
SUMSETS IN DIFFERENCE SETS

VITALY BERGELSON AND IMRE Z. RUZSA

Abstract. We study some properties of sets of differences of dense sets in Z
2 and

Z
3 and their interplay with Bohr neighbourhoods in Z. We obtain, inter alia, the

following results.
(i) If E ⊂ Z

2, d(E) > 0 and pi, qi ∈ Z[x], i = 1, . . . ,m satisfy pi(0) = qi(0) = 0,
then there exists B ⊂ Z such that d(B) > 0 and

E − E ⊃
m
⋃

i=1

(

pi(B) × qi(B)
)

.

(ii) If A ⊂ Z with d(A) > 0, then for any r, s, t such that r + s + t = 0 the set
rA + sA + tA is a Bohr neighbourhood of 0.

(iii) For any 0 < α < 1/2 there exists a set E ⊂ Z
3 with d(E) > 0 such that E −E

does not contain a set of the form B × B × B, where B ⊂ Z and d(B) > 0.

1. Introduction

In this paper we consider some additive properties of dense sets of integers and lattice
points in dimensions 2 and 3.

We define the upper asymptotic density of a set E ⊂ Z
d by the formula

d(E) = lim sup
n→∞

|E ∩ [−n, n]d|

(2n + 1)d
.

By taking the lower limit instead we obtain the concept of lower density d(E), and if
d(E) = d(E), we call this value the asymptotic density d(E).

We define the upper Banach density by

d∗(E) = lim
n→∞

max
t∈Zd

|(E − t) ∩ [1, n]d|

nd
.

The first author proved the following results ([1], Corollaries 3.1.1 and 3.1.2).

Statement 1.1. Let E ⊂ Z
2 and suppose that d∗(E) > 0. Then there exists B ⊂ Z

such that d(B) > 0 and

E − E ⊃ B × B.

Statement 1.2. Let A ⊂ Z and suppose that d∗(A) > 0. Then there exists B ⊂ Z such

that d(B) > 0 and

A − A ⊃ B + B.
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In the same paper the following questions are asked.
– Given a set E ⊂ Z

3 with d(E) > 0, can one find B ⊂ Z, d(B) > 0 such that

(1.1) E − E ⊃ B × B × B?

– Given a set A ⊂ Z with d(A) > 0, can one find B ⊂ Z, d(B) > 0 such that

(1.2) A − A ⊃ B + B + B?

In this paper we answer the first problem in the negative, present some results related
to the second problem and improve upon Statements 1.1 and 1.2 in different directions.
These improvements are as follows.

Theorem 1.3. Let A ⊂ Z and suppose that d∗(A) > 0. Then there exists B ⊂ Z such

that B = −B, 0 ∈ B, B has asymptotic density, d(B) > 0 and

A − A ⊃ B + B.

Theorem 1.4. Let E ⊂ Z
2 and suppose that d(E) > 0. Let pi, qi ∈ Z[x], i = 1, . . . ,m

satisfy pi(0) = qi(0) = 0 for all i. Then there exists B ⊂ Z such that d(B) > 0 and

E − E ⊃
m
⋃

i=1

(

pi(B) × qi(B)
)

.

Here for a polynomial p and a set B ⊆ Z, we write p(B) = {p(n) : n ∈ B}.
The proofs, based on some results in ergodic theory, are given in Sections 2-3.
Concerning the first question we show the following.

Theorem 1.5. For every 0 < α < 1/2 there is a set E ⊂ Z
3 with d(E) > α such that

there is no B ⊂ Z, d(B) > 0 satisfying (1.1).

The results concerning the second question will be explained in Section 4 and proved
in Sections 5-8.

2. Two summands with a density

In this section we prove Theorem 1.3. It will be derived from the following result
about dynamical systems.

Theorem 2.1. Let (X,B, µ, T ) be a probability space with a measure-preserving trans-

formation. For every Y ∈ B with µ(Y ) > 0 there exists a sequence B ⊂ N of positive

density such that

(2.1) µ
(

Y ∩ T b1Y ∩ T−b1Y ∩ · · · ∩ T bkY ∩ T−bkY
)

> 0

for every b1, . . . , bk ∈ B.

For the proof we need the following deep result of Bourgain [6].

Lemma 2.2. Let T be an ergodic measure-preserving transformation on a probability

space, f, g bounded measurable functions. The sequence

N−1

N
∑

n=1

f(T n
1 x)g(T n

2 x),

where T1, T2 are powers of T , converges almost everywhere.
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Proof of Theorem 2.1. Removing, if necessary, a subset of measure 0 from Y we may
assume that every set of the form

(2.2) Y ∩ T n1Y ∩ T−n1Y ∩ · · · ∩ T nkY ∩ T−nkY

is either empty, or has positive measure.
From Bourgain’s aforementioned theorem we know that

f(x) = lim
N→∞

1

N

N
∑

n=1

IY (x)IT−nY (x)IT nY (x)

exists almost everywhere. Clearly f(x) ≥ 0. We are going to show that that J =
∫

f dµ > 0.
By boundedness we can exchange limit and integration. Hence

J = lim
N→∞

1

N

N
∑

n=1

∫

IY IT−nY IT nY dµ = lim
N→∞

1

N

N
∑

n=1

∫

IY IT−nY IT−2nY dµ

and the positivity is implied by the ergodic Roth Theorem (see Theorem 4.27 in Fursten-
berg [8], also Section 4.2 in Bergelson [2]).

Take an x0 such that f(x0) > 0. Then the sequence

B =
{

b : x0 ∈ Y ∩ T−bY ∩ T bY
}

has positive density (exactly f(x0)). Thus every set of type (2.2) with ni ∈ B is
nonempty (contains x0), consequently of positive measure by the above assumption. ¤

To deduce Theorem 1.3, we will use a variant of Furstenberg’s correspondence prin-
ciple. For a proof of the particular version that we are giving here see Bergelson and
McCutcheon [4], Proposition 7.2. See also Furstenberg [8], p. 152.

Lemma 2.3. Let E ⊂ Z
r be a set satisfying d∗(E) > 0. Then there exists a probability

measure preserving system (X,B, µ, {T n}n∈Zr) and a set Y with µ(Y ) > 0 such that for

all k ∈ N and n1, . . . ,nk ∈ Z
r one has

(2.3) d∗
(

E ∩ (E − n1) ∩ · · · ∩ (E − nk)
)

≥ µ
(

Y ∩ T n1Y ∩ · · · ∩ T nkY
)

.

Proof of Theorem 1.3. Apply Lemma 2.3 with r = 1 and A in the place of E. Then
apply Theorem 2.1 for this system; let B0 be the set obtained. Our set will be

B = B0 ∪ (−B0) ∪ {0}.

Inequalities (2.1) and (2.3) together mean that for every finite B ′ ⊂ B we have

d∗{a ∈ A : a + B′ ⊂ A} > 0.

In particular, for b1, b2 ∈ B we find (lots of) a ∈ A such that a + b1 = a1 ∈ A and
a − b2 = a2 ∈ A, whence b1 + b2 = a1 − a2 ∈ A − A. ¤

With some modifications in the proof one can establish the following slightly more
general result.

Theorem 2.4. Let A ⊂ Z and suppose that d(E) > 0. Let r, s be given nonzero integers.

Then there exists B ⊂ Z such that B = −B, B has asymptotic density, d(B) > 0 and

A − A ⊃ rB + sB.
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Here we write
rB = {rb : b ∈ B}.

In the proof we apply Bourgain’s theorem for T1 = T r, T2 = T−s rather than T and
T−1.

3. Polynomials

In this section we prove Theorem 1.4. It will be a consequence of the following result.

Theorem 3.1. Let E ⊂ Z
2 and suppose that d(E) > 0. Let pi, qi ∈ Z[x] , i = 1, . . . ,m

satisfy pi(0) = qi(0) = 0 for all i. Then there exists B ⊂ Z such that d(B) > 0 and

(3.1) d

(

m
⋂

i=1

n
⋂

j=1

(

E −
(

pi(bj), qi(bj)
)

)

)

> 0

for every b1, . . . , bn ∈ B.

Corollary 3.2. Under the same assumptions we have

E − E ⊃
m
⋃

i=1

(

pi(B) × qi(B)
)

.

To get the Corollary, we apply the previous theorem with a system of polynomials
containing the original ones and identically 0 polynomials.

Proof of Theorem 3.1. We use Furstenberg’s correspondence principle (Lemma 2.3) for
r = 2 to find a “model” (X,B, µ, T, U), where T, U are commuting measure-preserving
transformations on X, and a set Y ⊂ X with µ(Y ) = d∗(E) satisfying

d∗

(

k
⋂

i=1

(E − (mi, ni))

)

≥ µ

(

k
⋂

i=1

TmiUniY

)

for any m1, . . . ,mk, n1, . . . , nk ∈ Z.
Like in the previous section, we may assume that any intersetion of sets of the form

TmUnY is either empty, or has positive measure.
Put

fN(x) =
1

N

N−1
∑

n=0

IY

(

T p1(n)U q1(n)x
)

. . . IY

(

T pm(n)U qm(n)x
)

.

By the polynomial Szemerédi theorem proved by Bergelson and Leibman ([3], Theo-
rem A) we know that

lim sup
N→∞

∫

fN dµ = lim sup
N→∞

1

N

∑

n<N

µ

(

m
⋂

i=1

T pi(n)U qi(n)Y

)

= c > 0.

Clearly 0 ≤ f(x) ≤ 1 for all x ∈ X. Let f(x) = lim supN→∞
f(x). By Fatou’s lemma

we have
∫

f dµ ≥

∫

lim sup fN dµ ≥ lim sup

∫

fN dµ ≥ c > 0.

Hence for some x0 we have

f(x0) = lim sup
1

N

N−1
∑

n=0

IY

(

T p1(n)U q1(n)x
)

. . . IY

(

T pm(n)U qm(n)x
)

≥ c > 0.
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This implies that the set

B =
{

b : x0 ∈ T p1(b)U q1(b)Y
}

has positive upper density, even

(3.2) d

(

m
⋂

i=1

n
⋂

j=1

(

E −
(

pi(bj), qi(bj)
)

)

)

≥ µ

(

m
⋂

i=1

n
⋂

j=1

T p1(bj)U q1(bj)Y

)

> 0.

whenever b1, . . . , bn ∈ B. ¤

4. Differences and triple sums

To formulate our results concerning the second question we introduce certain para-
metric statements (that may hold for some values of the parameters and fail for others).
We will consider the more general inclusion

(4.1) A − A ⊃ rB + sB + tB

with r, s, t ∈ Z. We will consider three variants, the density version, the effective density
version and the finite version.

Density version. For integers r, s, t and α ∈ (0, 1), D(r, s, t, α) means that for every
set A ⊂ Z with d(A) = α one can find B ⊂ Z, d(B) > 0 satisfying (4.1).

Effective density version. For integers r, s, t and α, β ∈ (0, 1), E(r, s, t, α, β) means
that for every set A ⊂ Z with d(A) > α one can find B ⊂ Z, d(B) > β satisfying (4.1).

Finite version. For integers r, s, t, real α, β ∈ (0, 1), and positive integer n,
F (r, s, t, α, β, n) means that for every set A ⊂ {1, 2, . . . , n} with |A| > αn one can
find B ⊂ Z, |B| > βn satisfying (4.1).

Concerning the (most interesting) density case we have only a partial answer.

Theorem 4.1. Let r, s, t be nonzero integers such that r+s+t = 0 and let α ∈ (0, 1/2).
The statement D(r, s, t, α) is false.

The proof will consist of showing that rB + sB + tB is a Bohr neighbourhood of
0 (the main result of this part), while A − A may not be one. The proof is given in
Sections 4-6.

If r+s+ t 6= 0, then rB +sB + tB may not be a Bohr neighbourhood of 0 for obvious
reasons. For certain triplets, namely when r + s = 0, one can show the weaker property
that it is a Bohr neighbourhood of some integer. If we could establish the existence of
an A such that A − A is nowhere dense in the Bohr topology, this would disprove the
density version for some further values. We do not even have a conditional argument
for the case r = s = t = 1, though the results below suggest a negative answer.

Theorem 4.2. Let r, s, t be nonzero integers, α ∈ (0, 1/2) and β ∈ (0, 1). The statement

E(r, s, t, α, β) is false.

Theorem 4.3. Let r, s, t be nonzero integers, α ∈ (0, 1/2) and β ∈ (0, 1). There is an

n0 = n0(r, s, t, α, β) such that F (r, s, t, α, β, n) is false for n > n0.

Observe that the bound 1/2 in these theorems is best possible. For instance, if
d(A) > 1/2, then the sets A and A + x cannot be disjoint, thus A − A = Z. This
simple observation does not immediately resolve the case α = 1/2. If d(A) = 1/2, then
easy arguments show that there is an integer m such that all integers n not contained
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in A − A satisfy n ≡ m (mod 2m). One can see that E(r, s, t, 1/2, β) is true with
β = 1/

(

2(|r| + |s| + |t|)
)

; we do not know whether it holds with an absolute constant
β. To clarify the transition of behaviour in the finite case around α = 1/2 may not be
easy (but does not seem to be very important).

These results will be easy consequences of some known results about the length of
arithmetical progessions in sumsets. Details are given in Section 8.

5. The number of solutions of a linear equation

In this section we prove an auxiliary result.

Lemma 5.1. Let r, s, t be nonzero integers satisfying a + b + c = 0. For every positive

ε there exists a δ > 0 and an N0 with the following property. Whenever we take a set

X ⊂ [1, N ] of integers such that |X| ≥ εN and N > N0, there are at least δN 2 triplets

of distinct integers x, y, z ∈ X satisfying the equation rx + sy + tz = 0.

For the particular equation x + y = 2z, that is, three integers in an arithmetic
progression, this is a result of Varnavides [12]. Our proof essentially follows his argument
with small changes.

Proof. Take an integer l with the following property: whenever we take a set Y ⊂ [1, l]
of integers such that |Y | ≥ (ε/2)l, the equation rx+sy+sz = 0 has at least one solution
in distinct integers x, y, z ∈ Y . The existence of such an integer follows immediately
from Szemerédi’s theorem on arithmetic progressions, or one can adapt any method
used to prove Roth’s theorem on three-term arithmetic progressions.

First we show that for every set Y ⊂ [1, l] of integers the equation rx + sy + sz = 0
has at least |Y | − (ε/2)l solutions in Y . This is an easy induction on m = |Y |. For
m < (ε/2)l the claim is empty, for m = 1 + [(ε/2)l] it is the assumption. If we know
the statement for m, to establish it for m + 1 we take an m + 1 element set Y , select a
solution x, y, z, and apply the induction hypothesis for the m element set Y \{x}.

Since our equation is invariant under linear transformations, the same inequality
applies for any set Y contained in an arithmetic progression of length l.

Next consider all arithmetic progressions of length l and difference ≤ D (D will be
specified later) which have at least one common element with X; let they be P1, . . . , Pk.
Since the starting point must lie in the interval [1 − (l − 1)D,N ], there are < N + lD
possibilites for it; combined with the D possible differences, we see that

(5.1) k < D(N + lD).

Write Yi = Pi ∩ X. Each Yi contains at least |Yi| − (ε/2)l solutions of the equation;
this makes altogether

∑

(

|Yi| −
ε

2
l
)

=
∑

|Yi| − εkl/2

solutions. Here a solution may be counted multiply. A solution (x, y, z) is counted
as many times as the number of l-term arithmetic progressions containing it. This
multiplicity is less than l2. Indeed, if we fix that x is the i’th term and y is the j’th,
where 1 ≤ i < j ≤ l, this determines the progression uniquely. Hence the total number,
say R, of solutions satisfies

(5.2) R ≥
1

l2

(

∑

|Yi| −
εkl

2

)

.
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We have
∑

|Yi| = lD|X|,

since each element of X is contained in exactly lD arithmetic progressions of the pre-
scribed kind; we can fix arbitrarily the difference d ≤ D and the position 1 ≤ i ≤ l of
an element in the progression. By substituing this into equation (5.2) we obtain

R ≥
1

l

(

D|X| −
εk

2

)

.

On substituting (5.1) we arrive at

(5.3) R ≥
D

l

(

|X| −
ε

2
(N + lD)

)

.

Now put D = [N/(2l)]. If N > 6l, then this yields D ≥ N/(3l) and (5.3) implies

R ≥
ε

12l2
N2,

thus the lemma is proved with N0 = 6l and δ = ε/(12l2). ¤

6. Bohr neighbourhoods in a triple sum

In the Bohr topology on Z, a basic neighbourhood of 0 is a set of the form

(6.1) U(u1, . . . , uk, ε) = {n ∈ Z : ‖nui‖ < ε for i = 1, . . . , k.}

Here ε is an arbitrary positive number, u1, . . . , uk are arbitrary reals and ‖x‖ denotes
the distance of x from the nearest integer. (Neighbourhoods of other integers are defined
by translation.)

Here we prove the main result of this part.

Theorem 6.1. Let r, s, t be nonzero integers satisfying r + s + t = 0. Let B be a set of

integers having positive upper Banach density and put S = rB + sB + tB. The set S is

a Bohr neighbourhood of 0.

The proof is similar to Bogolyubov’s [5] for the analogous statement for the set
A+A−A−A. Like him, we will use exponential sums, and consider first sets of residues,
then dense finite sets, finally infinite sets of positive density. The main difference is that
the symmetry of his set makes the exponential sum easy to estimate at 0, and in lack
of this we need some extra arguments; here we will use the lemma from the previous
section.

First we consider residues. We use Zm = Z/mZ to denote the set of residues modulo
m. We cannot define topology here, but we will need sets whose definition is similar to
definition (6.1) of a Bohr neighbourhood.

Definition 6.2. A Bohr k, η-subset of Zm is a set defined by

(6.2) V (v1, . . . , vk, η) =
{

n ∈ Zm :
∥

∥

∥

nvi

m

∥

∥

∥
< η for i = 1, . . . , k.

}

.

Here η is a positive number and v1, . . . , vk ∈ Zm.

Theorem 6.3. Let r, s, t be nonzero integers satisfying r + s + t = 0, and let m be a

positive integer satisfying (m, rst) = 1. Let X ⊂ Zm be a set satisfying |X| ≥ εm with

some ε > 0. Put S = rX +sX + tX. The set S contains a Bohr k, η-set with an integer

k and a positive η that depend on r, s, t, ε but not on m.
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Proof. For x ∈ Zm write

f(x) =
∑

n∈X

e(nx/m),

where, as usual, e(t) = e2πit. Clearly n ∈ S holds if and only if

(6.3) R(n) =
1

m

∑

x∈Zm

f(rx)f(sx)f(tx)e(−nx/m) > 0,

and furthermore, R(n) is exactly the number of triplets x, y, z ∈ X such that n =
rx + sy + tz. In particular, R(0) counts the triplets satisfying rx + sy + tz = 0. By
representing each element of X by an integer in [1,m] and applying Lemma 5.1 we see
that R(0) ≥ R > δm2 for m > N0(ε). For m ≤ N0 we can assert that R(0) ≥ |X|, as
R(0) counts also the trivial solutions. Hence we have always R(0) ≥ δ ′m2 with, say,
δ′ = min(δ, ε/N0). Consequently for a general n we have

R(n) = R(0) −
1

m

∑

x∈Zm

f(rx)f(sx)f(tx)
(

1 − e(−nx/m)
)

≥ δ′m2 −
1

m

∑

x∈Zm

f(rx)f(sx)f(tx)|1 − e(−nx/m)|.
(6.4)

To estimate this sum, observe first that by Plancherel’s formula we have

(6.5)
∑

|f(x)|2 = m|X| ≤ m2,

hence the Cauchy-Schwarz inequality yields

∑

x∈Zm

|f(sx)f(tx)| ≤
(

∑

|f(sx)|2
∑

|f(tx)|2
)1/2

=
∑

|f(x)|2 ≤ m2.

(Here we use the assumption (s,m) = (t,m) = 1, though we would not lose much by
dropping it.) By comparing this to (6.4) we see that n ∈ S for every n which has the
following property:

(6.6) |f(rx)||1 − e(−nx/m)| < δ′m

for all x.
To find such values of n, observe first that |1 − e(−nx/m)| ≤ 2 always, so (6.6)

automatically holds for those values of x for which |f(rx)| < δ ′m/2. Now consider
those for which |f(rx)| ≥ δ′m/2. By (6.5), the number of such values of x is at most
(2/δ′)2; denote them by u1, . . . , uk. We have a bound k ≤ (2/δ′)2 for this number, and
this bound is independent of m.

For these values we shall require that

|1 − e(nuj/m)| < δ′/2.

Since |1− e(y)| ≤ 2π‖y‖ for every real y, it is sufficient to assume that ‖nuj/m‖ < η =
δ′/(4π) for all j = 1, . . . , k. This number η is also independent of m and this concludes
the proof. ¤

Our calculations were far from optimal at several places. Since we did not give any
estimate for δ, and if we did, it would be of the form e−ε−c

with some constant c, the
possible savings, which are powers of ε, would not matter much.
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Lemma 6.4. Let r, s, t be nonzero integers satisfying r+s+t = 0, and let X ⊂ [−N,N ]
be a set of integers satisfying |X| ≥ εN with some ε > 0. Put S = rX + sX + tX.

There are real numbers u1, . . . , uk and η > 0 such that the set S contains a set of the

form

(6.7) U(u1, . . . , uk, η) ∩ [−N,N ].

Here k and η depend on r, s, t, δ only.

Proof. Take an integer m satisfying

m > (|r| + |s| + |t| + 1)N, (m, rst) = 1.

We can find such an m below (|r| + |s| + |t| + 1)N + |rst|, so we have |X| > ε′m with
ε′ = ε/(|r| + |s| + |t| + 1 + |rst|). We apply the previous theorem to this set X, now
regarded as a set of residues modulo m, with ε′ in the place of ε. We get a k and an
η, and residues v1, . . . , vk such that for every integer n satisfying ‖nvi/m‖ < η for all i
there are x, y, z ∈ X such that

n ≡ rx + sy + tz (mod m).

If |n| < N , then |n− (rx + sy + tz)| < m, thus the congruence becomes equality. Thus
we proved the theorem with ui = vi/m. ¤

Proof of Theorem 6.1. As d∗(A) > 0, there is a constant ε > 0 and a sequence of integers
zN such that the sets

XN = (A − zN) ∩ [1, N ]

satisfy |XN | > εN . An application of the preceeding lemma yields the existence of real

numbers u
(i)
1 , . . . , u

(i)
k and an η > 0 such that every integer n satisfying

|n| ≤ N, ‖nu
(i)
j ‖ < η for j = 1, . . . , k

belongs to S. (Here we use r + s + t = 0, so that the translations by zN cancel.) By

periodicity of the fractional part we can assume that u
(i)
j ∈ [0, 1] for all i, j.

Now define WN ⊂ [0, 1]k as the set of vectors (u1, . . . , uk) which have the following
property: every integer n satisfying |n| ≤ N and ‖nui‖ ≤ η/2 for i = 1, . . . , k belongs
to S. This defines a closed set. Clearly WN ⊃ WN ′ for N > N ′, so we have a decreasing
sequence of closed sets. We also know that WNi

6= ∅, hence

W =
∞
⋂

N=1

WN 6= ∅.

Let (u1, . . . , uk) be any element of W . Then we have

B(u1, . . . , uk, η/2) ⊂ S

as wanted. ¤

7. Proof of Theorems 4.1 and 1.5.

Proof of Theorem 4.1. Theorem 4.1 asserts, for any given α < 1/2, the existence of a
set A such that d(A) > α and A−A contains no subset of the form S = rB + sB + tB
with d(B) > 0. We will find actually a set A with d(A) > α (though this is not really
stronger, see Section 8).
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By Theorem 6.1 we know that S is a Bohr neighbourhood of 0. Thus it is sufficient
to find a set A for which A − A is not. The existence of such a set is implied by the
following theorem of Kř́ıž ([9], Theorem 3.1).

Lemma 7.1. For every ε > 0 there is a shift-invariant graph on Z with chromatic

number ∞ and containing an independent set of density > 1/2 − ε.

We denote this set by A; thus we can achieve d(A) > α. The assumptions that this
is an independent set and the graph is shift-invariant mean that two integers x, y are
not connected if x − y ∈ A − A. Hence the property that the chromatic number is
infinite yields that there is no partition of the integers into finitely many subsets, say
Z = Z1 ∪ · · · ∪ Zl such that Zi − Zi ⊂ A − A for all i. This implies that A − A is not a
Bohr neighbourhood of 0. Indeed, if it were, say we had

A − A ⊃ U = U(u1, . . . , uk, η),

then we could find a partition (Zi) in the following way. Cover the unit cube [0, 1]k by
cubes of side < ε, say T1, . . . , Tl. Define Zi by

Zi = {n : ({u1n}, {u2n}, . . . , {ukn}) ∈ Ti}.

Clearly
⋃

Zi = Z and Zi − Zi ⊂ U for all i. ¤

Proof of Theorem 1.5. Theorem 1.5 asserts the existence of a set E ⊂ Z
3 with d(E) > α

such that E −E contains no subset of the form B ×B ×B, d(B) > 0. We will actually
find a set with d(E) > α.

To see this, take a set A of Theorem 4.1, with any choice of r, s, t, say r = s = 1,
t = −2. Define

E = {(x, y, z) : rx + sy + tz ∈ A}.

It is easy to see that d(E) = d(A), and the inclusion E − E ⊃ B × B × B would
immediately yield A − A ⊃ rB + sB + tB, which we have excluded. ¤

8. The effective and finite versions

In this section we prove Theorems 4.2 and 4.3.
The proof will be based on two results concerning arithmetic progressions in sumsets.

The first one is from Ruzsa [11].

Lemma 8.1. Let ε be a positive number. For every prime p > p0(ε) there is a symmetric

set X of residues mod p such that |X| > (1/2−ε)p and X+X contains no arithmetical

progression of length

(8.1) exp(log p)2/3+ε.

The other is a result of Freiman, Halberstam and Ruzsa [7]. We quote a (slightly
weakened) version of Theorem 3, with some change in the notation.

Lemma 8.2. Let p be a prime, Z a set of residues modulo p, |Z| ≥ γp with 0 < γ < 1.
The set Z + Z + Z contains an arithmetic progression of length at least pδ, with δ
depending on γ only.

(The theorem gives an explicite value of δ and an estimate for the number of progres-
sions, which we do not need.)

First we deduce a slight generalization.
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Lemma 8.3. Let p be a prime, Y1, Y2, Y3 sets of residues modulo p, |Yi| ≥ βp with

0 < β < 1. The set S = Y1 + Y2 + Y3 contains an arithmetic progression of length at

least pδ, with δ > 0 depending on γ only.

Proof. . By a standard averaging argument we find x, y ∈ Zp such that Z = Y1 ∩ (Y2 +
x) ∩ (Y3 + y) has at least β3p elements. We apply the previous lemma to this set with
γ = β3. The arithmetic progression found in this way gives our arithmetic progression
by a shift, since clearly Y1 + Y2 + Y3 ⊃ Z + Z + Z − (x + y). ¤

The proof of [7] could also be modified to directly handle the case of different sum-
mands.

We now give a modular analog of Theorems 4.2 and 4.3.

Lemma 8.4. Let r, s, t be nonzero integers, α ∈ (0, 1/2) and β ∈ (0, 1). There is a

p1 = p1(r, s, t, α, β) such that for every prime p > p1 there is a set X ⊂ Zp such that

|X| > βp and there is no Y ⊂ Zp satisfying |Y | > βp, rY + sY + tY ⊂ X − X.

Proof. If p > max(|r|, |s|, |t|), then Y1 = rY , Y2 = sY , Y3 = tY all have > βp elements.
Thus S = rY + sY + tY contains an arithmetical progression of length pδ with some
δ = δ(β). If p > p1(1/2−α), then we can find X such that the length of any arithmetic
progression in X + X = X −X is less than the quantity in (8.1). So this set X is good
as soon as p1 is large enough to guarantee

exp(log p)2/3+ε < pδ

for p > p1. ¤

Proof of Theorem 4.2. We have to construct, for given r, s, t, α, β, a set A with d(A) > α
such that A − A does not contain any set of the form rB + sB + tB with d(B) > β.

To this end take a set X produced by the previous lemma and let A be the set of
those integers whose residue modulo p lies in X. Clearly d(A) = |X|/p > α. Take
any set B such that rB + sB + tB ⊂ A − A. Let Y be the set of residues modulo
p of elements of B. Then clearly rY + sY + tY ⊂ X − X, thus |Y | < βp and hence
d(B) ≤ |Y |/p < β. ¤

Proof of Theorem 4.3. We have to construct, for given r, s, t, α, β and n > n0, a set
A ⊂ [1, N ] with |A| > αN such that A − A does not contain any set of the form
rB + sB + tB with |B| > βN .

To this end take a number α′ ∈ (α, 1/2), and apply the lemma above with α′ in the
place of α for the largest prime p < N . For sufficiently large N we have α′p > αN ,
thus the set X obtained satisfies |X| > αN . Let A be the set of those integers in [1, p]
whose residue modulo p lies in X. Clearly |A| = |X| > αN .

Take any set B such that rB +sB + tB ⊂ A−A. Let Y be the set of residues modulo
p of elements of B. Then clearly rY + sY + tY ⊂ X − X, thus |Y | < βp < βN .

Take any two elements of B, say x, y. Since both rx+sx+ tx and ry +sx+ tx belong
to A, their difference is at most p − 1. Thus |x − y| ≤ |rx − ry| ≤ p − 1, that is, the
elements of B are pairwise incongruent modulo p, hence |B| = |Y | < βN as wanted. ¤

9. Concluding remarks and open problems

1. Density. For uniformity, we formulated our results with upper density. However,
as far as difference sets are concerned, it does not matter what concept of density we
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use. Given a set A with upper Banach density α, one can find another set A′ with
asymptotic density α, which has the following property: for any finite F ⊂ A′ there is
an x such that F +x ⊂ A. In particular, this implies that A′−A′ ⊂ A−A. This can be
found for the case of sets of positive integers (where the definition of density is modified
in the natural way) in Ruzsa [10]; the case of Z or Z

d can be handled similarly. It can
also be found (for Z) in Furstenberg’s book [8], Theorem 3.20 or in [1], Theorem 2.2.

2. Bohr neighbourhoods. The proof in Section 6 worked through deciding
whether a sumset of a certain type is or is not a Bohr neighbourhood of 0. The proofs
in Section 7 were seemingly different. However, the proof of Lemma 7.2 actually works
through finding a shifted Bohr k, η-set in the sumset. A long arithmetic progression is
then easily found by Dirichlet’s approximation method. So there is a closer connection
with the proof in section 6 than the wording shows.

The unsolved cases of the density case are closely connected with the following un-
solved question. If A ⊂ Z, d(A) > 0, must A − A be a neighbourhood of some number
in the Bohr topology? By Kř́ıž’ theorem we know it is not necessarily a neigbourhood
of 0, and 0 is the “most natural difference”. We also know that the difference set of a
large set in Zp may not contain a Bohr k, η-set. These results suggest a negative answer.
However, so far we could not find a way to connect the finite and infinite cases.

If the answer to this question is positive, that is, A−A is always a Bohr neigbourhood,
then one can easily deduce that it contains sets of the form rB +sB + tB with d(B) > 0
for arbitrary prescribed r, s, t. If the answer is negative, we are confident that the answer
to the inclusion question is negative as well. We remark that (in the case r + s + t 6= 0)
the condition d(B) > 0, or even the stronger condition d(B) > 0 does not imply that
rB + sB + tB is a Bohr neighbourhood; indeed, it may have large gaps, while a Bohr
neighbourhood always has bounded gaps. We do not know whether the assumption
d(B) > 0 suffices.

Acknowledgement. The authors are grateful to Prof. Norbert Hegyvári for direct-
ing their attention to the paper of Varnavides and to the referee for some corrections.
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