% =i+ 1 (mod 3). Then ({0} N T‘”Q{Z}) =0 for all
n € Z, yet T is ergodic.) In the case of total ergodicity (T is totally ergodic if T*
is ergodic for all £ € N), one may show (we leave it as an exercise) that for any
€ < u(Ag)u(Ar) the set

U={n:pu(4o OT*"ZAl) > €%}

is an IP7 -set.

Question 1. Can a larger lower bound than u(A4¢)%u(A;)? be found for the size
of the intersection in either of these cases? (In the event that Ag = Ay, p(Ao)u(A1)
works.)

Total ergodicity of T is insufficient to guarantee even a single non-zero member
of Ry, A,,--,4,, however, in the situation of multiple recurrence (i.e. ¢ > 2). For
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example, if a is any rational number, then setting X = [0,1) and Tz = z + « (mod
1), T is a totally ergodic transformation of X, but there exist positive measure sets
Ag, Ay, and Ay such that u(Ag NT"A4; NT~2"4,) = 0 for all n € Z. Indeed, one
may let A(] = A1 = [0, %) and A2 = [%, %)

A correct condition for largeness of the set R 4,.... 4, turns out to be that of total
weak mizing. Recall that a measure preserving Z"-action {T }nez- on a probability
measure space (X, B, u) is called totally weakly mixing if for every non-zero n € Z"
T, is a weakly mixing transformation, i.e. if for every non-constant f € L?(X, B, u)
the orbit {Tknf : k € Z} fails to be precompact in L?(X, B, u).

We remark that the total weak mixing condition for a measure preserving Z"-
action differs (when r > 2) from the mere weak mixing notion. ({Th}nez- is weakly
mixing if for every non-constant f € L2(X, B, u) the orbit {T,f : n € Z"} fails to
be precompact in L?(X,B,pu).) We will illustrate the disparity with an example.
Let Y be a probability space and T': Y — Y an invertible weakly mixing trans-
formation. For s € N put ¥; =Y and let X = H:; Y; with the product measure.
Let {(a;, b;) }ien be an enumeration of all ordered pairs in Z2. Define measure pre-
serving transformations S,U on X by S(y1,y2,y3, ) = (T™y1, T%?y,, T*ys,---)
and U(y1,y2,y3,---) = (Tyy, TPyy, T®ys, - - -). The measure preserving Z2-action
{S™U™ : n,m € Z} is clearly weak mixing on X , however its component transforma-
tions fail to be ergodic. (Let n,m € Z. For some ¢ € N we have (a;,b;) = (m, —n).
In the ith coordinate, SPU™ is (T™)™(U~™)™ = I, hence S"U™ is not ergodic.) In
particular, this Z2-action is not totally weakly mixing.

Theorem 6.4 Suppose that (X,B,p) is a probability space and {Th}necz-
is a totally weakly mixing measure preserving Z"-action generated by Ti,---,T;.
Suppose that t € N and p; j(z1,---,z%) € Q[z1,- -+, 2] with p; j(ZF) CZ, 1< <
r, 1 < j <t such that for any 1 < j; # j» <t, the functions

(l17 e 7lk) — (pl,j1 (lla T 7lk)7p2,j1 (l17 ot 7lk)7 ot 'pT‘,jl(l17 o '7lk))
and

(I, k)
_>(p1,j1(l17"'7lk) _pl,jz(lla"'alk)a"'a(pT,j1(l17"'7lk) _pT,jz(lla"'Jlk)

are not constant. Suppose that Ag, A1, As,---, Ay € B with pu(4;) > 0,0 <14 <1t.
Then the set

t T _
Baonon = {lon €26 uaon () (T[22 ) ") 50}
j=1 =1

(6.1)
is a PE—IPi—set.

Proof. Again, without loss of generality we may assume that all of the poly-

nomials p; ; lie in Z[z1, - -,xx]. There exists (I1,---,lx) € Z* such that
t T 1
N(AO N ﬂ (HTipi,J‘(h,...,lk)) Al> > 0. (62)
j=1 =1

(See Appendix, Theorem Al.)
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Let

T

t —
B = Ao () (L7 ) "4,

j=1 =1

Then p(B) > 0. Letting

gij(ne, - ,me) = pii(ng + - ne + k) —pig (L, k)

we have ¢; j(0) =0,1 <4 <r, 1< j<t. Therefore, by Theorem 6.3 the set

t T -
R= {(nl,...,nk) VAR u( ﬂ (HTfirJ’(”l"“’m)) 13) > 0}
1 =1

ij=
is a PE-IP*-set. One now need only check that (n,---,n) € R implies
(nl + l17 s, Nt lk) € RAO,Ala"'aAr'

Therefore R C Rag, A4, 4, — (I1,---,1k) and Rpg,Ay,-04, 15 PE—IPi—set.
[l

It is a simple corollary of Theorem 2.13 (Hindman’s Theorem) that the intersec-
tion of two IP*-sets in Z* is again an IP*-set. As mentioned earlier, the intersection
of two E-IP*-sets is an E-IP*-set. IP?-sets do not have such a finite intersection
property. (For example, consider the even and odd integers. Both are IP? -sets
(indeed, both are PE-IP*, -sets). Consider, however, sets of the type Rag, 4,,..-,4,
appearing in Theorem 6.4. One may show (see Appendix, Theorem A1) that they
are very large. Indeed, let us introduce the following notion: suppose that r € N
and E C Z" is a set. The lower Banach density of E may be defined to be the
number d.(E) = 1—d*(E°), where d* is upper Banach density (see the third para-
graph of the introduction for d*(E)). Clearly sets of Banach lower density 1 are
very “big”, and a consequence of Theorem Al is that sets of the type Rag,a,,--- 4,
appearing in Theorem 6.4 have Banach lower density 1. It follows easily that the
intersection in Z* of any finite collection of sets having the form (6.1) would again
be of uniform lower density 1.

We point out, however, that sets of Banach lower density 1 need not be IP*-
sets, nor even IP -sets . (See Example 7.8 for a set of Banach lower density 1 which
is not a IP* -set . As for a set of Banach lower density 1 which fails to be IP*, if
we let ng = Y, 3% o € F, then (ng)acr is an IP-set of Banach upper density
0, so that its complement is a set of Banach lower density 1 with fails to be IP*.)
The content of the next theorem is that, as a matter of fact, the intersection in Z*
of any finite collection of sets having the form (6.1) is not merely of Banach lower
density 1, but PE-IP* as well.

Theorem 6.5 Suppose that S € N and for each s, 1 < s < 5, the following
are given. (X B®) ;(9)) i a probability space, r®) € N, and {T,(,S)}

nEZ"(S) is a

o . . (s) . (s) (s)

totally weakly mixing measure preserving Z" "-action generated by 77, ---,T ).
t®) € N and p{*)(z1,---,2) € Qlar, -, z] with p{*)(ZF) C Z, 1 < i < rl®),

1 < j <t such that for any 1 < j; # jo < t(¥), the functions

(lla e 'alk) — (PS;I (lla o 7lk)apg‘31 (lla T 'alk)a T 'Pifz),jl (lla T alk))
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and

(CPREENY)

SO (s ) = s 1), pE L (s l) =P (e )

)it
are not constant. Suppose that A(()S),Ags),Ags), . -,Agfs)) € B®) with p(Ags)) > 0,
0<i<t®. Let

R

() 4() . 4(s)
AL A e, A

o (a0 ) (i) ) o)
i=1

Then ﬂle R, .

: *
@, -’A(E‘% is a PE-IP? -set.
o(s

Proof. Reindexing if necessary, we may assume that #(1) > 7(2) > ... > ¢(5),
Furthermore, by replacing some sets Ags) with images of themselves under a suitable

member of the measure preserving action {T,(,s)}, we may assume that all of the
polynomials under consideration have zero constant term.

Let X = XMW x ... x X B=BWg---@B®, and p = p® x --- x pl®,
Put 7 = (1), For every s with 2 < s < S for which 7(*) < r, let TT((S) = T(S)

D41 T Tpe42 T
. =T be the identity map on X (). and let

p£§2)+1’j($17 T axk) = pﬁz)_}_z,j(wla T l’k) = PS«S) = 0 1 < .7 < t(S)
Let P be the set of distinct r-tuples

Pis(@n, k) = ()@, 00), 050 (@1, 2n), N (@, 2))

which occur over all values of j and s. Foreach p € P andeachs,1 <s<S,let Ap

(s)

be equal to A]- if it happens that p = p;,s for some j. Otherwise, let Ap s = X)),

Now let Ap = Apy X -+~ X Ap.s, p € P, and put A = A{" x -~ x A, Also let
T, =T" x - x TP, 1 <i <r, and write, for n = (ny,---,n,), Tn = T/ --- T,

The measure preserving Z"-action {Ty}nez- is not necessarily totally weakly
mixing on X, so we are not in a position to utilize directly Theorem D from [BL1],
as we did in the proof of Theorem 6.4. However, using the weakly mixing properties
of various subgroups of the group {7} on the product space X and on some of its

natural factors, one may still show (see Appendix, Corollary A10) that there exists
(I,-++,1x) € ZF such that

(Aoﬂ n p(ll lk) ) > 0.

pPEP

One now proceeds exactly as in the previous proof to conclude that the set

pEP
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is a PE-IP*-set. Finally, one may check that ﬂle R C R. Therefore

(s) (s)
Ao A

since R is a PE-TP*-set, ﬂle R is a PE-IP? -set as well.

(s) (s)
AO ,---,Atz )
O

We now turn our attention to mild mixing. This notion is discussed at length
in [F2, Chapter 9], and our results here are elaborations on the results there. Recall
that a measure preserving Z"-action {Th}neczr on a probability space (X,.A, )
is mildly mixing if there are no non-constant rigid functions in L2(X, A, u) (f €
L*(X, A, p) is rigid if there exist a sequence (ny)$2, C Z" with |ng| — oo such that
Ta.f = f as k — oo, where |v| is the magnitude of a vector v € Z"). The following
lemma gives an alternative characterization of mild mixing. For its formulation, we
adopt the following notion: an IP-set (ny)qer C Z" will be called non-trivial if for
no IP-ring 7 do we have

IP-lim n, =0.
acF M

Equivalently, (n,)acr C Z" is non-trivial if it is not identically zero along any
IP-ring.
For a special case of the following see [F2], (9.11).

Lemma 6.6 A system (X, A, 4, {Tnh}nez-) is mildly mixing if and only if for
every non-trivial IP-set (ng)acr C Z" and every f,g € L?(X, A, ) there exists an
IP-ring () such that

ot [ Togdn=( [ au)( [adn). (63

Proof. Suppose that the system (X, A, u, {Tn}nezr) is mildly mixing, that
(ny)acr is an IP-set in Z", and that f,g € L?(X, A, u). By confining ourselves
to the factor generated by the orbits of f and g under {T,,}, we may assume that
(X, A, p) is separable. By Theorem 2.14, therefore, there exists an IP-ring F(1)
such that

iy oo = Po
exists weakly for all g € L?(X, B, ). It is not hard to show that since (ng)qcr is
non-trivial we may also require of F() that

heAl al = oo

By Theorem 2.17, P is an orthogonal projection. Let g € L?(X, B, u). Since

Pg = P(Pg) = £PE—]1C1(III)1 Tn, Pg,

Pg is a rigid function. It follows that Pg is constant for all ¢ € L*(X,B,u).
Therefore, Pg = [ g dpu and (6.3) holds.

For the converse, simply note that if (X, A, u, {Th}tnez) is not mildly mix-
ing then there exists a non-constant, real-valued function f € L?(X,A,u) and a
sequence (ny)ren such that Ty, f — f as k — oo and such that |ng| > 2ny_g,
k =2,3,---. By passing to a subsequence we may assume that ||Tnkf - f|| <27k
for all k € N. Letting nq = ), ., 0, a € F, we have

(P To.f = f
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in the weak topology. Therefore

i [ rsan= ([ a)> ([ 1)

Furthermore, by the properties ascribed to the sequence ny, the IP-set (n,)qcr is
non-trivial. This is a contradiction. Therefore (X, A, y, {Ta}nez-) is mildly mixing.

O

Our goal is to generalize Lemma 6.6 in a manner similar to Theorem 4.8 of
[B1], which states that if T is a mildly mixing measure preserving transformation

on (Xa A; /J/)a anfl: e 7ft € LOO(X; Aau)a and pO(x)apl(x)a e 7pt(m) € Z(ZU) are
polynomials no two of which differ by a constant then for any € > 0 the set

AT gy 11 [ 1 6}
{0}U{neZ.|/gT fidu g/f,dp‘<

is IP*. We must be careful, however, about the IP* property when working in Z*,
k > 1. For example, suppose that T is mildly mixing, p(z1,2z2) = 1 — 22, and

f & LK, 4, p) fs real valued with ¢ = ||f||j -(Jf d,u)2 > 0. Then the set
{(n17n2) S Z2 : ‘/pr(’nl,'ﬂz)f dl,l,— (/fd/jl)2‘ < 6}

is not an IP*-set in Z2, for if (ng)aecr is an IP-set in Z? of the form n, = (kq, ka),
where (kq)acr is an IP-set in Z, we will have | [ fTP®) f dpy— ([ f d,u)2| = ¢ for
alla € F.

The obstruction to attaining the right limit in the example above in spite of the
presence of mild mixing was the degeneracy of the IP-set (ng)acx- This provides
the impetus for the following definition:

Definition 6.7

a. Suppose that ) is an IP-ring. IP-sets (n&”)ae;, e (n&k))ae}- in Z are
said to be linearly independent along F) if for every IP ring F@® c FU and
every k integers Iy, - - -, I, not all of which are zero, there exists a € F* such that
llngl) 4+ 4 lkn((xk) # 0.

b. An IP-set (ng)acr C Z* will be called a non-degenerate IP-set, or NIP-set,
if its k coordinate IP-sets are linearly independent along F. Any subset E C Z*
which intersects non-trivially every NIP-set will be called an NIP*-set.

We now have two preparatory lemmas to give before stating our main result
concerning polynomial mild mixing of all orders. The first of these generalizes
Theorem 9.23 from [F2] and states that mild mixing of Z"-actions is preserved by
the taking of Cartesian products. Its proof, which is not appreciably different from
the one in [F2], is supplied for completeness. The second lemma states that linear
non-degeneracy of IP-sets implies polynomial non-degeneracy.

Lemma 6.8 The product of two mildly mixing systems (X, B, pt, {Tn}ncz")
and (Y,C, v, {Sn}nez-) is mildly mixing.

Proof. We will use the characterization of Lemma 6.6. Namely, let (ng)qcr
be a non-trivial IP-set in Z" and let f,g € L?(X x Y,B®C, u x v). We must show
that there exists an IP-ring F(!) such that

IP-lim /f(Tna X S )g dp X v = (/f dp x u)(/g du x ,,)_ (6.4)

acFM
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Write f = 3" ¢ ® ¢; and g = ) ¢} ® 1}, where the sum is countable. (Here

as always, ¢ @ ¥(z,y) = ¢(z)¥(y).)
By Proposition 2.14 and the fact that both systems are mildly mixing, we may

choose an IP-ring F(1) such that

et [ 0T,y du=( [ 6:an) ([ 6} )

g [isnvy o= ( [oiar)( [ o )
for all 4, 7.

We now have

and

IP-lim ‘/f(Tna X Sn.)g dp X v

acF@)
1l 3 [ [ i@ T, 8001 0) S, 030 di(o)dv(y)
%]

ey 3 (f 0nat) ) [ visnay )

= (fea)(f ¢ aw)(fva)(fvw)

(S (Jem)([ra)) (S ([ ) ([ vy a0)
:(/fduxu)(/gduxu).

([l
Here is the lemma about polynomial degeneracy.
Lemma 6.9 Suppose that F1) is an IP-ring and (n&l))aef, .. (n((xk))ae]-' are
IP-sets in Z which are linearly independent along F™). Then
a. For any polynomial p(zy,---,xzy) € Z[z1,- -, zx] we have
-l 1 ... (k)Y =
IP-lim p(ng”s---,ng”) =0 (6.5)

only if p(z1,---,zk) = 0.

b. If p(zy,---,x1) € Z[xy, - - -, ] is not constant then for some IP-ring F®) C
F1) we have

Ial:é'}l(gl |p(n((xl)> T nSxk))l = 0. (6'6)

Proof. The proof of part a. is by induction on the degree of p. The conclusion
is true by definition if the degree of p is at most 1. Suppose now that the conclusion
is valid for all p of degree at most d —1 and assume that p is a polynomial of degree
at most d satisfying (6.5).

There exists ag € F such that for all @ € FO with a > aq, p(ng), .- ,n((lk)) =
0. Fix a € FO with a > ap and let

a(or, o, z) = plas+nl), o ap+0l) = play, - o) = pnl), - nlP). (6.7)
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Then degq = max{degp — 1,0}.
For all 8 € F® with 8 > a we have aU B € FM and a U B > ag, so

p(n® + 08,0 40y = p(nls, - n®) =0

Using (6.7), coupled with the fact that p(na D, (k)) (ng), : (k)) 0,

we may conclude that q(n[gl), - ,ngc)) = 0 for all B e FO with 8 > a. By
hypothesis g(z1,---,zr) = 0 and deg p < 1, which implies that p(z1,---,zx) = 0 by
an earlier case.

For part b., note that by Proposition 2.14 we may choose an IP-ring (2 ¢ F(1)
such that either the limit

1 (1) ... pB)y =
Pl [p(nl), -, 0P| = M (6.8)

exists and is finite or so that (6.6) holds. We need merely show that the former
case is impossible. Namely, assume that we have (6.8). Letting ¢(x1,---,zx) =
p(x1,---,2E) — M, we have

MW ... k)
IP-lim q(ng’s - -,ny’) =0,

so that by part a. ¢(z1,---,z5) = 0. It follows that p(z1,---,zx) is constant, a
contradiction.

O

Armed with these two lemmas, we are now able to demonstrate that the fol-
lowing theorem is just an absolute case of Theorem 4.10.

Theorem 6.10 Suppose that (X, A, ) is a probability space and {Tn }necz- is a
mild mixing measure preserving Z"-action on X generated by T1,---,T,.. Suppose
that t € N and p; j(z1,---,zk) € Q[z1,---,7x] with p; j(Z¥) C Z, 1 < i < r,
1 < j <t such that for any 1 < j; # ja < t, the functions

(lla e 5lk) — (pl,jl (lli Tt alk)’ 5 Prga (lla e 7lk))
and
(i, k)
_>(p1,j1 (lla ot '7lk) _pl,jQ(lla ot ;lk)a cty Projs (lla 0 7lk) _pr,jg(lla Tt alk))

are not constant. Suppose fo, f1,---, ft € L®(X, A, ) and let p;o(z1,---,2r) =0,
1 <i <r. Then for any € > 0 the set

t
se={(n1,-- i) € Zk H(HT””("" *"k) j—H/fjdu|<e}
=0

is an NIP*-set.

Proof. The first observation is that we may assume as always and without loss
of generality that (X, A, u) is separable and that p; j(z1,z2, -, zk) € Zlz1,- -, Tk),
1<i<r,1<j<t. Next, we note that we may assume that p; ;(0,0,---,0) = 0.
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(All that is involved here is replacing the set A; by some set from its orbit under
the action, namely T, ' 4;, where n = (p; ;(0,---0),---,pr;(0,---,0)).)

According to Lemma 6.7, the product of the action {Ty }nez- with itself on the
product space (X x X, A® A, u x p) is mildly mixing. We will denote this product
action by the same symbols {Tn}.

Let € > 0 and let (n,)acr be any NIP-set in Z*¥ This IP-set has the form
n, = (n((ll), - ,n((lk)), where (ng))aey:, 1 < i < k are linearly independent IP-sets
in Z. Let

0= | 1200 o, P
and let PE<4(1) be as in Definition 1.1.
By Proposition 2.17 we may choose an IP-ring () such that

B?Jlfl(rl? S(a)H = PsH
forall He L*(X x X, A® A, u x p) and all S € PE<,4(1). According to Theorem
2.17, Ps is an orthogonal projection for each S. Suppose H € L2(X x X, AQA, ux p)

and S € PE<q is not the identity element. Define an F-sequence (to)qcr by
S(a) = T*=. We have

g;'}-l(rlr)l T:.(PsH) = {112-]1_1(111)1 S(e)(PsH) = P3H = PsH. (6.9)

It is a consequence of Lemma 6.9 b. that for some IP-ring ) c F) we have

IP-lim [to| = oo.
aeF ()

This fact together with (6.9) implies that PsH is a rigid function and therefore
constant. Since H was arbitrary, this in turn implies that S is mixing on X over
the trivial factor ¥ along F(U) for all S € PE<,4(1) different from the identity.
Therefore, if we let G = {I}, G is a subgroup of PE<4(1) and it is not difficult to
show that X is a primitive extension of ¥ along F(!) with compact part G. Let

r ) (k)
Sy =[[rrmemna 1< <t

i=1

The conditions of the theorem ensure that S;, # I and S;, S}, ' 41 when1<j; #
j2 < t. Therefore the set {Si,---,S;} is a mixing set in accordance with Definition
3.5.

Set Sy = I. Remembering that Y is the trivial factor, we have by Theorem
4.10 (1) that there exists an IP-ring F(2) ¢ () having the property that

¢ t
acrt (/E)Sf(a)fi an=11[ 5 n) =0

Clearly this yields & € F() such that n, € S,.
|

The following fact, which was mentioned in the introduction, is needed for our
next application. It’s easy proof is included for the sake of completeness.
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Proposition 6.11 Any IP*-set in Z" is syndetic.

Proof. Suppose E C Z" is not syndetic. We will show that E is not IP*
by exhibiting an IP-set contained in E¢. Let n; € E€. Since E is not syndetic,
(EU(E—mny))) # Z7, that is, there exists ny € (E°N(E—mn4)¢). Then {n;,ny,n; +
n,} C E°. Again since E is not syndetic,

(EU (E - n1) U (E — Il2) @] (E — (n1 +n2))) 75 Zr,
so we may find
ns € (Ec N (E - ]fll)C n (E — ng)c n (E — (Ill + n2))c).

Then
{ny,ny,n; + ny,n3,n3 + n;,n3 +ny,n3 +ny + n;} C E°.

Continuing in this fashion we get a sequence (n;)$2, such that the IP-set £.S(n;)$2
is contained in E°.

O

At this time we would like to tie up one loose end, which is to show that a
uniform version of Theorem 0.4 may be obtained as a corollary to Theorem 1.3
(By “uniform” We mean replacing the limit limy_, o = ~ - by a limit of the type
imy_pm—o0 =37 M -+.) It is not immediately obvious how one would obtain such a
result from, for example, Theorem 0.9. First, we have a lemma.

Lemma 6.12 Suppose that we have r commuting measure preserving trans-
formations Ti,---,T, of a probability space (X,B,u). Suppose k,t € N, and
pij(n1,---,nk) € Q[na,---,ng] with p; j(Z*) C Z and p; ;(0,---,0) =0, 1 <i <r,
1 < j <t. Then for every A € B with u(A) > 0 there exists € > 0 such that the set

t T

R, = {(nl,---,nk) VAR u( N (HTI.”"’J'("I""’"’“))_IA) > e} (6.10)

j=1 i=1

is a syndetic set in Z*.

Proof. Suppose to the contrary that for all n € N the set Ry 1 fails to
be syndetic. Then for every n € N we may find a k-dimensional parajleleplped

I, = [My1,Np1] X -+ X [Mp g, Ny ] such that
lim (Ny; — Mp;)=0,1<i<k
n—oo
and such that for all (nq,---,ng) € I, we have
(ﬂ (HTPIJ(nlv'ank)) A) l
n
j=1 =1

The complement of the set |J;- ; I, is clearly not syndetic. By Lemma 6.11, it is
therefore not IP*. Hence there ex1sts an IP-set ((n&l), S ) Sxk)))a cF contained in
U2, In. By passing to a subring F1), we may assume that

P-lim [(nf",---,n{)|
acF1)
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exists as either a finite or infinite limit. Since the only finite limit possible is clearly
0, this limit must be infinite, which implies by construction that

: 5 (T s (D))} 1
tep () (T2 ) ") =

j=1 =1

This contradicts Theorem 1.3, which indicates that the limit must be positive.
O

The single parameter case k = 1 of the following multi-parameter theorem gives
the uniform version of Theorem 0.4 promised in the introduction.

Theorem 6.13 Suppose we are given r commuting invertible measure preserv-
ing transformations 71, ---, T} of a probability space (X,B,u). Let k,t € N, and
suppose that p; j(n1,---,nk) € Q[n1, - -, ng] with p; j(Z¥) C Z and p; ;(0,---,0) =
0,1<i<r,1<j<t. Then for every A € B with u(A4) > 0 we have

S 1 - d i,5 (n1,ee, k)

1<i<lr n; €[M;+1,N;] ~j=1
=t= 1<i<r

Proof. By Lemma 6.12, there exists € such that the set R4 . defined by (6.10)
is syndetic. This implies that for some k-dimensional cube I we have I+ R4, = VAR
Since any big enough k-dimensional parallelepiped may be approximately tiled by
shifts of I, the limit appearing in (6.11) must have value no less than ﬁ

O

Lemma 6.12 suggests the following question, which in the non-linear case we
do not know the answer to.

Question 2. Under the conditions of Lemma 6.12, does there exist € > 0 such
that the set R4, defined by (6.10) is IP*?

In the linear case the answer is yes. This may be shown using Furstenberg’s and
Katznelson’s IP-multiple recurrence theorem for countably generated IP-systems,
as we shall now demonstrate via a version of a combinatorial corollary to their
theorem which we shall state presently. For its formulation we introduce the fol-
lowing notation: for ¢,s,1 € N let M(t,s,l) denote the set of all ¢ x s matrices
(m;,;) whose entries are taken from {1,2,---,l}. Note that [M(t,s,1)| = I**. For
a € FU{1,2,---,1} and 1 < i < t, let el be the ¢ x s matrix (mq,p) defined by
meyp = 1if a =4 and b € a and m,, = 0 otherwise. Here now is Theorem 9.2 from
[FK1].

Theorem 6.14 Let ¢ € N and 6 > 0 be given. There exist lo = lo(¢,d) and
so = so(t,d) in N having the property that for every | > Iy, every s > sg, and
every subset S C M(t, s,l) satisfying |S| > 61*® there exist « € FU{1,---,s} and a
matrix A € M(t,s,l) such that

{A, A+l - A+el} s

With this in hand we can easily get a positive answer to Question 2 in the
linear case, and in fact more. Following [FK1], let us say that a set in Z* which is
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of the form {n, : @ € FU{1,2,---,s}}, where noug =nq + ng when an g =0, is
an IPg-set. (Thus, an TP,-set is just a finite IP-set with s generators.) Accordingly,
we shall call a subset E of Z* an IP%-set if it intersects non-trivially every IP,-set.
Since every IP-set contains (infinitely many) IPg-sets, it is clear that every IP%-set
is also an IP*-set. However, for every s there exist IP*-sets which are not I P}-sets.
For example, by [FK1], Theorem 10.4 the lower density of any IP*-set in Z is at
least 27°*!, whereas kZ is IP* for any positive integer k. Therefore, the following
Theorem, which deals with linear polynomials, answers Question 2 in the affirmative
for the linear case and gives somewhat more as well.

Theorem 6.15 Suppose t € N and § > 0 are given. There exist s = s(t,0) € N
and & = £(t, §) > 0 having the property that for all r, k € N, if r commuting measure
preserving transformations T, - - -, T, of a probability space (X, B, u) are given, as
well as linear polynomials p; j(n1,---,nk) € Q[ni,---,ng] with p; ;(Z*) C Z and
pi,;(0,---,0)=0,1<4<r, 1< j<t, then for every B € B with (B) > § the set

t T

-1
Rpe = {(”h"'ﬂ“e) cZk . N( ﬂ (HTipi,J‘(m,---,nk)) B) > f} (6.11)
j=1 =1
is an IP%-set in Z*.

Proof. Let s = so(t,$) and | = lo(t, %) be as in Theorem 6.14 and let £ =
#. Suppose that k,r, (X, A, u), transformations T;, polynomials p; ;, etc. have
been given. Suppose now that B € B with u(B) > 0. We claim that the set Rp ¢
defined by (6.11) is an IP%*-set. Accordingly, let (ny) be any IP,-set in Z°. Write

pj(ajl;' o 5$k) = (pl,j(mla" '5$k)a" '7p7‘,j($17" 'axk))a 1 S .7 S t.
Since all of the polynomials are linear, (pj (na)) is an IPs-set in Z", 1 < j < t. For

n=(ny, --,n.) €Z", write T, = Tln1 T
For every matrix M = (m; ;) € M(t,s,l), let Iy € Z7 be defined by

= >,  mi;ping)

1<5<t, 1<i<s

and put By, = Tj,, B. Defined a function f on X by

1
let—s Z 15:3%

MeM(t,s,l)

and let C = {z : f(z) > £}. Since f(X) C [0,1] and [ f du = pu(B) > & we have
w(C) > %. We claim that

Cc U (BaNB,, . wN---NB
AeM(t,s,l), ae FU({1,---,5})

Apeld)- (6.12)

To see this, consider that for any z € C the set S = {M € M(t,s,l) : x € Ay} has
cardinality at least glts and therefore by the conclusion of Theorem 6.14 contains

a configuration of the form {4, A + e((xl), e A+ e,(f)}.
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Since the number of sets in the union appearing in (6.12) is no more than 257%%,

one of the sets in the union, say B’ = Ba N BA+6511) n---N BA+e£f)’ must have

measure at least # = £. One need only now check that
Tl;lBl = (B N Tp1(na) n---N Tp:(na))7

which implies that

and we are done.



CHAPTER 7

COMBINATORIAL APPLICATIONS

In this section we will give some very straightforward combinatorial applica-
tions of the multiple recurrence results obtained in Section 6. These will all be
achieved via Furstenberg’s correspondence principle. First we remind the reader of
the notions of upper and lower Banach density in Z".

Definition 7.1 Suppose that r € N and E C Z" is a set. The upper Banach
density of E is defined to be the number

: |EOHT—1{M17M1+177N1_1}|
d*(E) = lim sup = .
(E) N;— M;—00, 1<i<r [T, (Vi — M;)

The lower Banach density of E is defined to be the number

E T AM, M; +1,---.N; — 1
d.(E) = lim inf E2Aa) VIS i RN EAL }|
N;— M;—00, 1<i<r [Lie; (Vi — M;)

Furstenberg’s correspondence principle has many different versions. This one
is the one most suitable for our present context. We give a proof for completeness.

Proposition 7.2 Suppose that r € N and E C Z". There exists a measure
preserving system (X, A, g, {Tn}nez) and some A € A with u(A) = d*(E) such
that for all k£ € N and all ny,---,n; € Z" we have

d(EN(E-n)N--N(E-mng)) > p(ANTa, AN NTH,A).

Proof. Let X = {0,1}%" be the set of all functions ¢ : Z" — {0,1}. Let
T; : X — X be the right ith coordinate shift:

Tip(21, 22,7+, 2r) = @21, Zim1, 20 — 1, Zig1, 00+, 2r)-
Clearly T1,T»,- - -, T, are commuting. For n = (nq,---,n,) € Z" put
To=TM ... T,
Choose a sequence of parallelepipeds P; = szl{Mi(t), ---,N Z.(t) — 1} such that

lim [EN B
t—o0 |Pt|

= d*(E).

81
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LetfzlEEXandletA={x€X:X(0,0,---,0)=1}. Then
Jm e |Pt D 1a(Tng) = Jim 5o |Pt D, lsm (E).
ncP; ncP;

Noting that C(X) is separable and using a diagonal argument, we may by passing
to a subsequence of (P;)$2,, say (Pts)gil, assume that

lim D F(Tad) = L(f)

§— 00 |Pts cP,
n tg

exists for all f € C(X). L(f) is a positive linear functional and so by the Riesz
representation theorem is given by integration against a Borel probability measure
u. Let A be the Borel o-algebra. Note finally that L(f) = L(Tnf) for alln € Z7,
so that y is Ty-invariant, n € Z", and

p(A):/lAduzL(lA lim IZ 1a(Tné) = d* (E).

t—o0 |Pt

Now we have
p(ANTa AN---N Ty, A)

=/1A0Tn1Am---nT,.kA dp
L(

1AnT VAN NTa, A)

Sd*(Eﬂ(E—nl)ﬂ---ﬂ(E—nk)).
O

With Furstenberg’s correspondence principle in hand, we may proceed to give
our primary combinatorial application, which is a corollary of Theorem 6.3.

Theorem 7.3 Suppose that r, k,t € N, E C Z" with d*(E) > 0, and p; : Z*¥ —
Z" are polynomial mappings with p;(0) =0, 1 <4 <¢. Then

{nE vAd :d*(En (E-pi(n))Nn---N (E—Pt(n))) >0}

is a PE-IP*-get in Z*.

Proof. By Furstenberg’s correspondence principle there exists a measure pre-
serving system (X, A, pt, {Tn}nezr) and A € A with pu(A) > 0 such that for all
ng,---,n; € Z" we have

d(EN(E-m)N---N(E-ny) >p(ANTa,AN---NTh,A).
Hence we have

{nez: p(ANT, AN+ NT,wA4) >0}

C{ne yA :d*(Eﬂ (E=pi(m))n---N (E—pt(n))) >O}‘
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The latter is a PE-IP*-set by Theorem 6.3.
O

Here now is the aforementioned result, which is a more general version of
Theorem 0.11 from the introduction.

Theorem 7.4 Let t,k,7 € N and let p; : Z¥ — Z" be polynomial mappings
satisfying p;(0,---,0) = (0,---,0), 1 < ¢ < t. Suppose that s € N and that
Z" = |J;_, C; is a partition of Z" into s cells. Then there exists some L € N and
some € > 0 having the property that in any rectangle

B = [Ml,Nl] X [MQ,NQ] X -+ X [MT,NT] cZ

with miny<;<,(N; — M;) > L there exists ¢ with 1 <i < s and n € C; N B such that

d*(Cin (Ci—pr@) NN (Ci = pe(m) ) > e.
In particular, the system of polynomial equations
Xo—n

X2 —X1 = P1(Il)

X3 —X1 = Pz(n)

Xi+1 — X1 = P¢ (n)

has monochromatic solutions {xg,X1," -+, X1} with n = xo choosable from any
large enough rectangle in Z".

Proof. For any L € N, we will denote by R, the set of rectangles
B = [Ml,Nl] X [MQ,NQ] X+ X [MT,NT] cZ

with min;<;<,(N; — M;) > L. Renumbering the sets C; if necessary, let (C;)i%,,
where m < s, consist of those C; for which d*(C;) > 0. For 1 < i < m, we may

via Lemma 7.2 let (X;, A;, pi, {T,(f)}nezr) be a measure preserving system and let
A; € A; be measurable sets with p;(4;) = d*(C;) such that for any I € N and
ng,---,n; € Z" one has

d* (ci N(Ci=n)N---N(Cs - nl)) > i (Ai NTHAN---N T,S?A,.).

Let X = XX+ XX, A= A1® - @A, b= p1 X+ X fim, Ta = I(ll)x...le(lm)’
neZ  andlet A=A x---x A,,. According to Theorem 6.12, there exists € > 0
such that the set

R= {n : /L(A N Tpl(n)A n---N Tpt(n)A) > 6}
is syndetic in Z", and therefore has positive uniform lower density. Letting § > 0 be

less than the uniform lower density of R, we may choose L sufficiently large that:
a) For every B € Ry, |[BNR| > §|B|.
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b) For every B € Ry, we have
‘(Uci) OB‘ > (1-0)|B|.
i=1

It follows that for any B € Ry, one has (BN RN C;) # 0 for some i, 1 <47 < m. For
n in this set one has

d*(Cin (Ci = i) N0 (Ci = p(m) ) > i (AN T AN T 4))
> ,u(A N Tpl(n)A n---N Tpt(n)A)

> €.

O

We now, by a series of examples, show that the notions of syndeticity, IP? ,
IP*, E-IP* and PE-IP* are of strictly increasing exclusivity. As noted earlier the
odd integers comprise a IP? -set set which which is not an IP* set. Hence there are
three other cases to consider.

Example 7.5 A syndetic set which is not IPY .

Following [F2, Definition 1.1], we say that a set E C Z is thick provided its
complement is not syndetic. Equivalently, E is thick if it contains arbitrarily long
intervals. The contrapositive of Proposition 6.11 asserts that every thick set contains
an IP-set. On the other hand, any thick set obviously contains disjoint pairs of
subsets which are themselves thick. These two facts imply that if E is any thick
set we may find an IP-set (nq)qer in E such that the set E \ {nq : @ € F} is still
thick.

Let (kn)52; be an ordering of Z. We will inductively construct a sequence of
IP-sets (I',)S2; such that the union

n=1
[e's)

E= | (kn+Thn) (7.1)

n=1

contains no two consecutive integers. Choose I'; having no two consecutive integers
and with the property that the complement of 'y is thick.
Suppose one is able to chose I'y,---, T, with the property that the set

E,, = U (ko +T5)
n=1

contains no two consecutive elements and such that E¢, is thick. We will demon-
strate that one may choose I';;, 11 so as to carry these properties to the next step.
Let D, = (Ep U (Ep — 1)U (Ep 4+ 1)). Then DE, — kmy1 is a thick set and hence
contains an IP-set I';, 1 which a) contains no two consecutive elements, and b) has
the property that ((DS, — km+1) \Tm+41) = (D& \ (km41 + Time1)) is thick, so that
in particular (E,ﬁ1 \ (km+1Fm+1)) is thick.

By a) and the fact that (km41 + Tmg1) C DS, and T'yq1 contains no two
consecutive elements, the set

m—+1
Em+1 = U (kn + Fn)

n=1
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contains no two consecutive elements. By b), Ey,,; is thick. Continuing in this
fashion, the set E defined by (7.1) will contain no two consecutive integers. Hence
E¢ is syndetic. Suppose ! € Z. For some n € N we have | = k,, hence ({+T,) C E,
which implies that T'), N (E® —1) = 0. It follows that E° — [ is not IP*. Since [ was
arbitrary, E¢ is not an IP% -set .

O
We are indebted to N. Hindman for supplying the following example:

Example 7.6 An IP*-set which is not E-IP*.
Let ng = Y ;c,2% and mq = ), 2% for a € F. Every non-negative

integer k has a unique representation k = n, + mg, where o, 3 € Fp. Let

E={n,+mg: (e, B) € (F)~}.

E° fails to be E-IP*. Indeed, there is no IP-ring () such that n, + mg lies in

E° for all o, € .7-'(51). We will now show that E°¢ is IP* by demonstrating that E
contains no IP-set.

Suppose that T is an IP-set and I' C E. Let k = (no + mg) € ' and let 4
be the largest member of 3. Since I' is an IP-set, the set {n € I' : (n + k) € T'}
contains an IP-set I''. Observe that any IP-set with finite range contains 0. (The
only way an IP-set can fail to have infinite range is if all but finitely many of its
generators are 0.) But 0 ¢ E. Hence |I'| = oo and hence I'' contains some number
k' = ng +mg which is a multiple of 222, (We saw why in the proof of Theorem
0.9 appearing in Section 6.) k+ k' lies in T (therefore in E as well) and has the form
Neua' + Mgug- By the uniqueness of the representation, this is a contradiction to
the fact that o’ > 3.

O

Example 7.7 An E-IP*-set which is not PE-IP*.

First, note that given any IP*-set R and any IP-set I', one may find an IP-set
I" with I' C (RNT). Consider now the set of squares E = {n? : n € Z}. We claim
that no shift of E contains an infinite IP-set. To see this, consider that for any
infinite IP-set I" and non-zero k € I" the set I'N (T" — k) is infinite, while EN (E — k)
is finite for all k.

It follows that E° + k is IP* for every k. We claim that E°¢ is E-IP*. To see
this, suppose that we are given k IP-sets (n &))ae}',( &))aef, e (n&k))aey:. For
simplicity, let us assume that k = 2. The ideas are the same for general k. Since
E* is IP*, by passing to a subring F(!) we may assume that n(l) € E° for all
a € FU). Passing twice more to subrings we may assume that n(z) € E° and that
(n& + n(2)) € E¢for all a € F. Fix oy € FM). Pass to a subring having indices
a> o).

Since E°¢ — n((xll) is IP*, by passing to a subring we may assume that n(l)
E°¢ — ngll), that is (ng) (1)) € E°, for all a € F, Passing eight more times
to subrings we may assume that (ng (1) (2)) € E° (ng M 4 (1) + n(z)) € E°,
(ng)—i—n(l)) € E°, (n (2)+n(2)) € E°, (n (2) (1)+TL(2)) € E°, (n (1)+n(2) (1)) € E°,
(n&l) n'? + n(2)) € E°, and (n &1) ((12) 5111) (2)) € E for all o« € F). Fix
as € F (1) and pass to a subring with indices a > as.

Continue in this fashion. Having chosen oy, --,qy, pass to a subring F1)
having indices o > a; which has the property that (ng W s) € E°, (ny ? 4 s) € E°,
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and (n&l) +n? 4 s) € E° for all @ € F1) and all s in the set
{ngl) + ng) 2, € FU{ay,--- ,at}}.

Let apyq € FO.

One now checks the IP-ring we have generated, namely F?) = FU {a1,az,--},
has the property that for every «, 8 € f@(‘m we have (n&l) + ngz)) € E°. Taking for
granted that this method works for general k, we have shown that E°¢ is E-IP*.
Clearly E° is not PE-IP*.

O

Our final pair of examples are strengthenings (in different directions), of Ex-
ample 7.5.

Example 7.8 (A set in Z of Banach lower density 1 which is not an IP? -set
)

Let Ey be an IP-set in N with the property that in any interval of length 3%,
k =0,1,2,---, Ey contains at most 2¥ + 1 points. (Ey = FS((3")5%,) has this
property.) E§ being thick, we may find an IP-set E; such that the distance from
any point of E; to any point of Ey is at least 1 + 3! = 4. By then passing if
necessary to a sub-IP-set, we may assume that E; has the form E; = F'S ((an);l'ozo),
where 3 < a¢ and a;y; > 3a;, @ = 0,1,2,---. Hence any interval of length 3%+1
contains at most 2¥ 4 1 points of E;. Having chosen Ey, Fy,---,FE,_; such that
Fe = (U?:}li + E;)° is thick, choose an IP-set E, C N every point of which is
distance at least n 4+ 3™ from F and such that any interval of length 3¥*™ contains
at most 2 + 1 points of E,,. Continue the choosing.

Put E = {J,2,(n+ E,). Let now n € N and suppose I is an interval of length
3™. Then I contains:

oo
at most 1 point from U (k+ Ey),
k=n

at most 1 4 2' points from (n — 1) + E,_1,
at most 1 4 22 points from (n — 2) + E,,_o,

at most 1 + 2"~! points from 1+ E;, and

at most 1 + 2" points from Ey,

for a grand total of at most n 4+ 2”1 points from E in I. Since "+§: bl — 0 as

n — 00, this implies that E has Banach upper density 0 (it is sufficient to look at
intervals of length 3" in order to make this determination). Therefore —E U E has
Banach upper density 0 and contains, for every n € Z, a shift of an IP-set by n.
This implies that no shift of (—E U E)° is IP*, that is, (—E U E)° is not a IP% -set
. On the other hand, (—E U E)°¢ has Banach lower density 1.

O

Example 7.9 (A syndetic IP-set in N which is not IP*.)

Although this example is included more or less as a curiosity, it will provide
a natural segway into the brief discussion of topological recurrence with which we
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conclude this section. Let (d;)$2; be defined as follows: di = 1, and for n € N,
don = 2dapn—1 + 1 and dapy1 = 2d2, — 1. One may easily check that

2n—1 2n
don =2+ Y dyand dapp1 =14 di, n€N. (7.2)
k=1 k=1

For k € N, set E, = FS((d;)®;). Put E = E;. A consequence of (7.2) is that
E; (in fact, Ey for all k) is a syndetic IP-set. We will show that E is not IP* by
constructing an IP-set (nq)acr C N disjoint from E.

We claim that for all kK € N, N C E; — Ej, — Ej. Indeed, letting p € N, we
have

k+p k+p k+p
p=( Z dan) — ( Z don—1) — ( Z dan—1)-
n=k+1 n=k+1 n=k+1

Consider now 1g : N — {0,1}. We view 1 as an infinite word on the alphabet
{0,1} and claim that for each finite word w occuring in E, there exist natural
numbers 1 and m such that w occurs in 1g, beginning say at place m, at place
n, and at place m + n. To see this, let us assume that a word w of length g
occurs in 1g beginning at place p. Fix k such that dp > p + ¢. One easily checks
(recall that E is an IP-set each of whose generators are greater than the sum of the
previous ones), that w must occur beginning at every point of Ej, +p. By the earlier
claim, p € (Ex — Ej, — Ey,), which means that (p+ Ex) " ((p + Ex) — (p + Ex)) =
((p+Ex)N (E), — Ey)) is non-empty. In other words, ((p+ Ex)+ (p+ Ex)) N(p+ Ek)
is non-empty; that is, there exist m,n such that {m,n,m +n} C p+ E;. But w
occurs beginning at each point of p + Ej, proving the claim (one may check that as
a matter of fact, we are actually getting m = n here, but this is not important for
us).

We now inductively define a sequence (ny)§2; such that F.S((ng)52,) C E°.
Observe that the single letter word wy = 0 occurs in 1g, therefore by the claim
just proved, there exist mj,n; € N such that w; occurs beginning at my, ny and
ny + my. In other words, {ni,mi,n1 +m1} C E°. Let wy be the (ny + 1)-letter
word running from m; to n; + m; inclusive:

n1
—
wy = 0% ...x0.

(This word begins and ends with 0; the x’s represent the letters in between the zeros,
which can be 0’s or 1’s.) By the claim there exist ny and ms such that ws occurs
beginning at na, ma, and n2 +my. One may check now that {ny,na,na+n;1} C E°.
Let w3 be the (ny +ns2 + 1)-letter word that runs from mz to msg +nq + ne inclusive:

By the claim there exist ng and m3 such that ws occurs beginning at n3, ms and
n3 + ms. Then {nl,ng,nl +na,n3,n3 +n1,Nn3 + N2, N3 +na +n1} C E°. Continue
and put ng = Y, Ni-

O
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The constuction above provides us, as we shall presently exhibit, with an ex-
ample of a minimal (i.e. having no non-trivial closed invariant sets) topological
dynamical system (X,T), an open set U containing a point z € X, and an IP-set
(na)aer such that for no o € F does one have T"=z € U, exhibiting explicitly a
phenomenon which was shown in [F2] (see p. 183-184) to occur in all topologically
mizing systems. (If X is compact and T : X — X continuous then the system
(X,T) is called topologically mixing if for every pair of non-empty open sets A and
B the set {n: (ANT~"B) # 0} is thick.)

Here is the construction: let Ng = NU{0} and put Q = {0, 1}No, giving Q the
product topology. Let z = 1py(oy € €2, where E is the syndetic IP-set constructed
in Example 7.9, and put X = {T"z : n € N}, where T is the shift T¢(n) = £(n+1).
It is well known that X is minimal if and only if every word (that is, every finite
sequence of 0’s and 1’s) that occurs in v occurs along a syndetic set of starting
places. But this is true (see the construction above, specifically the point at which
it is pointed out that any word, if it occurs, occurs along a shift of the (syndetic)
IP-set E}). Therefore, (X,T) is a minimal system. (It is topologically mixing as
well, but we do not show this.) Letting U = {£ € X : {(0) = 1}, we have z € U,
but clearly T"xz ¢ U for all @ € F, where (ng)acr is the IP-set disjoint from E
which was constructed in Example 7.9.

Thus we see that IP-sets are not so suitable for recurrence as to intersect non-
trivially the set of returns of a point to one of its neighborhoods for (even minimal)
topological systems. They are suitable enough, however, to intersect non-trivially
the set of returns of any open set to itself in minimal topological systems, as has
been previously noted (see for example [F2], p. 53, where this fact is implicit). As a
matter of fact, it is known that for minimal systems, polynomial multiple recurrence
along IP-sets occurs for non-empty open sets (see [BL1], [BL2]). may be viewed as
a slight sharpening of the Z* case of Lemma 1.10 from [BL2].

Theorem 7.10 Suppose that we have r commuting continuous maps 71, - - - , T,
of a compact space (X, B, u) such that the system (X, T}, --,T,) is minimal. (That
is, there are no non-trivial closed sets V with V C Tz._IV, 1 <i<r) Let
k,t € N, and assume that p; ;(z1, -+, 2) € Qlzy1,- -+, 7] with p; ;(NE) C Ny
and p; ;(0,---,0) =0,1<i<r,1<j <t Forevery non-empty open set A, the
set

,

‘ _
Ra— {(m,_._,nk) € Nk . u( m (HTipi,j(nh'",nk)) 1A> > 0}
j=1

i=1
is a PE-IP*-set in INX.

Since it is well known that for any minimal system (X, Ty, -+, T}), there exists
an invariant measure p on X for which u(U) > 0 for every non-empty open set U,
Theorem 7.10 is almost a corollary of Theorem 6.3. Not quite, however, for the con-
tinuous maps T; appearing in Theorem 7.10 are allowed to be non-invertible, while
Theorem 6.3 applies only to invertible systems. Not merely for this reason, but also
to give a more complete picture of polynomial measure-theoretic recurrence along
IP-sets, we will conclude this section by extending Theorem 6.3 to non-invertible
systems (Theorem 7.12 below). We remark that Theorem 7.12 is several orders of
magnitude deeper than Theorem 7.10, which can be inferred from the results in
[BL2], where only combinatorial methods (in the guise of topological dynamics) are
employed. Nevertheless, we do point out that in light of the existence of invariant
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measures, having obtained Theorem 7.12, Theorem 7.10 follows. First, we have a
lemma.

Lemma 7.11 Suppose that we have r commuting (possibly non-invertible)
measure preserving transformations T4, - - -, T} of a probability space (X, B, u), and
let A € C. There exists a probability space (Y,C,v), commuting invertible measure
preserving transformations Si,---,S, of Y, and a set B € C such that for every
m € N and every ni,---,n,, € Ng,

p(ANTPAN---NTH A) =v(BNS_n,BN---NS_y, B). (7.3)

Proof. Since the construction of the space Y is so similar to the construction
of the space X in the proof of Theorem 7.2, we will only supply a sketch. According
to the pointwise ergodic theorem, for almost every x € X we have

. 1 - -
J}E»noo Nt [IZN] lAﬂTn_llAnnﬂT.;,lLA(Tnm) = ,u(A n Tn11A n---n TmiA) (7.4)
nc N T

for every m € N and every choice of ny,---,n,, € N”. Pick such an z and let
E={neN}:Tar € A}. Let Y = {0,1}%" and let Si,---,S, be the coordinate
shifts. Choose (see Theorem 7.2) an increasing sequence (Ng)32, C N such that

. 1 _
klgrolo N_,g Z f(Snz) = I(f)
n€(l, -, Ny]"

exists for all f € C(Y'). Then I is a positive linear functional which is invariant under
Si, 1 <4 < r, hence is given by integration against an invariant Borel measure v.
Let B={y €Y :v(0) =1}. One now derives (7.3) as a consequence of (7.4).

O

The extension of Theorem 6.3 to the non-invertible situation is, in light of
Lemma 7.11, immediate.

Theorem 7.12 Suppose that we have r commuting (possibly non-invertible)
measure preserving transformations 77, - - -, T). of a probability space (X, B, u). Let
k,t € N, and assume that p; ;(z1,---,zk) € Q[z1,- - -, zk] with p; ;(NE) C N and
pi,;(0,---,0) =0,1<i<r, 1<j <t Then for every A € B with p(A4) > 0 the

set
t r -
Ra— {(m,---,nk) € Nk M( ﬂ (HTipi,j(nl,...,nk)) IA) > 0}
=1

j=1 i=

is a PE-IP*-set in INk.



CHAPTER 8

FOR FUTURE INVESTIGATION

This short chapter is devoted a discussion of some natural open problems and
conjectures which are suggested by the results of this paper. Two such problems
(Questions 1 and 2) were posed in Chapter 6. The three we formulate here are of a
somewhat weightier nature.

As stated in the introduction, there is a difference in scope between the linear
IP multiple recurrence theorem of [FK2] and the polynomial IP multiple recurrence
theorem (we’ll take Theorem 0.9 as the model) proved above. Namely, the “linear”
result is known to hold for infinitely generated IP-systems of operators. Indeed, let
us formulate the theorem from [FK2] precisely.

Let {S;}$2, be a countable sequence of commuting invertible measure preserv-
ing transformations of a probability space (X, A, u). Putting T,, = [[;c, Si» @ € F,
the F-sequence {Ty}acr is called an IP-system of measure preserving transfor-
mations on X (notice that Toup = ToTs whenever a N f = @, and indeed this
property together with commutativity of the T,’s is an alternative characterization
for IP-systems). Two IP-systems {Tél)}ae F and {Téz)}ae  are said to commute if

(gl)Tﬂ@) = TﬂmTc(xl) for all o, 8 € F.

Theorem. ([FK2]) Let (X, A, i) be a probability space and let k& € N. For any

commuting IP-systems of measure preserving transformations {T(gj)}ae 7 1<i<kEk,
on X, and any A € A with u(A) > 0, there exists a € F such that

(

k2

k
(T) ™ 4) > 0.

=1

A full “polynomial-type” generalization of the above theorem can be formulated
by defining a variant of IP-systems, as is done in the last section of [BFM]. Namely,
we say that an F-sequence {Vy}qer in a multiplicative commutative group G with
identity I is a VIP-system if for some d (called the degree of the system if it is the
least such) we have

k
[  vilice, =1 fana=0,0<i<j<d
0<i1 < <ip<d

For d = 1, this reduces to the alternative characterization of IP-systems noted
parenthetically above. If G is a finitely generated group, any VIP-system in G is said
to be finitely generated. One may check that members of PE<4(1) \ PE<4_1)(1)
(see Definition 1.1 above) are finitely generated VIP-systems of degree d.

90
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More typically, however, VIP-systems can have infinitely many generators.
For example, let {S;;};jen be members of a commutative group and put T, =
H(i,j)Eaxa Sij, @ € F. Then {Th}acr is a VIP-system of degree (at most) 2.

We remark that the topological version of the following conjecture is known to
be true ([BL2]).

Conjecture 1. If £k € N, (X, A, ) is a probability space and {Va(")}aef,
1 <4 < k are commuting VIP-systems of measure preserving transformations of X
then for every A € A with u(A) > 0 there exists a € F with

The first place at which the proof presented in this paper breaks down if one
were to attempt to apply it to Conjecture 1 is in Theorem 2.17 (from [BFM]).
Indeed, this theorem fails to transfer to general VIP-systems. A counterexample
is given in Section 3 of [BFM]-a weakly convergent VIP-system (of degree 2) of
unitary operators whose limit is not a projection. (Weak limits of IP-systems of
unitary operators, on the other hand, must be projections, even if the systems are
infinitely generated. See [FK2], Theorem 1.7.) As it happens, in many cases it is
enough for recurrence purposes to know that a weak limit is positive.

Conjecture 2. If # is a Hilbert space, F!) is an IP-ring and {Vatacr is a
VIP-system of unitary operators on H with

IP-lim Vaf =Qf

existing weakly for all f € H, then (f,Qf) > 0 for all f € H.

Conjecture 2, if true, would already settle in the affirmative the k = 1 case of
Conjecture 1; that is, the case of single recurrence.

We will wrap things up by quoting a conjecture (from [B2], p. 56) that a
“density polynomial Hales-Jewett theorem” holds which would extend both the
partition results from [BL2] and the density version of the (“linear”) Hales-Jewett
theorem proved in [FK4]. For ¢,d,N € N let M, 4~ be the set of g-tuples of
subsets of {1,2,---, N}

Mq,va: {(ala"'aaq):a’i C {1727"'7N}d7 l=1,277q}

Conjecture 3. For any ¢,d € N and € > 0 there exists C = C(g,d, €) such

that if N > C and a set S C M, 4 n satisfies \M“,Slw\ > € then S contains a
“simplex” of the form:
d d
{(a17a27"'7aq)7(a1 U7 7027"';0411)7(0417(12U’Y 7"'7aq)7

"'7(a13a27"'7aquryd)}7

where v C N is a non-empty set and a; Ny¢ =0 for all i = 1,2,---,q.

Conjecture 3 may well represent the ultimate plateau for this particular line of
investigation.



APPENDIX

Multiparameter weakly mixing PET

In this appendix we give a very general weak mixing polynomial ergodic theo-
rem cited in the proof of Theorem 6.4 and a corollary which is needed for Theorem
6.5.

Some notation follows. Let k € N. The Banach densities we have been using
are actually generalizations of the more well-known notions of upper and lower
densities defined by, for E C ZF,

- |[EN{=N,—N +1,---,N}¥|

E)=1
E) =W = 1y

and

. JEN{=N,-N+1,---,N}¥|
dE) =l N + 1)F

(If d(E) = d(F) then we refer to this common value as the density of E.) Both the
normal notion of density and the notion of Banach density may be used to define a
mode a convergence for sequences indexed by Z*: if x is a real number and (zn)ncz*
is a sequence of reals, let us write

UD —limz, =z (respectively D — lim z, = x)
neZk neZk

if for every € > 0 the set {n € Z* : |z, — 2| > €} has Banach lower density
(respectively density) 0. (Equivalently, if for every € > 0 the set {n € Z* : |z, —z| <
€} has Banach upper density 1 (respectively density 1).)

Theorem A1l. Suppose that (X,B,u) is a probability space and {Th}nez-
is a totally weakly mixing measure preserving Z"-action generated by T1,---,T;.
Suppose that t € N and p; j(z1,---,2x) € Q[z1, -+, zx] with p; ;(Z¥) CZ,1<i <
r, 1 < j <t such that for any 1 < j; # jo2 < t, the functions

(lly"'alk)
_>(p1,j1(l17"'7lk) _pl,jg(lla"';lk)a'"7p7",j1(l17"'7lk) _pr,jg(lla"'alk))

are not constant. Suppose that fi, fa,-- -, fi € L (X, B, u). Then
t T ( ) t
. Di,j (N1, Nk i — .
v o ([ IL (I ) an) = I ( [ 1 w)
j=1 i= j=

Before proving Theorem Al we will introduce some notation and prove a few
preparatory lemmas. Much of what we do here is completely analogous to what
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we do in Section 4, the primary differences being present to accomodate a slightly
different kind of polynomial expression. The polynomial expressions we are dealing
with here are of the type

T(n) =T(ny, - ng) = [J 7). (A1)

i=1

Let us define the weight w(T) of the expression T as given by (A.1) to be the
ordered pair (¢,d), where t is the maximum index 7 such that degp; > 0 and
d = degp;. (Recall the mneumonic device introduced before Example 4.3: “(last
T, last degree)”. ) If degp; = 0 for all i then we write w(T) = (0,0).

Example A2. w(TM™ 3T ST 4m5) = (3.7), w(TITT) = (5,4).

The weights will be ordered as before, namely we write (¢,d) < (h, k) if either
t < horift = h and d < k. Analogous to the situation with the polynomial
expressions in the text, if

T(n) — H Tipi(nly'"ank) and S(n) — HTiqi(nli"'anlc)

i=1 i=1

with w(S) = w(T') = (¢,d) then we write S ~ T if p; and ¢; are identical in their
dth degree terms. ~ is an equivalence relation.

— 3412
Example A3, T/sT 2t —204 T;2+ Tt tTTEs 4 T,

For a polynomial of k variables p(nq,---,nyg), write
PP (n,h) =p® (n1,---,ng, ha, -+, i) = p(n + h) — p(n) — p(h).

(Compare Definition 2.5). For a polynomial expression T'(n) = []\_, T7 (™) write

T®)(n,h) = T(n + h)(T(n)T(h)) " = H el

Example A4. Suppose p(n) = p(n1,n2) = nini. Then

p(2) (1'1, h) = p(2) (nl, na, hl, hz) = hlng + 2ninghs + 2nshihy + nlhg

Suppose that A is a finite set of polynomial expressions of the form (A.1), and
suppose that the highest degree polynomial appearing in any of the expressions of
A is of degree d. For each weight (a,b), 1 < a < r, 1 < b < d, let mgy be the
number of equivalence classes under ~ represented in A by expressions of weight
(a,b). The r x d matrix (mgp) will be called the weight matriz of A. An r x d weight
matrix (mgp) is said to precede another r x d weight matrix (ngp) if there exists
a weight (7,7) such that m;; < n;; and mep = nep whenever (a,b) > (4,5). This
notion of “precedes” defines a well-ordering on the set of r x d weight matrices. It
is by induction on the weight matrix of A under this ordering that Theorem A1 will
be proved (PET-induction).

The following remarks will be used in the proof of Theorem Al.
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Remarks A5.

(i) If w(S) < w(T) then ST ~T.

(i) If degp(n) > 0 and h € Z* then the degree of p(?)(n, h) as a polynomial in
n is degp — 1.

(iii) If w(T) > (0,0) then the weight of 7*)(n, h) as an expression in n is less
than the weight of T.

(iv) For fixed h € Z¥ T'(n + h) ~ T(n).

(v) If p(n) and ¢g(n) are polynomials then either (a) p(n + h) + ¢(n) depends
only on h, in which case p(n) + ¢(n) is constant and degp < 1, or (b) the set of
h € ZF for which p(n+h)+¢q(n) depends only on h is of zero Banach upper density.

(vi) If T'(n) and S(n) are polynomial expressions then either (a) 7'(n+h)S(n)
depends only on h, in which case T'(n)S(n) is constant and 7T is built from polyno-
mials of degree < 1, or (b) the set of h € Z* for which T'(n + h)S(n) depends only
on h is of zero Banach upper density.

(vii) If T o4 Sy ~ So then T—1S; ~ T—1S,.

Concerning the foregoing remarks, (i) and (ii) are routinely verified, (iii) is a
consequence of (ii), (iv) is a consequence of (i) and (iii), and (vi) is a consequence of
(v). As for (v), the set of h mentioned there is actually finite, indeed can contain at
most 1 element. This however requires a proof. Zero density of the set is sufficient
for our purposes and is an easy consequence of the fact that for any non-zero, k-
variable polynomial p(n) and any t € Z the set {n € Z* : p(n) = t} is a zero
density set. (The reason this is sufficient: if p(?)(n, h) is non-zero then it is in effect
a non-zero polynomial in ng,---,ng whose coeflicients are non-zero polynomials in
h. It is only for those h at which these “coefficient polynomials” are equal to the
negative of the corresponding (fixed) coefficients in p(n) + ¢(n) that there is any
hope of p(n + h) + g(n) = p(n) + p(h) + p® (n, h) + ¢(n) depending only on h.)

We come now to the first of our lemmas. It is inspired by van der Corput’s
difference theorem. (See also Theorem 2.18 above, [B1] and [BM].)

Lemma A6. Suppose that k € N and (#n)nez+ is a bounded sequence of
vectors in a Hilbert space. If

1
D _ 1' 1' _— ns<n = 0
hezlin ( lelj\r}llgyoo lf:_ (Nz _ Mz) . E <5U x +h))
1<i<k =1 nEHi=1[Mi+17Ni]

then .
PO R S
N"fgg_k"’o [Tim; (Vi — M;)

n€Hf=1[Mi+1,Ni]

Proof. We begin with the observation that for any bounded sequence (an)pez+
of real numbers with

D —limay =0,
heZk*

we have
(2H +1 — |hi])
(2H + 1)2k

Hk
lim E i=1 anh = O7
H— o0
he[—2H,2H]*

where h = (hq,- -+, hg). In order to see, this, first note that (we don’t prove it),

[Tim @H +1—|hil) _
2 (2H +1)%* =5

he[—2H,2H]*
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i.e. this is an averaging scheme. Let § > 0 be arbitrary and put E = {h € Z* :
|an| > 0}. Then d(E) = 0, so there exists k € N such that for all H > k we have
|E N [—2H,2H]¥|
(4H + 1)k - 2k

Then

Qh

FLCH+1—|h
3 I (( |hil)

he[—2H,2H)* 2H + 1)%

k k
_ Z [Tioy (2H +1— |hi) + Z [Tioi (2H +1— |hil)

anh ah
2k 2k
he[—2H,2H]kNE (2H +1) he[—2H,2H]F\E (2H +1)

§(2H + 1)*(4H + 1)*
<
= 2k(2H +1)2k

+ 4§ < 20.

This establishes the claim. Let now € > 0 be arbitrary and let H € N be large
enough that

s LCrei-p) 1
2H + 1)2k Ni—M;—oc0 N: — M;
he[—2H,2H)* ( ) 1<i<k H ( ? 1)

Z <xn:$n+h> <eg,

nEH [M;+1,N;]
where again h = (hy, hs, - -+, hy). We have

1
s T
NM—)ooHZlN M)

k
1<i<k ne[[,_ [Mi+1,Ni]

=0.

1 1
A AT IR VRN S P D

ne[[}_ [Mi+1,N] he[-H,H]*

This fact, together with the fact that e is arbitrary, implies that we will be done if
we can show that

1 1
ey [l Y e ¥ <
M, 2H + 1)k -
i Afg—rmo H’ 1(Ni = M;) ne[[F_ [M:+1.Ni] ( ) he[-H,H]*
But
imanp || Y e X e
m sup — - < — Tnth
Ni—M;—oo | [T, (N; = M;) (2H +1)f he[-H, H]* '
1<i<r EH [M;+1,N;] s
< limsup —1 Z 1 Z z i
hS YRV n+h
Ni— Moo [ 1y (N; — M;) QH+1F . *
1<i<r ne[[}_ [M:+1,Ni] —H,
1 1
= limsup —p——— —_— Tnil, Tniq)-
Ni—Mi—oo [[5_, (N; — M;) 2 (2H +1)% 2 (oninanga)

. . l,q€[—H,H]*
1<ilr HEH [M"‘+1’N'] a€l I
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We now plan to rewrite (Znt1, Zntq) S (Tn, Znth), noting that as N; — M; — oo,
1 < i < k, the typical vector n € Hle[M,- + 1, NV;] is represented as n + 1 in
the above expression (2H + 1)* times, and it is paired with the vector n + h in
the inner product zero times if h ¢ [—2H, 2H]* and [[5_, (2H + 1 — |h;]) times if
h € [-2H,2H]*. (This is the number of solutions {/, ¢} to the equation h =1 — ¢
for I,q € [-H, H]*. Again, we don’t prove this.) So, continuing from the last line
of the previous display,

lim s 1 Z 1
= limsup —/——— —
Ni—M; Emn L (N = M;) (2H + 1)
1<i<r ne[[}_, [Mit+1,Ni]
Z H (2H +1-— |hi|)<$n;$n+h>
he[—2H,2H]* i=1

I 15, (2H +1—|h)) lim ;
- 2k

nep oo CHTL N Moo [Ty (Ni = M)

Z <xnaxn+h) <e

neH [M;+1,N;]

O

The mean ergodic theorem will be used to help establish the initial case of the
induction. Recall that a measure preserving system (X, B, i, {Tn}nez-) is called
ergodic if the only measurable invariant sets E (that is, E € B with u(EAT,E) =0
for all n € Z*) satisfy u(E) € {0,1}. The following result is classical and well-
known, so we omit the proof.

Lemma A7. (Mean ergodic theorem.) Suppose that (X, B, s, {Tn}nez-) is a
measure preserving system. Then

Pf= lim ; > ™f

N; —M; -0
1<i<k it (Vi = M)nel'[ [Mi+1,Ni]

exists in L?(X, B, p) for all f € L2(X, B, u). Moreover, P is the orthogonal projec-
tion onto the space of {Ty }nezr-invariant functions.

Lemma AS8. If (an)necz- is a sequence of reals and « is a real number such

that .
m LY a=a
Ni-Mi—oo [TV | (N; — M;)
1<i<k eH [M;+1,N;]
and )
1 2 — 2
Nz*l\rlrjﬂoo k (Nz M ) Z On «
1<i<k =1 ne[[L, [Mi+1,N:]
then

UD—hman = q.

nezr
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Proof. We have

1

lim @—/——— an — @)?
Ny~ M3 —r00 H J(N; = M) Z ( )

1<i<k ne]l_ [Mi+1,N;]

= lim —1 Z az

T Ni~Mi—oo H L(N; = M)

1<i<k nel[_ [Mi+1,N:]

1
— 2o lim @—f/——m——— an) +a®
< N;—M;—o0 H L(N; — M) z )
1<i<k ne[ [ [Mi+1,N:]

=a? -2 +a?=0.

On the other hand for any € > 0,

e a2 (a2 (0ol )).
1<i<r eH [M;+1,N;]
O

Lemma A9. If k € N, ly,---,l, € Z (not all zero), and (X, B, 4, T) is a weakly
mixing system then for any f,g € L*°(X, B, 1) we have

UD —lim | grhmt+tm f — (/f du)(/g du).

nezZk
Proof. Let an = [ gThv™t+enk f dy n = (ny,ng,---,n;) € ZF. We have

1
lim —mM —— E Qn
N; M—>ooH L(N; — M;) ' '
1<i<k eH [Mi+1,N;]

1
— lim / Tl1n1+---+l;cn;c d
N M —>ooH J(N; — M) Z 9 J dp

1<i<k ne[]7_, [Mit1.N:] (A.2)
1
= lim - Tl1n1+"'+lknkf) dli
j/£7< Ni— AL‘+“3II (Dﬂ'—-ﬂfﬁ " j{:
1<i<k neHi=1[Mi+1,Ni]

=(/gdu /fdu)-

(The last equality in this display is by Theorem A7. The quantity in parentheses
in the second to last line is equal to the projection of f onto the space of functions
invariant under T!1,T'2 ... T'*_ In other words, this is equal to [ f dp.)

Since T is weakly mixing, (X x X,B® B,u x u,T x T) is an ergodic system.
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Write as always h ® k(z,y) for h(z)k(y). Now

1
lim @ —— - Y&
N; M—>°0H 1 (N; — M) ' '
1<i<k eH [Mi+1,Ni]

, 1 iyt on 2
L A e AP D (/ng £ dp)

1<i<k = nel]_ [Mi+1,N;]
1
T A o DY
i—M;—00
1<i<k Iiza € )nEH [Mi4+1,N;]

/(9 ® g)(T x T)™tHhre(f @ f) dp x p

=[(@g® )( li S S
S Ni_l‘g"l*‘x)n]?— (Ni — M;)
1<i<k =

S @x T (s f))duxp

nEH L [Mi+1,1]

=(/g®gdu><u /f®fdu><u)
~(fow)'(fram)

Together with (A.2) and Lemma A8 this implies that

UD — hman =UD — hm grhvmt+hn £ g, — (/g d,u) (/f d,u).

ncZk
O
Proof of Theorem A1. Let us fix r,d € N and proceed to prove Theorem A1l
for a fixed totally weakly mixing Z"-action generated by 711, - - -, T, and polynomials

pij of degree at most d. Since d is arbitrary this is sufficient.

Let S;(n) = Sj(n1,---,me) = [[oey TP ™ ™) and set A = {Sy,---,S;}-
The proof will be by induction on the weight matrix of A. By using certain identities,
we may assume without loss of generality that [ f;, du = 0 for some g, 1 <ig < ¢
(as in the proof of Theorem 4.10). Hence what we are trying to establish is that

UD —lim (/ H T”’ 3(na ’"k’)fj du) =0. (A.3)

ncZk

The first non-trivial case is when A has weight matrix

10 -0

In this case A consists of a single polynomial expression which is linear in 77 and
constant in Ts,---, T, and (possibly) a constant polynomial expression. (There is
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only one linear expression because any two such would, if in the same equivalence
class under ~, differ by a constant.) Since the case in which the constant polynomial
expression doesn’t occur is trivial, we will assume that it does occur. By possibly
replacing f; and fo by appropriate images of these functions under the Z"-action,
we may assume that the constant expression is the identity and the linear expression
is given by Ti1mFlenat -+ Hence this case reduces to showing that

UD - lim ( / fiTjrmatlanatothn g, du> =0

ncZk*

given that either [ fi du =0 or [ f» du = 0. This is a consequence of Lemma A8
and establishes the initial case.

Let us assume, then, that the conclusion of Theorem A1l holds for every family
of polynomial expressions whose weight matrix precedes that of A, and proceed to
establish (A.3). Our first step is to show that

s Y Hses]-0 )

1<i<k eH IMi+1,N;] J=1

under the additional restriction that A contains no constant expressions. (Notice
that the addition or removal of a constant expression does not change the weight
matrix of A.)

We will use Lemma A6. Let 2, = H§:1 S;j(n)f;. Take L?(X,B, u) to consist

of real-valued functions only. For any h € Z*,

1

N; lMleom Z <$n;xn+h>

1<i<k ne[[_ [Mi+1,Ni]
1
= lim -
N M—mH (N — M;) Z ' (A.5)
1<i<k ne[[5_ [Mi+1,N;]

/ (ﬁSj(n)f]’) (1:[ S;(n + h)fj) d

Reindexing if necessary, let us assume that S; is of the minimal weight occuring in
A.
For h € Z*, consider the family of polynomial expressions

An ={S;(0)S7 ! (n), S;(n + h)S7 " (m) : 1< j <t}
={8;(n)S7* (n), $;(n)S{” (n,h)S; (h)S; (n) : 1 < j < t}.

We claim that the weight matrix of Ay precedes that of A.

To see this, notice first of all that, by Remarks A5 (iv) and (vii), S;(n)S; " (n) ~
S;(n +h)S;*(n), 1 < j < t. This implies that the weight matrix of Ay, is equal
to the weight matrix of the family A’ = {S;(n)S;*(n) : 1 < j < t}. In order to
see that A’ precedes A, simply observe what happens to the equivalence classes of
A under ~ upon multiplication by S;!(n). By Remark A5 (vii), every equivalence
class other than that of S; is preserved. The equivalence class of Sy, on the other
hand, can possibly be broken up into many class, but all these classes will be of
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weight less than w(S1). Hence A’ contains the same number of equivalence classes
as A for every weight greater than w(S1), and one less equivalence class of the
weight w(Sy). If follows that A’, and hence Ay, precedes A. We may therefore
apply the induction hypothesis to Ay in (A.5).

Before doing so, however, we must keep in mind that the induction hypothesis
only applies to families which contain no two expressions differing by a constant.
The collection

An ={S;(n)S; ' (n),S;(n+h)S; ' (n) : 1< j <t}
={S;(n)S; " (n),S;(n)S$” (n,h)S;(h)S; ' (n) : 1 < j <t}

need not have this property. Indeed, if S; is a linear expression for some j then
Sj(n+h) = S;(n)S;(h) differs from S;(n) by the constant S;(h) (which is again
the case after multiplication by S; ). The question is, are these the only examples
of two members of Ay, differing by a constant?

The answer is “almost”. Certainly Si(n)Sj_l(n) is not constant for 1 # j
(by the properties ascribed to A), and for the same reason one may check that
Si(n + h)Sj_l(n + h) is never constant for ¢ # j. (If m is the highest degree at
which some polynomial appearing in S; differs from the corresponding polynomial
in S; then S;(n +h) and S;(n+ h) will display the same difference at this degree.)
It is possible that for some values of h we could have S;(n) and S;(n + h) differ by
a constant for i # j, or for i« = j when S; is not linear. However, by Remark A5
(vi) there exists a set E C Z* of Banach lower density 1 such that for all h € E,
Si(n)S; !(n + h) is not constant unless i = j and S; is a linear expression.

Let now L C {1,---,t} be the set of indices ¢ such that S; is linear, and put

N ={1,---,t} \ L. (A.5) can now be written as
1
R — [ TLsi
N;—M;—00 H (N M;) Z 1—£ )fJ)
1<i<k ne[[}_ [Mi+1,N:] " J€

HS n—l—h)fj dp.

JEN

Multiply through by S;!(n) to see that this is equal to

lim ; > / II (8im)st () (185 (m) ;)

Ni— M—>ooH L(Ni = M)

1<i<k nel[[l_ IMi+1,8;] " IEL
T S5 (0)S5 @)1, (m+ B)S; (0 s
JEN

For h € FE this is equal to (applying the induction hypothesis)
H/f, h)f; du) H/fjdu

Since E is of Banach lower density 1, we therefore have shown that

o 1
D ey 2 ()
1<i<k =t Y nel]h_ [Mi+1,N:] (A.6)

heZk

:D—lim /fj h)f; du jl;[v/fj du)2
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Recall that [ f;, du = 0 for some ig, 1 < ip < ¢. If 49 € N the limit (A.6) is
clearly zero. If ¢y € L, the limit is still zero since S;, is linear in that case and by
Lemma A9

_hm/f’lo zo fl(] le’_O

heZ*

So, in any event, the limit (A.6) is zero, which by Lemma A6 gives (A.4), as desired:

lim

t
Ni_'lwi—N)OH L(N; — M) Z Hsj(n)fjHZO

1<i<k nEH [Mi—‘rl,Ni]j:l

This holds provided A = {Sj, - - -, S;} has no constant expressions. Recall that what
we are really shooting for is (A.3):

t T

We need to establish this, where A is allowed to contain a constant expression.
Utilizing just weak convergence in (A.4) we have

T

¢
. 1 i i(n1,ene)
lim @————— / TPoT ) f dﬂ) =0
N Miroo b (N; — M) . Z ( 1;[1 (1;[ ‘ ) I
<i<k G nEHi=1[Mi+1,Ni] J

(A.7)
under these more general conditions. As a matter of fact, if we apply (A.4) to the
product system (X X X, B® B, X ft, {Tn X Tnnez-), with f; replaced by f; ® fi,

1 <1 <t, we get, utilizing just weak convergence,

m  ——— 3
Ni—M;—c0 H L(N; = M)
1<i<k ne[[_ [Mi+1,Ni]

(/H Tp”("l"’”’“))f, du)2 =0.

(A.7) and (A.8) together with Lemma A8 give us (A.3), as desired. This completes
the induction step, so the theorem is proved.

(A.8)

O

Corollary A10. Let k € Z. The intersection in Z* of finitely many sets of
the form

{(nl, e,ng) € ZF ‘/H Tp”(”l"’"’“))f] du) —j:ﬁl(/fj du‘ <e},

(A.9)
where (for each of these sets independently) (X, B, u) is a probability space, r € N,
{Tu}nez- is a totally weakly mixing measure preserving Z"-action generated by
T17" 'JTT7 t € N and pi,j(xl)" '7xk) € Q[xla' ",.Z’k] with pz,](Zk) C ZJ 1<i< T,
1 < j <t such that for any 1 < j; # j2 < t, the functions

(CYREEN /Y
_>(p1,j1(l17" '7lk) _pl,jz(lla Jlk)a' o JpT,j1(l17' "7lk) _pT',j2(l17' o 7lk))



102 V. BERGELSON AND R. MCCUTCHEON

are not constant, and fi, fa, -, fr € L(X, B, u), is of Banach lower density 1.

Proof. By Theorem Al any expression of the form (A.9) has Banach lower
density 1. The result follows, therefore, from the fact that the intersection of finitely
many sets of Banach lower density 1 has Banach lower density 1. (Equivalently, the
union of finitely many sets of Banach upper density 0 has Banach upper density 0.)

O
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