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1 Some history and background

The Poincaré recurrence theorem (PRT), which one can find in virtually any
book on ergodic theory, is usually stated as follows:

PRT If T is a measure-preserving transformation of a probability space
(B, p) and A € B with u(A) > 0, then there ezists a measurable subset
Ay C A with u(Aog) = u(A) such that for any x € Ay there exists an infinite
sequence (n;)2, such that T™z € Ay for all i.

This theorem is considered so basic that some books do not give a reference
for it, and those which do either quote [P3] (cf. [Ha] or [Ho]), or refer to the
three-volume, 1000-plus-page Les méthodes nouvelles de la mécanique céleste
[P2], usually without giving the reader any more specific directions. (For the
reader’s information: the version of PRT appearing in [P2] is to be found
in Ch. 26, Vol. 3). Yet prior to 1899, the year of publication of the third
volume of Méthodes nouvelles, this theorem was at the center of quite stormy
discussions related to Zermelo’s Wiederkehreinwand t. (See [Z1], [Z2], [Bol],
[Bo2], [Bo3].) We shall return to Zermelo’s argument involving PRT later, but
first we want to formulate PRT as it appeared in Poincaré’s King Oscar Prize-
winning memoir [P1]. (This memoir was itself a source of some controversy.
See, for example, [B] or [Gor], Section 1.3.) While not resolving the (still
open) problem of the stability of the solar system, this work of Poincaré was,
according to Weierstrass, “of such importance that its publication will open
a new era in the history of celestial mechanics.” The object of our interest in
this essay, PRT, is referred to by Poincaré in the introduction to [P1] in the
following way:

J’ai étudié plus spécialement un cas particulier du probleme des trois
corps, celui ou 'une des masses est nulle et ou le mouvement des
deux autres est circulaire; j’ai reconnu que dans ce cas les trois corps
repasseront une infinité de fois aussi pres que 1’on veut de leur position
initiale, & moins que les conditions initiales du mouvement ne soient
exceptionnelles.

! According to M. Moravcsik, translator of [EE], this cumbersome word means something
like “objection or counter-argument based on reasoning involving a return to the same
state.”
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Comme on le voit, ces résultats ne nous apprennent que peu de chose
sur le cas général du probleme; mais ce qui peut leur donner quelque
prix, c’est qu’ils sont établis avec rigueur, tandis que le probleme des
trois corps ne paraissait jusqu’ici abordable que par des méthodes
d’approximation successive ou 'on faisait bon marché de cette rigueur
absolue qui est exigée dans les autres parties des mathématiques.

Here then is Poincaré’s original formulation of PRT, Théoréme I from [P1].
There are only three statements in this 270-page memoir, all of them in
Section 8, which Poincaré calls Théoréme.

Théoreme 1 Supposons que le point P reste a distance finie, et que le
volume f dxi dxo dxs soit un invariant intégral; si l’on considere une
région ro quelconque, quelque petite que soit cette région, il y aura des
trajectoires qui la traverseront une infinité de fois.

After formulating the recurrence theorem, Poincaré first establishes a combi-
natorial principle (See Principle P below), on the basis of which he proceeds
to discuss two different approaches to the question of recurrence or, as he calls
it at the beginning of Section 8 in [P1] and in the introduction to Ch. 26 in
[P2], stability in the sense of Poisson. These two approaches are, essentially,
a topological one and a probabilistic, or rather, measure preserving one; and
while the modern reader may find it hard to agree with Poincaré’s claim of
“rigueur absolue”, he will undoubtedly recognize in the discussions of Sec-
tion 8 of [P1] and Ch. 26 of [P2], the familiar elements of modern versions of
recurrence theorems. The reader is referred to [C] for the first modern rendi-
tion of PRT. See also [Hi2] and [O] for a discussion of a category statement
which, according to J. Oxtoby, “has to be read between the lines of Poincaré’s
discussion.”

The combinatorial principle mentioned above is nothing but a “crossbreed-
ing” between the pigeon-hole principle and the stationarity assumption. En-
hanced further by the possibility of repeated iterations, this principle not only
leads to PRT and some of its numerous refinements, but, as we shall try to
demonstrate, provides a simplified and unified approach to many number-
theoretical and combinatorial results. Here is the relevant passage from [P1]:

En effet le point P restant a distance finie, ne sortira jamais d’une
région limitée R. J'appelle V' le volume de cette région R.

Imaginons maintenant une région tres petite ry, j’appelle v le volume
de cette région. Par chacun des points de ry passe une trajectoire
que 'on peut regarder comme parcourue par un point mobile suivant
la loi définie par nos équations différentielles. Considérons donc une
infinité de points mobiles remplissant au temps 0 la région ry et se
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mouvant ensuite conformément a cette loi. Au temps 7 ils rempliront
une certaine région r;, au temps 27 une région ro, etc. au temps nr
une région 7,. Je puis supposer que T est assez grand et ry assez petit
pour que ry et r1 n’aient aucun point commun.
Le volume étant un invariant intégral, ces diverse régions ro, 7y, -+,
r, auront méme volume v. Si ces régions n’avaient aucun point com-
mun, le volume total serait plus grand que nv; mais d’autre part toute
ces régions sont intérieures a R, le volume total est donc plus petit que
V. Si donc on a:
V
n>—,
v
il faut que deux au moins de nos régions aient une partie commune.
Soient r, et r, ces deux régions (¢ > p). Si r, et r, ont une partie
commune, il est clair que ry et r,_, devront avoir une partie commune.

Here now is a formulation in modern terms:

Principle P Let u be a finitely additive probability measure defined on an
algebra B of subsets of a set X. Assume further that the sets A, € B, n =
0,1,2,--- satisfy, for any n > m > 0, the stationarity condition

1(An N Ap) = p(Ao N Ani)

and that u(Ag) = a > 0. Then there ezists a positive integer k < [%] +1 such
that p(Ae N Ax) > 0.

A natural question is: what is the best § = §(a) such that for some £ > 0
one has u(Ay N Ag) > 0?7 Taking any sequence of pairwise independent sets

(say, A, = ] [22 2711 C [0,1]) shows that §(a) < a®. The following

=1 an 3 9n
useful statement, which we shall call EPP (Enhanced Principle P), supplies

quite a satisfactory answer to the question above.

EPP Under the assumptions of Principle P, for any 0 < A < 1 there exists
¢ = c(a, \) such that for some 0 < k < ¢ one has u(Ay N Ag) > Aa®.

Proof. We are going to utilize an idea due to Gillis ([G]). (He worked with
o-additive measures, but, as we shall see, it does not really matter.) Given
a simple function f = Y7  a;la,, write [ fdu =1 | a;u(A;). It is trivial
to see that [ fdu does not depend on the representation of f. What is
important to us is that this limited notion of integral obeys the Cauchy-

Schwartz inequality:
? 2 2
(/fgdu) S/f du/g dp.
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Remembering that pu(X) =1, we get for g =1

([ran) < [ ran

That is all one needs to conclude the proof of EPP, since if no ¢ = ¢(a, A) with
the desired property exists, the following inequality would be contradictory
for large enough n:

n2a? = </ZZ:1:1Aid,u>2 g/(glAi)Qdu
:iu(A,-)+2 > u(AinA;).

=1 1<i<j<n -
Remark 1.1 The reader may wonder why we bothered to formulate Prin-
ciple P and its enhanced version in terms of finitely additive rather than
countably additive measures. The answer is that in many situations out-
side the realm of ergodic theory and dynamical systems one often does not
have the luxury of countable additivity. We shall see, however, that finite
additivity is quite sufficient for many applications of Principle P.

To see that Principle P is all that one needs to prove PRT as stated
at the beginning of this section, let us note first that when applied to the
sequence A, =T "A, n=0,1,2,---, where u(A) > 0, Principle P implies
the existence of k € N such that u(ANT*A4) > 0. Forn € N, let B, C A
be the set of those z € A which do not return to A under S = 7™. Formally,
B, = AN (N2, 57 (A%). (In particular, B, is measurable.) We claim that
w(Bp) = 0. Indeed, if pu(B,) > 0 then for some k € N, u(B, N S~*B,) > 0.
But then for any 2 € B, N S™*B, one has S¥z = T¥"x € B, C A which
contradicts the definition of B,,. It follows that for any n € N the measurable
subset C;, C A defined by C,, = {z € A: Im > n: Tz € A} satisfies
w(Cn) = pu(A). We are done since all the points of the set Ay = (,—, Cn
return to A infinitely many times and pu(A4y) = p(,—; Cn) = p(A).

It is hard not to agree with Marc Kac who, after remarking that “there
are many proofs of this theorem [i.e. PRT] all of which are almost trivial,”
added a footnote:

We have here another example of an important and even profound fact
whose purely mathematical content is very much on the surface. ([Kac],
p. 63)

The examples which we bring in the next section will provide further support
to the validity of Kac’s remark.
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We want to conclude this introductory section with an excerpt from [Z1] in
the translation of S.G. Brush ([Br], pp. 208-209). For Boltzmann’s response
and for the ensuing discussion, the reader is referred to [Br|, and for a neat
analysis of the Wiederkehreinwand, to [EE].

In the second chapter of Poincaré’s prize essay on the three-body
problem, there is proved a theorem from which it follows that the usual
description of the thermal motion of molecules, on which is based for
example the kinetic theory of gases, requires an important modification
in order that it be consistent with the thermodynamic law of increase of
entropy. Poincaré’s theorem says that in a system of mass-points under
the influence of forces that depend only on position in space, in gen-
eral any state of motion (characterized by configurations and velocities)
must recur arbitrarily often, at least to any arbitrary degree of approxi-
mation even if not exactly, provided that the coordinates and velocities
cannot increase to infinity. Hence, in such a system irreversible pro-
cesses are impossible since (aside from singular initial states) no single-
valued continuous function of the state variables, such as entropy, can
continually increase; if there is a finite increase, then there must be a
corresponding decrease when the initial state recurs. Poincaré, in the
essay cited, used his theorem for astronomical discussions on the sta-
bility of sun systems; he does not seem to have noticed its applicability
to systems of molecules or atoms and thus to the mechanical theory of
heat...

2 Combinatorial richness of large sets
in countable amenable groups

Recall that a discrete group G is called amenable if there exists a finitely
additive measure p on P(G) such that u(G) = 1 and for any ¢ € G and
A C G, pu(gA) = u(A) (i.e., p is left-invariant). The notion of amenability
may be defined in many equivalent ways. (One of them, via the Fglner
condition, is especially useful and will be given below.) The class of amenable
groups includes solvable (in particular, abelian) groups as well as the profinite
groups, such as, say, the group S, of finite permutations of N. On the
other hand, the non-abelian free group F;, = (a,b) is a classical example of
a non-amenable group. We cannot resist the temptation to show that all
one needs for the proof of this fact is to apply Principle P. The proof is by
contradiction. Assume that p is a left-invariant, finitely-additive probability
measure on P(Fy). Consider the partition F» = At U A~ U BT U B~ U {e},
where e is the unit of F» (= the “empty word”) and the sets A™,A~,B*, and
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B~ consist of the (reduced) words starting, respectively, with a,a™',b, and
b=l. Since u is finitely additive, one of these five sets has to have positive
measure. Clearly, u({e}) = 0. (If u({e}) = ¢ > 0 then, by shift-invariance,
n({a"}) = c for all n € Z and one gets a contradiction by taking N > %
and considering the set B = {a*, i = 0,1,2,---, N} which has to satisfy
u(B) = YN u({a’}) = (N +1)c > 1.) So assume p(A*) = ¢ > 0. (The
same proof will work for any set of the partition which happens to have
positive measure.) Let A, = b"A", n = 0,1,2,---. By shift-invariance we
have, for any n > m > 0:

1(An N An) = p(™AY N BRAT) = p(A N AY) = (Ao N Apm).

By Principle P there exists k& € N such that u(A4yNb*Ay) = u(ATNBFAT) > 0.
But this is impossible since, obviously, AT Nb*A* = 0. (No reduced word in
F; can start with both ¢ and b!)

From now on we shall, for the sake of convenience, deal exclusively with
countable groups. It should be remarked, though, that many of the exam-
ples and results which we bring in this paper extend to general discrete and
topological amenable semigroups.

A sequence of finite sets { F},}°° , is called a left Fglner sequence, if for any

g € G one has
tim 9 El

n—00 ‘ Fn|
For example, in Z, any sequence of intervals [a,, b,] with |b, — a,| — oo is
a Fglner sequence. Here is one more useful example. Let GG be the direct
sum Z,° of countably many copies of Z,. (Tt is convenient to envision Y/
as the set of infinite sequences (a1, as, -+ ) where a; € Z, and all but finitely
many a; = 0, and addition is defined component-wise modulo p.) Let F,, =
{(a1,as,---) € ZY:a; =0Vi>n+ 1}. One can easily check that {F,} is a
Fglner sequence. We shall return to this example later.

The existence of a Fglner sequence in a group is tightly related to amenabil-
ity: a (countable) group is amenable if and only if it has a left Fglner sequence.
Fglner sequences are also helpful in all kinds of Ramsey-theoretical questions
since they allow one to define a notion of largeness in a natural way.

Definition 2.1 Given a left Fglner sequence {F,} and a set E C G, the
upper density of E with respect to {F,} is defined by

_ ENF,
d¢r,}(F) = limsup | |

We shall say that a set E C G is left-large if for some left Fglner sequence
d¢r,}(E) > 0, and left-conull if d;p,}(E) = 1.
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According to the principles of Ramsey theory (see [GRS| and [Be3]), large
sets, and especially conull sets, ought to be combinatorially rich. We are
going to present a few results which substantiate this claim. Before doing
so, we collect some useful facts about sets of positive upper density in the
following Proposition.

Proposition 2.2 Let {F,} be a left Folner sequence in G. For E C G one
has:

(1) Vg € G, dir}(9F) = diry (E)

(ii) If dr,}(E) = ¢ > 0, then for any 0 < X\ < 1 there ezists g such
that dip,3 (E N gE) > A®. The element g can be chosen to lie outside
of any prescribed finite set F' C G.

Proof. (i) trivially follows from the definition of a Fglner sequence. (ii) is
just an application of the Enhanced Principle P (See Remark 1.1). g

Definition 2.3 Given a subset I' = {g;}sc; € G (where [ is a finite or
countable subset of N), an FP-set, generated by T, is the set of all finite
products of distinct elements of I' with ascending indices. More formally,
writing F(I) for the set of finite, non-empty subsets of I, we have

FP(T) = {996 -~ Giy» 11 <z < --- <ig, {ir,--- i} € F()}.

Remarks 2.4 1. There exists, of course, a dual notion of FP-sets which cor-
responds to taking products with descending indices. Our choice was dictated
by the fact that we are working with left Fglner sequences.

2. When G is an additive abelian group, one replaces products with sums and
speaks of FS-sets. FS-sets which are formed with a countable set of indices
are called, in ergodic theory and topological dynamics, IP-sets (a term coined
by Furstenberg and Weiss in [FW]). It turns out that many familiar ergodic
and dynamical results involving group actions can be extended and refined
to actions of IP-sets, which brings, in particular, some strong applications to
combinatorics and number theory. See, for example, [FW], [F2], [FK], and
[BeM2].

As the following Proposition shows, every large set contains translates of
sets of the form FP(g;)?_; with arbitrarily large n (and pairwise distinct g;’s).

Proposition 2.5 Let E C G be left-large (d(z,}(E) > 0). Then for any n

there are pairwise distinct go = e, g1, , gn sSuch that J{Fn}( ﬂ g_lE) > 0.
9€FP(g:)7,

Remark 2.6 Clearly, any = € ﬂ g~ 'E satisfies zFP(g;)%, C E.
9€FP(g:)7_,
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Proof. The proposition follows by iteration of property (ii) from Proposition
2.2 above. Let g; # e be such that dgp,}(E N gy 'E) > 0. Denoting E; =
ENgE, let g» & {e, g1} be such that d(p,}(E1 N gy E1) = dey(ENgr N
g;'ENgy'grtE) > 0. Continuing in this fashion one arrives at a sequence
go =¢€,41, -+, gn With the desired property. g

The simple Proposition which we have just proved contains, as a quite
special case, the following result, whose proof occupies more than two pages
in [Hil]. (Hilbert needed it to show that if the polynomial p(z,y) € Z|x,y] is
irreducible then, for some ¢ € N, p(z, ¢) € Z[z] is irreducible.)

Proposition 2.7 (Hilbert, [Hil]|, pp. 104-107) For any k,r € N, if N =
Ui_, Ci, then one of the C; contains infinitely many translates of a set of the
form FS(n;)k_, (where the n;’s are pairwise distinct).

Proof. Fix, in N, any sequence of intervals I, = [ay, b,] with || = |b, —
an| — oo and observe that one of the C; satisfies dy;,1(C;) > 0. Apply
Proposition 2.5. g

Hilbert’s result is a forerunner of a much deeper modern theorem due to
Hindman ([Hi3]), which claims that for any finite partition of N, one of the
cells of the partition contains an IP-set. We shall give a proof of Hindman’s
theorem below, but first we prove a related result about conull sets.

Proposition 2.8 Any left-conull set E C G contains an IP-set.

Proof. The proof uses the same iterational idea as Proposition 2.5 above,
but since this time we are dealing with a conull set, the iterations can be
arranged in a more controlled fashion.

Let us fix a left Fglner sequence with respect to which FE is left-conull,
and let us denote the corresponding upper density by d. Choose ¢; € E
arbitrarily. Clearly, d(E N g;'E) = 1. Pick go € E; = ENg;'FE so that
g2 # g1. Observe that 1 =d(E,Ng,'FE)) =d(ENg,'ENg,'ENg, g, 'E).
Notice that any g5 € Ey = F) N g, 'E has the property that FP(g;)3_, C E.
Continuing in this fashion (and taking care to choose each successive g so
that g & {91,92, - ,9k_1}), we shall arrive at an infinite sequence (g;)2,
such that for any n € N, FP(g;)", C E. We are done. g

Extending the notion of an FP-set, let us, given a set I' = {g;}ier C G
and [ € N, define an FP® _get generated by I as

FPOT) = {g{1g2 g% iy < -+ <iig, {in, -+, in} S F(I),1< ¢ < 1}

In other words, in FP®_sets bounded repetitions of generators are allowed.
Of course, FP(W-sets are just the FP-sets defined above. Note that if G is an
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abelian group with uniformly bounded torsion, then for large enough [, any
FP®_get in G is a subgroup. As before, when the notation is additive, we
shall talk about FS®-sets, and (when the set of indices I is infinite) TP()-sets.

While not every conull set in, say, Z or Z;° contains an FS®_set for [ >
1, the following Proposition gives a convenient criterion for a conull set to
contain IP®-sets for any I. We remark that (ii) below was proved by M.
Karpovsky and V. Milman in [KaM] (by a different method).

Proposition 2.9 (i) If the intervals I, = |an, b, C Z, with b, — a, —
00, satisfy [an,bn] C [ant1,bnt1] for alln € N, then any E C Z such that
di1,3(E) = 1 contains an 1PY _set for any | € N,

(ii) Let G = Z° and F, = {(a1,a9,--+) € Z5° : a, = 0 Vk > h}. If
dir,}(E) =1, then EU{0} contains an infinite subgroup (which is isomorphic
to 75°).

Proof. We shall prove (ii) only, the proof of (i) being similar. For k£ € Z\{0}
let

Elk={g€Zy; : kg€ E}.

(This definition, of course, makes sense for any abelian group G with ad-
ditive notation.) Writing d for the upper density defined by the sequence
of subgroups {F,}, observe that if d(E) = 1, then for any 1 < k < p — 1,
d(E/k) = 1. This observation will allow us to prove the desired fact by a
simple iterative process. We start with the set F; = Z;i E/k. Note that,

d(El) =1.If X1 € E1,331 ?é 0, then
S(xl) = {7;.’13'1,7;:0,1,"' D — 1} g EU{O}’

and clearly, S(z;) is isomorphic to Z,. Now let Ey = (/' ﬂfl_:lO(E—ilxl)/ig.

ia=1

Then d(E;) = 1 and any x5 € E, such that x, & S(z;) has the property that
S(:Cl,.TQ) = {i1.1‘1 +’l:2.’E2 : ’1:1,’1:2 € {0, 1, e L,P— 1}} Q EU {0}

and, in addition, S(z1,z5) is isomorphic to Z, ® Z,. At the next step one
considers the set E5 = ﬂfa_l ﬂfl_’;?:o(E—z’lxl —i9T9) /i3, picks x3 € E3 subject
to the condition z3 € S(z1,x2), and so on. It is clear that, continuing in this

fashion, one arrives at an infinite sequence (z;)$°, such that for any n > 1,

Tns1 & S(x1, 29, -+ ,xy) = {ilxl +i9To + - -+ Ty
7;1"" 77;716{071:"' ap_]-}} gEU{O}

Since, for every n, S(z1,---,x,) is isomorphic to the direct sum of n copies
of Z,, we are done. g
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3 Principle P and ultrafilters

First, we are going to introduce an important family of finitely additive proba-
bility measures, the so-called ultrafilters. As we shall see, Hindman’s theorem,
alluded to in Section 2, follows in a natural way by repeated application of
Principle P to a sequence of sets which are large with respect to a conveniently
chosen ultrafilter.

We give only the minimal amount of background information on ultra-
filters. The interested reader will find the missing details and much more
discussion in [CN], [HiS], and [Be3|.

Recall that a filter p on N is a set of subsets of N satisfying the following
conditions:

(i) 0 & p.

(ii) A€ pand A C B imply B € p.

(iii) A€ pand B € pimply AN B € p.

Now, an ultrafilter is a filter which, additionally, has the property

(iv) If r e Nand N = A; UA, U---UA,, then A; € p for some 1,

1< <r.

A rather dull class of examples of ultrafilters is provided by the so-called
principal ones, which are defined, for any n € N, by p, = {A C N:n € A}.
To construct less trivial examples, one has to resort to Zorn’s lemma. (One
can show that this is unavoidable: see, for example, [CN], pp. 161-162.)

Assume that a family C of subsets of N satisfies conditions (i), (ii), and
(iii). We claim there is an ultrafilter p such that for any C' € C, one has
C € p. To see this, let

C = {D C P(N) : D satisfies (i), (ii) and (iii), and C C D}.

Since C € C, C # 0. Also, the union of any chain in C is a member of C. By
Zorn'’s lemma, there is a maximal member p of € which, being maximal, has
to satisfy (iv).

Here is a useful example. Let I, = [an, b,] be a sequence of intervals in
N satisfying b, — a, — 00, and let C = {A C N : dy;,3(A) = 1}. C satisfies
conditions (i), (ii), and (iii), and hence there exists an ultrafilter p such that
C C p. Note that if B € p, then dy,}(B) > 0. (Otherwise, B° € C.) )

The set of ultrafilters on N is naturally identified with SN, the Stone-Cech
compactification of N. The sets A = {p € SN, A € p}, where A C N, form
a basis for the open sets in SN (and a basis for the closed sets). With this
topology AN is a compact Hausdorff space which is, in some respects, rather
an odd object. In particular, it has a dense countable subset (namely, the
set of principal ultrafilters), but has the cardinality of P(P(N)) (and hence
is non-metrizable).
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Each ultrafilter p € SN can be naturally identified with a finitely additive,
zero-one valued probability measure p, on the power set P(N). Indeed, let
tp(A) = 1if and only if A € p. From now on we are going to view ultrafilters
as measures, but we will prefer to write A € p instead of p,(A) = 1.

In addition to being a compact Hausdorff space, SN has two natural alge-
braic structures which are induced by (N, +) and (N, -). With respect to each
of these, AN is a compact left-topological semigroup. We shall concentrate
on the operation which comes from (N, +).

Definition 3.1 Given p, q € BN, define
p+q¢={ACN:{neN:(A—n)ep}eq}
where A — n is the set of all m for which m 4+ n € A.

Remarks 3.2 1. The operation just introduced is nothing but convolution
of measures! The reader should find it instructive to compare it with familiar
formulas for the convolution of measures y, v on a locally compact group G:

prvd) = [ v A)dute) = [ play™) dviy)
G G
2. One easily checks that for principal ultrafilters, the operation + corre-
sponds to addition on N.

It is not hard to verify that p + ¢ € AN and that the operation + is
associative. However, a word of warning is in place here: + is, generally
speaking, not commutative. One can actually show that the center of the
semigroup (SN, +) contains only the principal ultrafilters. One can also show
that for any fixed p, the function f,(¢) = p+ ¢ is continuous. In other words,
the operation + is left-continuous.

By a theorem due to Ellis ([El]), any compact semigroup with a left-
continuous operation has an idempotent. It is the idempotent ultrafilters
which are the key to understanding Hindman’s theorem, which we are going
to prove now. Before embarking on the proof, let us look more closely at the
notion of an idempotent ultrafilter. Given an ultrafilter p, call a set C C N
p-big if C' € p. Assume now that p € SN satisfies p+p = p. By the definition
of +, this means that

Aep<—= Aecp+p<={neN:(A—-n)ep}ep.

In other words, if p is an idempotent, then A is p-big if and only if for p-
many n € N, the shifted set (A — n) is p-big. This explains why idempotent
ultrafilters are often called “almost shift invariant”. Indeed, A is p-big if p-
almost all shifts of A are also p-big. We are now in a position to state and
prove Hindman’s theorem.
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Theorem 3.3 (Hindman, [Hi3]) If, for some r € N, N = |J._, C; then one
of the C; contains an IP-set.

Proof. We shall prove a stronger fact: if p € SN is idempotent, then any
C € p contains FS(n;)32, for some increasing sequence (n;)32,. We start by
observing that if a set C' is a member of the idempotent ultrafilter p, then the
basic conclusion of Principle P is satisfied: for some n (and actually for p-
almost all n) one has CN(C —n) € p. Since CN{n: (C—n) € p} € p as well,
we see that one can always pick n; € C so that CN(C'—ny) € p. The rest of the
proof is virtually identical to that of Proposition 2.8 and follows by iteration.
Let C; = C N (C —ny). Pick ny € C; so that Cy = C; N (Cy — ny) € p. Since
p is an idempotent, it is a non-principal ultrafilter, and hence its members
are infinite sets. This allows us always to assume that any new element
chosen from a member of p lies outside any given finite set. In particular,
we can assume that ny > n;. Now, ng € C; = C N (C — ny) implies that
FS(n;)2_, C C. Continuing in the same fashion, let n3 € Cy be such that
CyeN (02 —ng) € p, and n3 > ni +nq. Notice that ng € Cy=0C1N (01 —712) =
CN(C—-m)N(C—=n3y)N(C - (ny + ng)) implies FS(n;)?_, C C. And so
on! The sequence (n;)$°, created this way will have the property that for any
k €N, FS(n;)¥; C C. We are done. g

4 The law of return of large sets

As we saw in Sections 1 and 2, a typical application of Principle P is to ensure
that large sets return to themselves under transformations which preserve the
notion of largeness. For example, to prove PRT, one first establishes the fact
that if u(A) > 0, then for some n € N, uy(ANT"A) > 0. Hilbert’s theorem

(Proposition 2.7) hinges on a similar statement: if d(E) > 0, then for some
n# 0, d(EN(E —n)) > 0. Finally, Hindman’s theorem also starts with the
same kind of statement: if p € AN is idempotent and C' € p, then for p-many
n one has (C' —n) € p and hence C' N (C —n) € p.

In this Section we shall have a closer look at the phenomenon of the return
of large sets and discuss some of its applications and refinements.

Given an abelian group (G,+) and aset S C G,let S—S ={zx—y:z,y €
S}. One often encounters results which can be expressed as follows: if S is
large, then S — §'is very large. On many occasions, such statements are just
simple corollaries of the law of return of large sets. Perhaps the best known

result of this kind is the following useful theorem due to Steinhaus ([St]).

Theorem 4.1 If A is a Lebesgue measurable subset of R with u(A) > 0, then
A — A contains an open interval around 0.

Proof. All that one needs to demonstrate is a form of “local” Poincaré
recurrence: if p(A) > 0, then for all small enough z, u(AnN (4 —=z)) > 0.
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This, in turn, follows directly from Lebesgue’s theorem about points of density
(which says that for almost every z € A one has lim, g % =1), but
can also be shown to follow almost immediately from the mere definition of
Lebesgue measure. The following is essentially Steinhaus’ original argument.
Assuming without loss of generality that u(A) < oo, let (I,) be a sequence
of open intervals which cover A and satisfy Y u(l,) < 3u(A). It is easy
to see that one of the I, call it I, satisfies (I N A) > 2u(I) (otherwise,
p(A) <Y pwANL,) <23 u(1,) < p(A), a contradiction). But then for any
x satisfying |z| < su(I) one has p(AN(A—z)) > p((ANI)N((ANI)—=z)) > 0
(otherwise, u((ANI)U((ANT)—z)) = 2u(ANIT) > 2u(I), which would
contradict (I U (I —z)) < 2u(I)). We are done. g

The argument used in the above proof may be iterated to show that if
1(A) > 0, then for sufficiently small [z;], i = 1,2, ,k, p(AN (A —=z1) N
++M (A —z1)) > 0. This gives us the following refinement of Theorem 4.1.

Theorem 4.2 If A C R is a Lebesgue measurable set of positive measure,
then A contains an affine image of any finite subset of R.

Proof. Given F = {z1, -+ ,2;x} C R, observe that for small enough ¢ > 0,
one has
(AN (A —=tz) N (A—tza) NN (A= txy)) > 0.

This clearly implies that for some a € A

a+tF={a+tx;:i=1,2,---  k} C A.
n

Here is a more recent result which deals with different notions of large and
very large, but surely fits the pattern we are interested in.

Theorem 4.3 ([BeS]) Let F be an infinite field and T a multiplicative sub-
group of finite index in F*. (F* denotes the multiplicative group of the field
F.) Then

Fr-Ir'={z—-y:z,yel}="FL

Theorem 4.3 has a “finitistic” version which says that if n € N is fixed and
a finite field F is large enough, then {z" — y" : z,y € F'} = F. (Note that
{z",z € F*} is a multiplicative subgroup.) As a corollary, one obtains an old
result of Dickson ([D]): for fixed n and large enough prime p, the equation
2™ —y" = 2™(mod p) has non-trivial solutions (i.e. solutions with z,y, z # 0).

It was Schur who, in 1916 ([Sch]), gave a simple proof of Dickson’s result.
Schur’s proof uses the following lemma, which is a (very) special case of
Hindman’s theorem.



Poincaré Recurrence Theorem 15

Proposition 4.4 ([Sch]) If r € N and N = |J;_, C;, then one of the C;
contains x,y, z such that x +y = z.

Schur’s lemma, in turn, follows from the following result on returns of large
sets.

Proposition 4.5 Let I, = [a,,b,], n € N, be a sequence of increasing inter-
vals in N. If N =_U;:1 C;, then one of the C;, call it C, has the property that
for some x € C, dy,3(C N (C —x)) > 0.

To see that Proposition 4.5 implies Proposition 4.4, notice that if y €
CN(C —x), then z,y, and z = x + y all lie in C. For a short proof and
further discussion of Proposition 4.5 the reader is referred to [Bel]. See also
[BeM1] for a treatment of Schur-type theorems in general amenable groups.

Motivated by Theorem 4.3, one may ask whether any set A C N with
d(A) = limsup,,_,, ‘Am{lnin}‘ > 0 contains an affine image of any finite set.
The answer is yes, but the corresponding result is nontrivial and is, actually,

equivalent to the following deep theorem due to Szemerédi.

Theorem 4.6 ([Sz]) If A C N satisfies d(A) > 0, then A contains arbitrarily
long arithmetic progressions.

Corollary 4.7 If ACN, d(A) > 0, and F = {z1,--- ,zx} C N, then for
somea € Aandd €N, one hasa+dF ={a+dz;:i=1,2,--- ,k} C A.

Proof. Let m > max F'. By Szemerédi’s theorem, there are a and d such
that {a,a + d,a+2d,--- ;,a+md} C A. Clearly a + dF = {a+dz; : i =
1727:k}g14 |

Remark 4.8 One also immediately observes that Corollary 4.7, in its turn,
implies Szemerédi’s theorem. (Just take F to be of the form {1,2,---,m}.)

The proof of Szemerédi’s theorem in [Sz] is elementary but very involved.
A completely different, ergodic theoretic approach to Szemerédi’s theorem
and, indeed, to a variety of problems belonging to Ramsey Theory, was ini-
tiated by Furstenberg ([F1]), who derived Szemerédi’s theorem from a far-
reaching extension of Poincaré’s recurrence theorem, which corresponds to
k =1 in the following.

Theorem 4.9 (Furstenberg, [F1]) Let (X, B, u,T) be a probability measure-
preserving system. For any k € N, and for any A € B with u(A) > 0, there
ezists n € N such that y(ANT"ANT AN ---NT7*"A) > 0.

In order to derive Szemerédi’s theorem from Theorem 4.9, Furstenberg in-
troduced a correspondence principle which allows one to translate recurrence
results in ergodic theory into statements about returns of large sets.
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Theorem 4.10 (Furstenberg’s correspondence principle) Given a set
E C Z with

. - |[EN{M,M+1,--- ,N}|

>0,

there ezists a probability measure-preserving system (X, B,u,T) and a set
A € B, u(A) = d*(E), such that for any k € N and any ny,ng,--- ,ng € Z
one has:

d*(Em(E_nl)ﬂ---ﬂ(E—nk)) zlu(AﬂT*”lAm...mT*nkA)'

Remark 4.11 The quantity d*(E) featured in the formulation of Fursten-
berg’s correspondence principle is called upper Banach density. Clearly, if
d*(E) > 0, then for some sequence of intervals I, = [ay, b,] with |b,—a,| — oo
one has d*(E) = dy,}(F) > 0.

Furstenberg’s seminal paper started a whole new area, Ergodic Ramsey
Theory. See [F2] and [Be3] for further information. See also the recent
work of Gowers ([Gol], [Go2]) for an approach to Szemerédi’s theorem, which
provides a strong estimate for the number N(k, ), defined as the minimal
natural number such that every subset of {1,2,---,n} containing more than
on elements must contain a length £ arithmetic progression whenever n >

N(k, ).

5 A generalization of Khintchine’s recurrence
theorem

Recall that a set S in a countable abelian group G is called syndetic (or,
sometimes, relatively dense) if there exists a finite set F' C G such that
S+F ={z+y:x €S,y € F} = G. The following result, originally proved by
Khintchine ([Kh]) for measure-preserving R-actions, is usually called Khint-
chine’s recurrence theorem.

Theorem 5.1 For any invertible probability measure-preserving system
(X,B,u,T), any 0 < A< 1, and any A € B with u(A) > 0, the set

{n €Z:u(ANTrA) > AM(A)Q}
1$ syndetic.

Khintchine’s recurrence theorem immediately follows from the following
corollary to the classical von Neumann theorem.
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Theorem 5.2 For any probability measure-preserving system (X, B, u, T') and
any A € B one has:

N-1
. 1 —-n 2
NJJI\/IITi)ooN— EM;L(AHT A) > p(A)~.

In this section we are going to show that similar results hold for the second
iteration — that is, for the analogous expression for u((ANT"A)NT™(ANT™A))
—as well. Namely, we are going to establish the following theorems.

Theorem 5.3 Let (X, B, u, T) be an invertible probability measure-preserving
system. Then:

(i) For any f1, fa, f3 € L=(X, B, 1)

1 N-1

lim ———— > A(T") fo(T") f5(T ")

N-M—o0 (N — M)? e

exists in L?,
(ii) For any A € B with u(A) > 0

1 N-1

. n m n—+m 4
Nl}&ri)ooi(N_ManZ:Mu(AﬂT ANTmANT™™A) > p(A)L

Corollary 5.4 For any invertible measure-preserving system (X, B, u,T),
any 0 < A< 1, and any A € B, u(A) > 0, the set

{(n, m) € Z?: u((ANT"A) NT™(ANT"A)) > )\,u(A)4}
18 syndetic.

Remark 5.5 Although the original paper [Kh], as well as numerous books
on ergodic theory (see, for example, [Ho|,[Pal,[Pe]), derive Khintchine’s recur-
rence theorem from a much stronger Theorem 5.2, one can give a very simple
proof based on the enhanced Principle P, which, moreover, works for measure-
preserving actions of arbitrary (not necessarily amenable) semi-groups. (See
[Be3], Section 5 for details.) Unfortunately, this simple approach does not
seem to be easily modifiable to enable one to prove the two-parameter ver-
sion, Corollary 5.4.

Before embarking on the proof of Theorem 5.3 we want to make some
remarks and review some facts that we are going to use.

First of all, since Theorem 5.3 is trivial when y is atomic (and since one
can treat the atomic part of u separately), we are going to assume that



18 Bergelson

the measure p is non-atomic. Having made this assumption, we can fur-
ther assume that the measure space (X, B, u) is a Lebesgue space. To see
this, note that given the measure-preserving transformation 7" and functions
f1, fa, f5 featured in the formulation of Theorem 5.3 (in part (ii) one takes
fi = fo = f3 = 14), we may restrict ourselves to a T-invariant separable sub-
o-algebra of B, with respect to which all the functions 7" f;, n € Z,7=1,2,3
are measurable. Now, by Carathéodory’s theorem (see [R], Ch. 15, Theorem
4), any separable atomless o-algebra of subsets of a probability space is iso-
morphic to the o-algebra £ induced by Lebesgue measure on the unit interval.
This isomorphism carries 7" into a Lebesgue measure-preserving isomorphism
of £ which, by a theorem due to von Neumann ([R], Ch. 15, Theorem 20),
admits a realization as a point mapping. Having assumed that (X, B, u) is
Lebesgue, we can (and will) further assume that 7" is ergodic with respect to
p. Indeed, if the measure-preserving system (X, B, u, T) is not ergodic, one
considers the ergodic decomposition of p, defined by

H(A) = /Y to(A) dv(w), A€B,

where p,, are T-invariant ergodic measures on (X, B), indexed by elements
of a Lebesgue space (Y,D,v) (where the measure v may have atoms). It
is not hard to see that the validity of Theorem 5.3 for ergodic measure-
preserving systems (X, B, u,,T) implies its validity for (X, B, u,T). To see
that Corollary 5.4 is also implied by its validity in the ergodic case, one argues
as follows. Assume that for any w € Y one has

N-1

1
. n m n+m 4
N_I%Jrgooi(N_M)gan:Muw(AﬂT ANTTANT™™A) > p,(A)*
Then we have
1 N-1
. I0) m n-+m
N—l}\ﬂooi(N—Man:M“(AmT ANT™ANTT™A)
R
. . m m n-+m
_N_l}\ﬂooi(N—M)Qnm:M/;Mw(AﬂT ANT™ANT A)du(w)
1 , N-1
_ . n m n+m
_/Y(N—l}/lrgooi(N—M)Q _ m(ANTTANTTANT A))dy(w)

> [ ) o) > ([ mald)dvt) ' = w(ay'

We shall also need the following simple fact.
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Proposition 5.6 If the invertible measure preserving system (X, B, u,T) is
ergodic, then for any h, f,g € L>(X, B, i) one has

LI o / h(T"2) F(T™2)g(T™ ™) dyu(x)

N-M-oo (N — M)
:/hdu/fdu/gdu-

n,m=M

Proof. We show first that

AN > s raygmm) > [ fan [ gy

n,m=M

in L? as N — M — co. To verify this assertion, observe first that without loss
of generality one can assume that [ fdu = 0. It follows from von Neumann’s
ergodic theorem that for every £ > 0 there exists C > 0 such that if N — M >
C, then

1 N-1 o
H 371 2 [T )
n=M

uniformly in m. Hence, for N — M > C one has

<eg
2

Since £ was arbitrary, it follows that, under our assumptions,

1 N-1

lim ——— Y f(T™"z)g(T™z) =0,

N-M—oo (N — M)? =

which implies that, for general f € L*(X, B, ),

N-1
Nl}\ﬂwm Z (T ")g(T"z) = /fdﬂ/gdﬂ-

n,m=M
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We have now:

P e 3 [ RS due
M 2 [ MRS T i

= [ 1@ tim =5 mZ:Mf(T’”‘"m)g(T’”x)) au()

Finally, we shall need a two-parameter version of the so-called van der
Corput trick, which is often helpful in dealing with multiple recurrence. (See,
for example, [Bel] and [BeM2], Lemma A6.)

Proposition 5.7 Assume that (Tym)nmen s a double bounded sequence of
vectors in a Hilbert space. If

.1 : 1
}}I—I)I;O ﬁ Z ‘NJ}\?I—)OO m ’n,mZ—M<:L‘nym’ xn+h11m+h2> = 0’

then

N- M—>00H (N — M) Z_anmH =0

We are now ready to start the proof of Theorem 5.3. Let H = L?(X, B, 11).
We are going to utilize the well-known decomposition H = Hq & H..m, Where
the orthogonal subspaces Hq and H,.. correspond to the discrete spectrum
and weak mizing of the unitary operator induced by 7' (i.e. (Tf)(z) :=
f(T'z)), and are defined by

Hq = Span{f :3IN:Tf = \f},
N

. 1
Hom =Hg = {f €H:Yg lim > [(T"f,g)| = 0}.

n=1

Remark 5.8 We shall actually need the following equivalent definition of
Mo

How={f EH Vg F}Lm — Z [(Th+ £, g)| = 0}.

hi,ha=1
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Let f; = ¢ + i, ¢i € Ha, i € Hy, i = 1,2,3, be the corresponding
decompositions of f;. Substituting into the expression

1

o X AR A ), Q

nym=M
we shall get a representation of (%) as a sum of eight expressions of the form

N-1

Z 91(T"z)go(T™x) g3(T™ ™),

n,m=M

1
(N — M)

where each of the g;’s lies either in Hq4 or in ’Hj =H.,... We shall show first
that if at least one of the g;’s belongs to H,.., then

wim )
N—-1

lim Hﬁ Y 0 (T") g (T72)gs (T 2)|| = 0.

2

N—-M—o0
nym=M

Let, for instance, g3 € H,. (the other six cases are verified in a similar
fashion). Let zpm = g1(T"x)go(T™x)g3(T"™x). We are going to apply
Proposition 5.7. We have
<;1;n7m’ xn+h1,m+h2> = /Tnngmg2Tn+mg3Tn+h1ngm+h2gQTn+m+h1+h293 dﬂ
= / T T g1)T™(goT" go) T ™ (gsT"*"2 g5) dp.
By Proposition 5.6, this expression converges to

/ gT" g, dp / 92" gy dp / 93T gy .

Note that since g3 € H,.., one has, by Remark 5.8,

H
) 1
gim D0 [T, g0)] = 0.
hi,ha=1

Since g1, go € L*, this implies

. 1
N T e K R

and hence, in accordance with Proposition 5.7,

N-1

. 1
N—l}\/IITi)ooH (N — M)? Z xn’mHQ
n,m=M
N-1

=0.
2

1
_ . n m n+m
_Nli?iooH(N—M)‘z > 9i(I")(T"2)gs (1)

n,m=M
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Now, to finish the proof of part (i) of Theorem 5.3, we have only to show that

N-1
N_lji\?i)ooﬁ Z H(T" %) fo(T™ ) f3(T" ")
n,m=M

exists whenever fi, fo, f3 € Hq. But this is almost obvious. Indeed, each
[ € Hq has a representation f = )", ayfy, where fy(Tz) = Afy(z), and
it is enough to verify the convergence for finite approximations of the form
fi= Zle ag:z fxe, for which the convergence statement is trivial.

We now turn our attention to part (ii) of Theorem 5.3. Let A € B with
w(A) > 0. Let g =14 = f+h, where f € Hq and h € Hi = H..... Note that
since g is bounded, f is bounded as well. In view of the proof of part (i) we
have

=2

—1
: 1 n m n—+m
v v e 2 9TTR)e(Te)g(T )

1 —1
:Nfl]i\?i)oo (N = M)? F(T ) f(T") f(T" ).

n

=23

n,m=M

It follows that

= [ + b)) i S ST d

N-1

—din s > [ F@A D ) ) d

nym=M

(We used the fact that f is bounded and that the product of bounded func-
tions from Hgq belongs to Hq4.) Taking into account that the constant func-
tions belong to Hq and that 14 = g = f + h with f € Hq, h € H implies
[ fdu = [gdp = pu(A), we see that in order to prove (ii) it is enough to
establish the following.
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Proposition 5.9 Let (X, B, u,T) be an ergodic measure-preserving system.
If f € Hq, where f is bounded and non-negative, then

Jim :§sz [ rrrmrenans ([ fan)'

Proof. We shall need some basic facts about the eigenvalues and eigenfunc-
tions of the unitary operators induced by measure-preserving transformations.
(For details see [Ha] and [CFS].) Here is a summary of what we are going to
use. (Warning: some of the facts below are true for ergodic transformations
only.)

(a) The set T' = {\ € C: 3f € LA X,B,u) : Tf = Af} is a subgroup
of the unit circle. Since we are dealing with Lebesgue spaces, this group is
countable. Any eigenvalue A € I has multiplicity one.

(b) The eigenfunctions corresponding to distinct eigenvalues are orthogonal.
They have constant modulus and will be assumed to be normalized so that
each of them will satisfy the condition |f(x)| = 1 a.e. We shall also assume
that if A\;, Ao € I' and fy,, f), are the corresponding eigenfunctions, then
f/\1f)\2 = f)\l)\2'

We return to the proof of Proposition 5.9. Fix a set {f)}er of eigenfunc-
tions so that the conditions described in item (b) above are satisfied. Let
f = Y ser axfr be the expansion of our function f in this basis. Note that
fi =1ae., ay = [ fdpu, and also, for any X\ # 1, [ fndu = 0. Substituting
f =>_ayf\ into the integral

/ ST FT™ FT7 f dy

and changing the order of integration and summation, we shall arrive at the
sum of terms of the form (where the sum will be taken over p, A, 7 and v)

K= [ b, )™ (0, £ (0,1,) d
= A"y / apaxaray fo frfr fu dps
= (/\u)"(Tu)mapa,\aTa,,/f,,)m, dp.
The contribution of such a term to the double Cesaro limit
1 N—1

will be non-zero only if A\v =1, 7v = 1, and f,r, = fi = 1 (which implies
pATv = 1). The three conditions on p,A\,7,v imply A = 7, p = v, and hence
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AparGrQy = a3a?. Now, since f > 0, f is equal to its complex conjugate:
f = f, which gives

Z afa= Z axfa

Y afzi=) afs

From the uniqueness of the expansion we get a3 = a). Since A = v, we have

or

202 = a2a’ = |a,|* > 0.

— 42,2 _
a,07\070, = G50, = 030,

We showed that each time a term of the form K, gives a non-zero contri-
bution to our double Cesaro limit, this contribution is non-negative. Also, at

least one K,);, — namely, the one corresponding to p = A =7=v =1 -
gives the contribution

[andn=([ran) [ ran=([ tan)"

We are done. g

Theorem 5.3 can be easily derived from the following more general result
which may be proved by a similar argument.

Theorem 5.10 Let G be a countable abelian group and (X, B, 1, {T,}4ecc) a
probability measure-preserving system. Let {F,}>2, be a Fglner sequence in
G x G. Then:

(i) For any fi1, fa, f3 € L=(X, B, u)

lim |;—| Z f1(Tyz) fo(Thz) f3(Ty1n2)

n—oQ
9,h€F,

exists in L2.
(ii) For any A € B with u(A) > 0
1
lim — Z pANTANT,ANTypA) > p(A)*

n—00 |Fn| ohen

Corollary 5.11 For any countable abelian group G, any measure-preserving
system (X, B, u,{T,}4ec), any 0 < A < 1, and any A € B with u(A) > 0 the
set

{(9,h) € G x G: p(ANT,ANTRLANT, 5 A) > Au(A)*}

18 syndetic.
It would be interesting to see whether Theorem 5.10 and Corollary 5.11

generalize further to higher order iterations and noncommutative group ac-
tions.
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