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Abstract

We extend the weakly mixing PET (polynomial ergodic theorem) obtained in [2] to
much wider families of functions. Besides throwing new light on the question of ”how much
higher degree mixing is hidden in weak mixing”, the obtained results also show the way to
possible new extensions of the polynomial Szemerédi theorem obtained in [6].

1 Introduction

A measure-preserving system (X, B, u,T') (in this paper we will always assume that (X, B, u)
is a probability space) is called weakly mizing if for any A, B € B one has

N
Jim = ST u(ANTB) ~ w(A)u(B)| = 0.
n=1
The notion of weak mixing has many equivalent forms and plays an important role in the
study and applications of dynamical systems. In particular, weak mixing, and more generally,
relative weak mixing play crucial role in the analysis of general measure-preserving systems
which is behind Furstenberg’s ergodic approach to Szemerédi’s theorem (see [13]). In particular,

Furstenberg proves in [13] the following theorem.

Theorem 1.1 If an invertible measure preserving system (X,B,u,T) is weakly mizing then
for any k € N and for any Ao, ..., Ar € B one has

N
: 1 n "
Jim Z:IM(AO NT"Ar N NTHAL) = p(Ag)u(Ar) - p(Ag). (1)
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Theorem 1.1 can be given the following equivalent form. (In accordance with the well estab-
lished tradition, we write T'f for f(T'z).)

Theorem 1.2 If (X,B,u,T) is an invertible weakly mizing system, then for any k € N and
any fl?f?a"'?fk‘ € LOO(X,BHUJ)

N k
1 n n n
NE T[T fp--- T* fk—H/fz‘dM =0.

2

lim
N—oo

The following extension of Theorem 1.2 which was proved in [2] shows that weak mixing implies
weak mixing of higher orders along polynomials.

Theorem 1.3 Suppose that (X, B, u, T) is an invertible weakly mixing system and let p1, . . ., pg
be pairwise essentially distinct polynomials (i.e. p; — p; # constant for all i # j) with rational
coefficients and taking on integer values on the integers. Then for any fi, ..., fr € L=(X, B, u)
one has:

lim
N—oo

= 0. 2)
2

N k

1

~ Z Tpl(n)flTp2(”)f2 .. -Tpk(n)fk — H / fidp
n=1 i=1

The goal of this paper is extending Theorem 1.3 to classes of sequences which are more general
than those of the form p(n), where p is a polynomial satisfying p(Z) C Z. While there are
relatively few candidates among sufficiently regular functions which have the property that
they take integer values at integers', one may try to introduce into the picture sequences of
the form [g(n)], where g is a continuous eventually monotone function which is not too slow
and not too fast?, and satisfies some natural regularity conditions. As we will show, functions
which "fit the profile” can be found in the family of the so called tempered functions which
we will presently define. Before starting with technicalities (which are needed in order to give
precise formulations) we want to note that our typical theorems will look very much like (2)
with p;(n) replaced by [g;(n)], where the g; will be coming from quite wide families of functions
which include the integer-valued polynomials as rather small subfamily. The obtained results
not only throw new light on the old question of "how much higher degree mixing is hidden in
weak mixing”, but also will, hopefully, be useful for further extensions of Szemerédi’s theorem.

Definition 1.4 (Cf. [11]) Let i be a non-negative integer. A real valued function g which is
(i+1) times continuously differentiable on [xg, 00), where xg > 0, is called a tempered function

of order i if
(a) ¢tV (x) tends monotonically to zero as x — oo, and
(b) limy o0 z|g0 ()| = 0.

Tempered functions of order 0 are called Fejér functions.

'One can show, for example, that if f is an entire function such that f(Z) C Z, then it is either a polynomial
or has exponential growth. (See the next footnote with regards to the exponential growth.)

#We have to eliminate too slow (say, like logn) and too fast (say, a™, where a > 1) functions since, for these
functions, the Cesaro averages % Zf:]:l T[g(")]f may fail to converge.



We note that the conditions (a) and (b) imply that tempered functions are eventually monotone,
and that positive tempered functions of order i increase at least as fast as z'logz,® but they
are slower than x'*1.

The following theorem explains the role of Fejér functions in the theory of uniform distribution
(see [19, Cor. 2.1]).

Theorem 1.5 (Fejér) Let g(x) be a differentiable function for x > xg, where xg > 0. If
g'(z) tends monotonically to 0 as x — oo and if lim,_. z|¢'(z)| = oo, then the sequence g(n),
n=12,..., is uniformly distributed modulo 1.

Remark: By using van der Corput’s difference theorem (which states that if the sequence
Tpih — Tpy 1= 1,2,..., is uniformly distributed (mod 1) for any h € N, then z,,, n =1,2,...,
is uniformly distributed (mod 1)), together with Fejér’s theorem, one can easily see that g(n),
n =1,2,..., is uniformly distributed (mod 1) if g is a tempered function. (See [21, p. 381-3])%.

The following classes of functions will be instrumental for our work. Note that the first class
is a subset of the set of Fejér functions.

Definition 1.6

g (x)

F = {ge€C®R")|g is Fejér and Ia € (0,1] such that lim

2w e

L = {geC®R") |3y #0 such that lim ¢'(z) =~}

Remark: If g € F then it follows by I'Hopital’s rule that lim, . Ig(/g) = «a. Also, if

g € C®°(R") and 0 < a < 1 such that lim, . I;’Eg) = a — 1 then g is a Fejér function,
see Lemma 2.2 below. However, too slow Fejér functions are not members of F, see examples
below. The class £ consists of all functions ¢ such that g(z) — oo and limg_, g(;) € R\ {0},
see examples below.

We remark that all the theorems in this paper remain true if we only demand that all the

functions involved have sufficiently many derivatives.

Examples:
1. The following function is Fejér but is not in the class F:
e gi(z) =log’z, 3> 1. (Indeed, lim, .o % =0).

2. The following are functions from F:

3Indeed, if ¢ is an increasing Fejér function and a > 0, then there exists M such that for ¢t > M, tg'(t) > a,
which implies that g(z) — g(M) = [, ¢'(t)dt > [, 4dt = alog +. Moreover, it follows by induction on i that if
g is a tempered function of order 4, then for given ¢ > 0, there exists M so that for x > M, T‘f’l(jg)‘z > c.

4This result implies, via the spectral theorem, that if (X,B,u,T) is an ergodic system, and g is a tempered

~ Zgil Tl _ Ik fH2 = 0. See Theorem 7.1 below.

function, then for all f € L*(X, B, 1) one has limy_, e




e go(x :Zlecimai,cieR,ck#O,aiER,Oq<a2<---<ak,0<ak<1.

[ ]
N
S

= 2%(cos(loglz) +2),0<a <1, 3<1.

o go(z) = (1 + 208D) 0 <a <1,

e g7(z) =2(14+5%), 0<a<1,1>3.

xT

(x)

(z)
og4(a:):log%x,,3>0.

(x)

(x)

)

3. The following are functions from L:

)szzlcixai,ciER, c, #0, 0, ER, a1 <ag < <ap=1.
o go(z) = x(1 + T

e gio(z) =x(1+ %), 1> 1.

x

o gs(x

As we will see (cf. Theorem 4.3), the analogue of Theorem 1.3 holds true for functions from
F U L. An inductive scheme which is similar to that utilized in [2] allows one to extend
Theorem 4.3 to wider classes of functions which have the property that after taking enough
derivatives they ”fall” into the class F U £. This roughly describes one of our major results,
Theorem A below, for which the family of functions is a subset of the Hardy field of logarithmico-
exponential functions (see Definition 1.7 below). Our other main result, Theorem B, while
similar in nature, differs from Theorem A in that the family of functions involved include
functions with ”oscillation”, namely functions of the form n®f(n), where f can have infinitely
many changes of the sign of the derivative. The functions themselves are eventually monotone
but the ratio of two functions from this family does not even need to converge. This widening
of the class of functions comes at the price of minor narrowing which functions can be used
together in the theorem. For our proofs to go through, this set of functions need to have some
regular behavior.

We will proceed now to give precise formulations.

Definition 1.7 We will use the following classes of functions.

H = the Hardy field of logarithmico-exponential functions, i.e., real-valued functions
defined for all x > a for some a € R, by a finite combination of symbols

+, =, X, 1, g/, log, exp, acting on the real variable x and on real constants, see
([23], [10]).

R = C*®MR™) | 1i .

(+1)
29 Y) ewists and is finite for all j > 0}

/
T, = {geR|Ji<a<i+l, lim mj(g) = a, lim ¢ () =0),i=0,1,2,...
P = {9€C™(RY) | R\ {0}, lim ¢ V(x) =, lim a/g ) (x) = 0,j € N},
r— 00 T— 00
i=0,1,2,...
i>0 i>0



Remarks:

(i) The class R is only used to define the classes 7; and will not be used by itself. We remark
that all the theorems involving functions from 7 remain true if we only demand that

; . (G+1)
sufficiently many of the ratios %(x()x)

(ii) Here is a summary of some properties of the class 7:

converge.

(1) All functions in 7; are tempered of order i, i = 0,1, 2, ..., see Proposition 5.2 below.
Also, 7y € F. For example, (1 + %*) € F\ Ty when 0 <a < 1,1 > 3.

=0

(2) If g € 7; then there exist i < @ <i+1 and f € C°(R") such that lim o] ()

oo [ (@)

for all 7 € N and g = 2®f, see Proposition 5.4 below.
3) geT,exgeTiv,1=0,1,....

(iii) Here is a summary of properties of the class P:

(1) The set Py consists of all the functions g € £ which satisfy the regularity condition
that lim, .o 27 g0 (z) = 0, € N. Since, for example, (1 -+ ©5%) € L\Po when
1 >2, Py C L. The set P; contains, among other functions, all the polynomials of
degree ¢ + 1. Note that P does not contain constants.

(2) If g € P; then there exist v € R\ {0} and f € C®°(R™) such that lim f(x) = ~,
lim 27 f@)(z) =0 for all j € N and g = 2*+! f, see Proposition 5.4 below.

Tr—

3) gePiexg € Piy1,i=0,1,....

(iv) To get examples of functions from 7; and P; one can just multiply the functions go, .. ., gs,
g8, go in the examples following Definition 1.6 above by z'.

(v) Let « > 0 and 8 € R, and let g(z) = 2*log®z. Then g € H. If @ ¢ N then g € Ta)s
and hence, g € 7. However, if o =1 € N, then g is a tempered function only for g > 1
and B < 0. The following table summarizes the data about the dependence of g on the
parameter § when o € N:

B6#0: gER

6>1: g is tempered of order [ but is not in the class 7
0<p<1: g is not tempered and is not in the class G

8=0: g is a polynomial

B<0: g€T

Hardy’s logarithmico-exponential functions have the property that they are eventually mono-
tone. This fact is conveniently utilized in the proofs of theorems which involve H and also
leads to more streamlined formulations. Here is the formulation of one of the extensions of
Theorem 1.3 to be proved in this paper.



Theorem A Let g1,...,9r € GN'H be such that g; — g; € G fori # j. Then for any invertible
weakly mizing system (X, B, u,T) and any fi,..., fr € L=(X, B, u),

N k
%ZT[gl(”)]fl Tl T / sl =o.
n=1 =1

2
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Corollary 1.8 Let gi,...,g9r € GNH be such that g;i—g; € G fori # j. Then for any invertible
weakly mizing system (X, B, u,T), any € > 0 and any A € B,

{neN||pAnTHMIAN. . ATEOl4) — (uA)F < e}

has density 1.5

Remarks:

1. We have GN'H = {g € H | 3a > 0, lim x;;ég) = a, if « € N then lim ¢(®(z) € R},
see Proposition 5.1 below. Note that G ¢ H. For example, if « > 0, a ¢ N, then
g(x) = x*(2+4cos ylogx) € G\ H. Note also that g cannot be a member of a Hardy field

since the derivative of g is not eventually monotone.

2. Hardy fields also appear in [9] where the authors study the generalizations of the classi-
cal von Neumann and Birkhoff ergodic theorems. While there is practically no overlap
between our paper and [9], the two papers demonstrate, each in its own way, that Hardy
fields provide a natural framework for extensions of some of the familiar ergodic results.

3. For a measure preserving system with continuous time, Theorem A, as well as Theorem B
below and many other theorems in this paper, admits two additional versions dealing
with the discrete averages of the form % 27]:[:1 T91(n) £,792(1) £y ... T9%(M) 1 o1 continuous

averages of the form 7 fOT T9® f ... 79 £ dt. All three versions have essentially the
same proofs. A similar phenomenon was observed (with regards to mean convergence) in
the paper [9] alluded to above.

In order to formulate our second main theorem, we need a further refinement of our classes.

Definition 1.9 Let o > 0. Then

= im xg’(x) =«
T(o) = {geT| Jim 05 =a)
rg'(v)

Gla) = {geg| zh_)ngo

Note that 7 (1) C 7;—1 and that G(I) = 7 () UP;_1 when [ € N.

To formulate our next definition we need the following notation.

5The density of a subset £ C N is defined by d(E) = limy—oo M when this limit exists. Below we

will also use the the upper density of a subset E C N defined by d(E) = limsupy_, ., w

density d(F) which is defined similarly but with liminf instead of lim sup.

and the lower



o Gaug ={g1 — 92| 91,92 € G,91 # g2} when G is a finite set of functions.
o If >0 and G C G, then G(a) = GNG(a).

Definition 1.10 A finite set G C G for which Gqig C G has the R-property (R for regularity)
if for all a > 0 and all pairs 1,19 € G(a) U G(a)gg such that if | € NU{0} and § < a with

Vs € T(B), then
wi[ﬂ]HJrl)(x)

lim S, © R\ {0}. (3)

Remarks:

e The R-property regulates the relations between those functions in G which have similar

rates, since if lim Z2(®)

= « then g(z) = z*f(x), where f is either bounded or grows

slower than any function in 7y. (See Proposition 5.4).

(1+4)
e By Lemma 5.8 below, if wgl), 19 € T () satisty (3) above, then lim,_, Lt me )(() € R\ {0}
for all ¢ > 0. If 8 ¢ N then (3) may be replaced by the equivalent condltlon that

litmy— o w( eR\ {0}.

Theorem B Let g1,...,9r € G be such that g; — g; € G for i # j and such that the family
{g91,...,9r} has the R-property. Then for any invertible weakly mizing system (X, B, u,T) and
any fla'-'vfk € LOO(X767,U);

N k
1
v Z A 4 L CO) H / fi
n=1 i=1 2

lim
N—oo

Examples:

The following sets of functions, which are subsets of G but not of H, have the R-property and
hence satisfy Theorem B:

o {x 2z 2™ (3+ %),w”@ + cosy/logx)} C G, where 0 < a1 < ag, ag & N.

o {Vz(1+ 1oé$)a V(3 + sinllog ) ), Va3 —x, Va3(2 + cos Iogz)} € ToUT

logx

o {g5 @ 22+ 2B} Cc U P

Corollary 1.11 Let 0 < oy < -+- < oy and let ¥; € G(a), i =1,...,1.

o Then {41,...,¢} satisfies Theorem B.

o Suppose that oy —a; € Z for alli # j, and let ¥ = {Zﬁzl a;iv; | a; € Ryi=1,...,1}\{0}.
If g1,..., 9k € ¥ such that g;—g; € ¥ for alli # j, then {g1,..., g} satisfies Theorem B.



Examples:

The following sets of functions do not have the R-property and we do not know if Theorem B
holds true for these sets:

(1) {Vz,v2(3+ cosylogz)} C T(4) C Tp (the ratio of these two functions does not have a
limit).

(2) {232,232 — 21/2(3 + cos Iogz)} C T(2) C Ty (the ratio of the derivative of the first
function and the difference of the functions does not have a limit).

(3) {on <)x> — VZlogz, ga(x) = a(2 + cos VIogz)} C T(4) C Ty (the ratio gs(x)/g1(x) goes
to 0).

The following brief comment is intended to explain the reader why our methods are not sufficient
for verifying whether the functions in the above examples are ”good” for Theorem B. We will
focus on Example (1); analysis of the other two examples reveals similar troubles with the
proof. Consider the expression

N

1

~ E :T[\/ﬂflT[\/ﬁ(HCOS vlog‘n)]f2_ (4)
n=1

Since both [y/n] and [/n(3 + cosy/logn)| are of sublinear growth, the only available to us
method of starting the verification of the convergence of (4) is to perform first the change of
variables m = [{/n] which leads to a new expression containing a linear function. This change
of variables in (4) gives the new expression

N
% Z TnflT[n(S-I—cos v/ logn?)] fo.

n=1

But, unfortunately, the function z(3 + cos \/log z2) does not belong to G and it is not clear
how to proceed further.

Note that class 7 does not contain the "slow” Fejér functions, such as, say, log? x (nor does
it contain functions which after finitely many differentiations reduce to the ”slow” Fejér func-
tions). It would be certainly of interest to extend Theorem B to a more general than 7 class
of functions and get rid of (or relax) condition R. This, however, would require introduction
of new methods and ideas.® Nevertheless, we do obtain in Section 5 the following result which
deals with general tempered functions.

Corollary 5.14 Let g1,..., g, be tempered functions and assume that they satisfy one of the
following four conditions.

(a) gi =a;g, i =1,...,k, where g is a tempered function and a; < ag < -+ < a.

(b) gi(x) = gz + a;), i = 1,...,k, where g is tempered of order at least one and 0 < a1 <
as < - < ay.

5See Conjecture 8.1 below



(c) g; is tempered of orderi,i=1,... k.
(d) If | € N and ¢ is tempered of order 1, let Q = {ZEZO a;¢o® | a; € R} \ {0}, and let
91559k € K2 be such that g; — gj € Q for all i # j.

Then for any invertible weakly mizing system (X, B,u,T) and any fi,..., fr € L=°(X,B, u),

N k
%ZT[gl(nnﬁ Tl T / £l =o.
n=1 i=1

2

lim
N—oo

Theorems A and B (as well as Theorem 5.13 in Section 5) are proved by PET-induction
(Polynomial Exhaustion Technique) which was used in [2] to prove Theorem 1.3 and which is
based on the repeated application of a Hilbert space version of the van der Corput difference
theorem. (See the Remark after Theorem 1.5 above and Theorem 4.1 below). However, due
to the fact that Theorems A and B deal with much more general classes of functions than
Theorem 1.3, there arise many technical difficulties in the course of the implementation of PET-
induction. Some of these difficulties are related to the fact that the family {[g(n)] | g € G} is
not closed with respect to taking differences, and, in order to deal with the naturally appearing
differences of the form [g(n+h)]—[g(n)] one has to modify the van der Corput difference theorem
so that it may be applicable to piecewise versions of functions from G. Another natural difficulty
is related to the fact that the Fejér functions constituting the family F are, in a way, too slow,
and in order to treat, for example, averages of the form % Egzl Tl g Tloe@ £, where
gi € F, one has to introduce a change of variables which works only under the additional
assumption that certain ratios of functions we deal with have good behavior, (see the M-
property, Def. 2.8 below). Finally, one more difficulty which one has to overcome has to do
with the fact that not only the functions g¢; appearing in the formulations of Theorems A
and B, but also various additional families of functions which emerge at various stages of the
inductive procedure, have to have different rates of growth. (This condition cannot be avoided
since otherwise one would not get the limit of the averages in question to be that of the form
Hle [ fi). While in Theorem 1.3 the distinct growth rates are guaranteed by the condition
pi(n) — pj(n) # const for i # j, the situation with the class G is much more delicate and in
order to make the induction working one has to do quite a bit of preliminary technical work.

It is of interest to know under which (additional) conditions Theorems A and B can be ex-
tended to general ergodic (rather than weakly mixing) measure-preserving systems. One of the
reasons to care about this issue is the fact that it would open interesting possibilities of applica-
tions to combinatorial number theory. A partial result in this direction is obtained in Section 7:
Theorem 7.3 Let g1,92,...,9r € F be such that limg_ % = 0 and the ratio gigg(lif)r) 18
eventually monotone, i = 1,...,k — 1. Then for any invertible ergodic system (X, B, u,T) and
any fi1,..., fr € L=®(X,B, ),

N k
1
STyl g T / £
n=1 i=1

=0
2

lim
N—o0




One of the corollaries of Theorem 7.3 which are obtained is the following result.

Corollary 7.6 Let E C N be a subset with d(E) > 0, and let g1,92,...,9x € F. Under the
same assumptions on gi,ga,.-.,gx as in Theorem 7.8 one has

d{n e N [d(EN(E —[g(m)]) NN (E —[ge(n)])) = (d(E))**'}) >0

The following examples indicate the diversity of possible choices for functions g which satisfy
Theorem 7.3 and Corollary 7.6.

e gi(z) = 2™ + 2%, go(w) = v°2(2 + cos Vlog x), g3(x) = x** log z, ga(w) = x4 (1 + <3%),
where 1 > a1 > a9 > ag > oy > 0.

o g1(x) = Valog?z, go(2) = VT logz, g3(x) = VT, galx) = 125

The above corollary leads to a natural and rather general conjecture involving functions from
the family 7 N"H. (See Conjecture 8.2 in Section 8.)

The paper is organized as follows.

In Section 2 we prepare the ground for the proof of Theorem 4.3 in Section 4 which is the base
of the induction procedure in the proofs of Theorems A and B. In particular, we establish some
basic properties of functions in class F which will be needed later in Section 4.

In Section 3 we prove an analogue of Theorem 1.3 for a certain class of piecewise defined
functions. This is needed for the proofs of Theorems 4.3, A and B. We also show that the
summation method we arrive at after making change of variables is equivalent to the method
of Cesaro means. This is needed for the proofs of Theorem 4.3 in Section 4 and Theorem 7.3
in Section 7.

In Section 4 we prove Theorem 4.3.

In Section 5 we take a closer look at the class 7 and establish some auxiliary facts to be used
in the proofs of Theorems A and B in Section 6. We also prove a theorem for general tempered
functions.

In Section 6 we prove Theorems A and B.
In Section 7 we prove, among other things, the aforementioned Theorem 7.3 and Corollary 7.6.

In Section 8 we formulate two natural conjectures which, if true, extend Theorems A, B and 7.3.

Acknowledgement.

We would like to express our gratitude to the anonymous referee whose thoughtful remarks
and constructive criticism were taken into account in the preparation of the revised version. In
particular, we owe to the referee the simplified proof of Lemma 2.12 and the presentation of
major portion of Section 3.

2 Fejér functions

In this section we establish some results about Fejér functions and functions g for which

limg 00 xgggg) exists in R. In particular, we show that functions in F have the necessary

10



properties for the proof of Theorem 4.3 in Section 4 to go through.
In addition to the classes F and L (see Definition 1.6), we will use, for 0 < o < 1, the class
/
Flo) = {geF| tim 2 _ oy

v—o0 g(z)

Lemma 2.1 Leta € R\{0}, g € C*®°(R™"), and suppose that lim,_, xggg(x) =a. Ifa>0, then

z)

lim, oo [g(2)| = 00, and if a < 0 then limy_oo g(z) = 0. If 0 < a < 1 then limy_.o ¢'(x) = 0.

Proof: Suppose first that > 0. Let 0 < € < « and let M = M (e) so that for x > M,

zg'(z)
a—e€< < a+te 5
o) ®)
Then N v s N
/ O‘_Edt</ Al )dt</ SRLH
Mot v 9(t) Mt
which implies that
‘g(M)| a—e |g(M)| a—+e€
Aga=e® < |g(x)| < Aare 2T (6)

This shows that |g(x)| — co as x — 0o. Let now a < 0, and let g; = 1/g. Then lim,_,

zg'(x)
9(z)

—lim, = —a > 0. Hence, lim, . |g1(z)| = oo such that lim,_,~ g(x) = 0.

If0 < a<1,let 0 < € < min{a, 1—a} such that a+¢e < 1 and therefore by (6), lim;_,o 9@) _
Hence, by (5), |¢/(2)| < (a+ )22 — 0.

Lemma 2.2 Let a >0, g € C*°(R™), g > 0, and suppose that lim,_,, % =a—1. Then

Y = Q and limy oo g(x) = 00. If0 < a <1 ora =1 and ¢'(x) goes monotonically
to 0, then g € F(cv).

Proof: Let 0 < e <« and let M = M (e) so that for z > M,

"
a—1—€e< a:g/ (z) <a—1+4e.
g'(x)
Then Ta—1—¢ q"(t) Ta—1+e€
/M t i< /M g () i< /M t a
which implies that
9" (M)| 01— g’ (M)| o
Wxa 1 € < ]g'(a:)\ <Wxa 1+E. (7)
_ lg'(m)] lg’ (M)]

and ¢y = Ma(_H(. By integrating one

This shows that lim, .o 2|g'(z)| = 0o. Let ¢1 = jfa-1¢
more time from M to x > M, we have, if ¢’ > 0, that

C1 C2

(xa—l—e o Ma—l—e)

G M) <g(a) —g(M) <

11



which shows that lim,_.. g(z) = oo. Similarly, if ¢’ < 0, then g < 0, contradicting our

assumptions. Now, by I’'Hopital’s rule, we have lim,_ wg(:(v)) =14+1lim,; xg,léix)) = «. Hence,

if @ =1 and ¢'(z) goes monotonically to 0, then g € F(1).

zg"(z) _
g’ ()

a —1 < 0 it follows that ¢”(x) < 0 for sufficiently large z. Hence ¢'(x) goes monotonically to
0. This shows that g € F(«).

Suppose now that 0 < o < 1. Then by (7), lim,;_o ¢'(z) = 0 and since lim,_,

O

Lemma 2.3 Let g € C®°(R") and a € R such that lim,_ oo % = a. Let c € R. Then
glz+c) _ 1
9(z) ’

limg oo

Proof: Let first 0 < a < 1. By Lemma 2.1, lim, ., |g(2)| = oo and lim,_~ ¢'(z) = 0.
Hence, by the mean value theorem, there exists z, € (z,x + ¢) such that

/
i 9@+ 9(@) + 9 (z)e

BT e @) ¢

If a ¢ (0,1) then let § € R such that 0 < o — 3 < 1 and let g; = g/2°. Then lim, xggll((l;) =
o — 3 and hence,

B
lim M = lim a@to) (@ +g0) =1.
O
If g € C°(R™) is a positive function such that ¢’ > 0 and ¢’ decreases to 0, let
¢(n) = {m € N [ n = [g(m)]}| and ®(n) =Y (k). (8)
k=0

When making a change of variables m = [g(n)] in the expression % Zﬁ[:l Tlorml g .. Tloe()] £
where g; € F and g = g1, then ¢(m) will be the weights one gets in the new expression. Since
g (x) — 0 as z — 0o, ¢(m) — oo as m — oco. However, if g is not sufficiently slow, ¢(m) does
not need to be an increasing function. This is the case when g(z) = 23/4 since then there are
infinitely many k for which ¢(k + 1) = ¢(k) — 1.

When f is a real-valued function on R we will use the notation Af(x) = f(x + 1) — f(z).

Lemma 2.4 Let g € C®(R") be positive such that ¢ > 0 and ¢’ decreases to 0, and let ¢
be defined by (8). Then for n € N, ¢(n) = Ag~'(n) + an, where a,, € (—1,1) and Ag~'(n)
increases to infinity as n — oo.

Proof: Since ¢(n) is the number of positive integers in the interval [g=!(n), g1 (n + 1)),
the first statement follows. Let f(x) = g~!(z). By the mean value theorem, Af(x) = f'(zz),
where z < z, < x + 1. Since f'(z) = g,(fl(x)) increases to oo as ¢ — oo, Af(n) < Af(n+1)

and Af(n) — oo as n — 0.
O
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Lemma 2.5 Let g be a positive Fejér function and let ¢ and ® be defined by (8). Then
limp—oo 2 = 0. If0 < a <1 and g € F(a) then lim, oo d(n)g' (g7 (n)) = 1 and
1

Proof: Let first g be any positive Fejér function, and let f(z) = ¢~ '(x). By Lemma 2.4
and the mean value theorem, ¢(n) = f(n+1)— f(n)+an, = f'(zn) +an < f/(n+1)+1, where
an € (=1,1) and n < 2, < n+ 1. Also, ®(n) =375 ¢(k) = {m | 0 < [g(m)] < n}| = |{m |

0< g(m) <n+1}| = f(n+1)—bn, 0 < b, < 2. Hence, 0 < limy, oo qf( >) < limp—oo Mﬁ
1

im0 Frrmagmey = 0o Suppose now that for some 0 < a < 1, g € F(a). Since

: o' @) _ W _ ‘ zf(e)
hmxﬂoo f( y = hmy:f(x)_)ooygg,il(jy) - 1/04; hmacaoo i@y — 1/

— 1, and lim, . fzz) =

lim,, o0 f’(n) = lim, o0 ¢'(f(n)) = 0, we have by Lemma 2.3, lim, .., ¢(n)g' (g 1(n)) =

lim,,— oo fen)tan _ 4 5ng

f(n)
no(n) L n(f ) tan) o nf() ]

O

Remark: If p, is an increasing sequence of positive real numbers and P, = >}, i, then the
property that the sequence % is bounded, is the criteria for that the summation method of
weighted means, also called a Riesz method (R, py,), is equivalent to the Cesaro method, see
Theorem 3.5 below. Note that if ¢ is a Fejér function with limy_..o 22&) = 0 so that g ¢ F,

g(z)
then lim,,_ T&?((s)) = oo but lim, s % = 0. This is the case for g(x) = log? z for which

fx)=g ' (z)=e"".

Lemma 2.6 Let g1 g2 € C®°(RT), g1,92 > 0 and a1, a2 € R. Suppose that lim,_ xg?%j;’ =
o, 1=1,2. If 92 1s bounded, then ay > ao. Conversely, if ay > a9 and limg_, xj{gég) exists,

glgig = lim,;_ s Z}fgg =0 and ifg; and g%g; are eventually monotone.

g195—9792
z 2
91

1=1,2, then hmgc_>Oo

Proof:  Let g = go/g1. Then lim, o zg(g) = limy_ oo oy = limy— oo (% — %) =
a9 — (1.
Suppose that g(z) is bounded. Then as < a; by Lemma 2.1.
Suppose now that a7 > a9 and that lim,_, o xgg,_gég) exists such that lim, . % =q; — 1,
i = 1,2. Then by Lemma 2.1, lim; o g(z) = 0 and if g = 5—% so that lim,— :”gég) —
1
limg, oo (xg? xgg,ll) = ay — a1 < 0, then lim,_,, g(z) = 0. Also, this shows that ¢’ < 0 and
g < 0 so that gfgx; and ¥ i E g are eventually monotone.
O
g2(x)

Lemma 2.7 Let g1, go be positive Fejér functions such that there exists v € R with lim,_ o ne)
95(x)

limy o 2 g = Let go = go 0 gl_l. Then there exist a finite subset C' C Z and a sequence

13



cp, €C,n=1,2,..., such that

[92(n)] = [92([91(R)])] + cn, neN.

If v # 0 then go € L. If v =0 and for some 1 > a1 > ag > 0, g1 € F(an), g2 € F(az) are

such that z?gg 1s eventually monotone, then go € f(%), and ¢, = 0 for a set of n of density
1

1.

Proof: Suppose that lim,_, s g?g g = v € R. By the mean value theorem there exists z,,

where [g1(n)] < z, < g1(n), such that

g2(n) = g2([g1(m)]) = g2(g1(n)) — G2([g1(n)]) = Ga(2n){g1(n)}. (9)

At G
=T

P ;; =7, g2(n) — g2([g1(n)]) is bounded and, hence, there
149, @
exists a finite set C' C Z such that [ga(n)] — [§2([91(n)])] = ¢, € C for all n € N.

If v # 0 then g € L since limg_.oo gh(z) # 0.

Since limg— 00 §5(x) = limy oo

Suppose now that v = 0 and that for some 1 > a1 > ag > 0, g1 € F(a1), g2 € F(ag). Since
—1 gy (@) : RN (TR C)))
we assume that both ¢g; " (z) and o (@) e eventually monotone functions, g5(z) = sitor )

g (x) g91(97 "(2)) gb (g1

goes monotonically to 0. We also have that lim,_, ) = limg a0 26T (@) ot (o1 (@)
: g1(y) ¥95(%) _ ao zgy(x) _ 1 g1 (v9s _wye'\ _
lim My—gr (@) =00 yoi(y) 92(y) ~ o < 1, and that limg;—.e ghlz) limy o0 v9} (9é 91 ) -

o2 — 1. Hence, by Lemma 2.2, go € F(32).

Since ¢ is decreasing to 0, it follows from (9) that 0 < ga(n) — g2([g1(n)]) — 0. Hence,
C ={0,1}. Let

A={neN|e, =1} ={neN|g(n)]=[g200 " ([g:(n)])] +1}.

We will show that A has density 0. For i = 1,2 and m € N let I;(m) = [g; * (m), gl Ym +1)).
Since z € I;(m) if and only if [g;(z)] = m, we have n € I;([g1(n )])ﬂ[g([gg n)]) and g; ! ([g1(n)]) €
I1([g1(n)]) for all n € N. Furthermore, n € A if and only if g; *([g1(n)]) € I2([g2(n)]—1). Hence,
n € A if and only if g, ' ([g2(n)]) is in the interior of the interval I;([g;(n)]) since if n € A then
I1([g1(n)]) has non-empty intersection with both I2([g2(n)] —1) and I2([g2(n)]). So any n € A is
an element of an interval I; (k) (where k = [g1(n)]) which also contains an element g5 (m) < n,
where m € N. The number of such intervals [;(k) containing some n € A N [1, N] equals
the number of m for which g5 '(m) < N. Hence, the number of such intervals is [go(N)].
The length of the interval I7([g1(n)]), n < N, is less than or equal to ¢1([g1(N)]) + 1, where
¢1(k) = |{m € N | [g1(m)] = k}|, by Lemma 2.4. By Lemma 2.5, lim,, .o, ¢1(n)¢} (97" (n)) = 1.
Thus,

aA) = Jim LN < i () (V) + 1) = gim 20

g1(N) ga(N)

= lim =0.
N—oo Ng'(N) g1(N)

14



The following definition of M-property of a set will be needed for Theorem 4.3 below. Since
Theorem 4.3 is the base of induction of the proofs of the theorems A and B, this M-property
gives restrictions on the functions of higher orders in Theorem B. Note that any finite subset of
Go which has the R-property also has the M-property (see Proposition 5.11 below). Recall that
when G is a finite set of functions, we use the notation Gaig = {92 — 91 | 91,92 € G, g1 # g2}

Definition 2.8 Let G C F U L be a finite set for which Gag C FUL. If0 < a < 1,
let G(a) = GN F(a). G is said to have the M-property (M for monotonicity) if for all
0 < a <1 and all pairs 1,192 € (GU Gaig) N F such that either 1,92 € G(a) U G(a)qig or
V1,9 € (G N L)qi, we have

(a) L =limz_ Zigg exists in R U {£o0} and

(b) if L € {0,+00} and f = % then [ is eventually monotone and if limy, oo xf(/(x) =0 then

)
lim, oo IJ{’/ES) exists.

Remark: It is not clear if the condition lim,_, x]{,”g(f) exists, is automatically satisfied when

the other conditions are satisfied. However, if the limit exists then the value is —1 according
to the following lemma.

Lemma 2.9 Let f € C®(R") such that limm_,oo% = 0, limgy oo f(z) € {0,£00} and

lim, o %S) exists. Then limg;_, oo xffs) =—1.
Proof: Suppose first that lim, o f(z) = 0. Since lim,_, xfég(ca)‘n) =0, lim, o zf'(z) =0,
zf'(x) _ zf" (x) zf’(x) _

such that by 'Hopital’s rule, 0 = lim, . ) = lim, 0 e + 1. Hence, lim,_ . e
—1.

Suppose now that lim, o, f(z) = oo, and let fi = 1/f. Since lim,_, xf{{(f)) = —lim, oo xf(,g) =
0 and lim,_ o JJJ{{{;S);) = l'mx_)oo(”’f,lég) — Qm}cég)) = —1, we are done. .

Lemma 2.10 Let A < 0 and let fi1, fo € C®°(R™T) such that lim,— o fi(z) = 0, f] < 0 and

such that Tim, o S = tim, o 2B = 0 and lim, oo BE = —1. Let ¢ = fi + 2o,
Then ¢’ < 0.
Proof: We have
- xfé / xfé
¢ =f+r A+ =2 = f <1+_ A4 222y ).
1 ( f2 ) 1 l_l_)\f{le( f2 )

Let 0 = xk)‘f{fgl. Then %9, =1-A+ xf,{l — :%5 — —A > 0. Hence, by Lemma 2.1,
1
lim, o0 [0(x)| = 00, and therefore ¢’ has the same sign as f7.

O
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Proposition 2.11 Let g1,...,gr € F be such that for i # j, g; —g; € F, and such that
{g91,..., 9k} has the M-property (Definition 2.8). Suppose that for each i, 1((33)) is bounded. Let

gi(z) = giogy ( ) if g1 > 0 and let §i(x) = g; o (—g1) " (x) if g1 < 0 . Then for each i and
J# Gi,0; — G € FUL and {g1,...,Gx} C F UL has the M-property.

Proof: Suppose that 0 < a; < 1, 7 = 1,...,k, are such that lim,_., % = q;. Since
% is bounded, «a; < a7 for all ¢ by Lemma 2.6. Suppose that g > 0. If o; < a; then by
Lemma 2.6 the pair g1, g; satisfies the conditions in Lemma 2.7 in order that ¢; € F (g‘—;) If
«; = «y then the M-property and I’Hopital’s rule assure that the same conditions are satisfied.
Hence, g; € F (%) U L for all 7. Similarly, by Lemma 2.6, the M-property and Lemma 2.7,
Gi—g; € FULifi# jand g; —g; € F(B), where 8 < a1, or g;,g; € F(ai). Suppose now

that g; € F(a1) and g; € F(B) for some < a1 and that g—g goes monotonically to 0. We

need to show that also

gg_ goes monotonically to 0. Let fZ = , i and fi= ? 178 Then
1 91 1

limg o0 = T hmgg_>Oo f = 0. Since f; goes to 0, it follows by the M-property and Lemma 2.9
that lim,_, o fi,/ —1. Hence, by Lemma 2.10,
and by Lemma 2.7, §; — g; € F(1).

It is left to prove that G has the M-property. Let 0 < o < 1, G(a) = {g1,..., 91} N F(a)
and G(O%) =A{q,.-.-, gk} N ]—"(ﬁ), and let 1,[11,¢2 € G( ) U G( )dlﬂ‘ Then there exist

9 gj = fi—aP~ @1 f; goes monotonically to 0,

1,02 € G(a) UG(a)gg such that ¢; = ¢; og1 , 1= 1,2, and w; and ¥ 1/1’ = zl 91 have
2 20
the same asymptotic behavior as the ratios coming from the original functions smce g1 is
monotone. However, we need to prove that if § = % and lim, ,~ 0(x) € {0,+o0}, then
2
lim, o0 zg,lé()) —1. Let r = z} such that 6(x) = r(y), where y = g; '(x). We have y' = g’%y)’
1
Yy =— (jl(;%))gy and by the M-property of G, lim,_. %ﬂ = —1 so that
1
9// ! N2 / /! /!
tim *7 (@) _ oy 20 (y)(yl) +/7“(y)y ) tim yr () gll(y) ) ygl(y))
v—oo '(x)  wooo ' (y)y a—oot (y) yoi(y)  yor(y) 91(y)
1 1
= (-)— - —(a1 - 1) = 1.
()~ (- 1)
O

Lemma 2.12 Let g € C*°(R") and v € R be such that ¢'(x) — v as v — oo. Let h € N.
Then

lg(n +h)] = lg(n)] = lg(n + h) = g(n)] + br(n) = [yh] + an(n)

where by(n) € {0,1} and there exists My, such that for n > My, ap(n) € {0,£1}. If v =0 and
g is monotone then ap(n) =0 for a set of n of density 1.

Proof:  Since [z —y] = [z] —[y] =, where § = 0 if {x} > {y} and 1 otherwise, by (n) € {0,1}.

If yh ¢ Z1let 0 < € <  min{{yh}, 1—{yh}}, and if yh € Zlet 0 < e < ;. Since ¢'(x) — =, there
exists M}, such that for z > My, |¢'(x) — 7| < e. Let n > Mj,. Then by the mean value theorem
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there exists z,, n < z, < n+ h, such that [g(n + h) — g(n)] = [¢'(zn)h] = [yh + (¢'(2n) — Y)A]
which equals [yh] if yh € Z, or if vh € Z and ¢'(z,) > 7. Otherwise, if yh € Z and ¢'(z,) < v
then [g(n + h) — g(n)] = [yh] — 1. This shows that a,(n) € {0, £1}.
Suppose that v = 0 and that ¢ > 0. If {n € N | [g(n)] < [¢(n+ 1)]} = {n1 <n2 <ng <---}
then g(ngy1 + 1) — g(ng) > 1 and by the mean value theorem there exists ny < zp < ngy1 + 1
such that g(ngs1+1) —g(ng) = ¢'(2k) (ngs1+1—ng). Hence, ng11 —ng — oo as k — oo. Thus
the set {n € N | 3k, n < np < n+ h} has zero density. The proof for the case g < 0 is similar.
O

3 Weakly mixing systems and summation methods

In this section we collect some results which will be needed in the next sections. These include
some basic facts on weakly mixing systems as well as a result on summation methods in normed
linear spaces. From now on we will be assuming that all the vector spaces we work with are
over the real scalars. (It is not hard to see that this assumption can be made without loss of
generality.)

In the following theorem, the equivalence of the first three conditions is well known and can be
found in any basic text on ergodic theory. As for the condition (iv), see [18], [14, p. 96], and

[1].

Theorem 3.1 Let (X,B,u,T) be an invertible measure preserving system. Then the following
are equivalent.

(i) T is weakly mizing, i.e. for any A,B € B one has lim, oo % nyzl lw(ANT"B) —
u(A)u(B) = 0.

(i0) For all f,g € DX, B,0), lim % S| [ FT"gd— [ fdye [ gyl = 0.
(iii) T x T is weakly mixing.
(iv) For all f € L*(X,B, ) with [ f =0 and any sequence ny, of positive lower density,

N
+ ST f|l =0.
k=1

2

lim
N—oo

Lemma 3.2 Leta;(n), i =1,...,k, be k integer-valued sequences. Suppose that for any weakly
mazing system (X, B, p, T) and any f; € L¥(X,B,p), i =1,...,k, with [ fidu =0, we have

=0.
2

lim
N—oo

N
1
v E T ™) 7o) £, ek £
n=1

Then, for any bounded sequence u,, of real numbers, for any weakly mizing system (X, B, u,T')
and any f; € L¥(X,B,pn), i =1,....k, with [ fidu =0,

lim
N—o00

=0.
2

N
% Z wp T 702 £y ek g
n=1
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Proof:  Suppose that |u,| < ¢ for all n. Let E, = 79 f;7%®) £, ... T%®) f,  Then

N 2
1 2
n=1 n,m

1

unFy
3

and
2

) Fo(y)| dp(z)dp(y)

1 2
P ‘/FnFmdﬂ =
n,m

which goes to zero when N tends to infinity, since T' x T is weakly mixing.

O

Proposition 3.3 Let 0;j(n), n € N, j =1,...,1, i = ,k, be integer-valued sequences
such that for any weakly mixing system (X w,T), any fZ € L (X,B,pn),i=1,...,k, and
any j € {1,...,1} one has

N k
. 1 (n (n (n
]\}1_120 ¥ E 1T(’u( ) {11025 fo Ok () £ | |1/fidH —0.
n= = 9

Let Ué’:1 C; be a partition of N and let 0;(n) = 6;;(n) iff n € Cj, j =1,...,1. Then for any
weakly mizing system (X, B, u, T) and any f; € L=°(X,B,u), i =1,...,k, one has

N k

1

~ Z T91(n)f1T92(n)f2 .. .Tek’(")fk — H /fz dp
el =1 2

lim =0.

N—o0

Proof: Let u;(n) = 1 if n € C; and 0 otherwise. Then T f702(0) fy... TOM) £ =
Z§:1 uj(n)Telj () f,7925(") £y ... TP () ;- The result now follows from the previous lemma.

O
Note that if for some g; € G, i =1, ..., k, one already knows that

N k
1
e | | / fi

for any weakly mixing system and any fi,..., fr € L*(X), then the same result holds for
[gi(n)] + ¢i(n) if ¢;(n) takes on only finitely many values, i =1,..., k.

The following simple lemma will be utilized in the proof of Theorem 4.3 in the next section.

Let y = y(n,h), n,h > 1, be a bounded family of positive numbers. We say that y satisfies the
condition (C) if

lim —thsup—Zy n,h) =0.

H—oo H N—o00

Lemma 3.4 Let y,...,y; be bounded families of positive numbers which satisfy the condition
(C). Suppose y is a family such that for all h, for all large enough n, y(n,h) € {yi(n,h)|i=
1}, Then y satisfies (C).

18



Proof: It is clear that
(i) 22:1 y; satisfies the condition (C),

(ii) if g is a family that satisfies (C) and if y is another family such that, for all h, for all
large enough n, y(n,h) < g(n, h), then y satisfies (C).

Let g = 22:1 y;. Then for all h, y(n,h) < g(n,h) for large enough n, and hence, y satisfies
(©).

O
The next theorem is an extension of one of the classical results on summation methods for
real-valued sequences, (see [16, Theorem 14]), to sequences in normed linear spaces; it will be
used in the proofs of Theorems 4.3 and 7.3 below.

Theorem 3.5 Let p,, n=1,2,..., be a sequence of positive numbers such that limy,_,o pn, =
oo and such that there exists an increasing sequence q, with p, — q, bounded. Suppose also that
"1’_57:1 < ¢ for some ¢ > 0, where P, = > " | p;. Let xp, n=1,2,..., be a bounded sequence in a

normed linear space. Thenlimpy_.o H % 27]:[:1 :z:nH = 0 if and only iflimy oo H % ZnN:1 Py,

0.

Proof: Let a, = pp — ¢5 and let d > 0 such that |a,| < d for all n. If Q, = >_}_, g» then

Qntdp_1 0k
Qn

lim,,— oo 5—" = lim;,— oo = 1 since lim,, .+, g, = 00 so that ’Qi Py ak‘ < dQL — 0.

Hence, there exists ¢; > ¢ such that %’Z = %"pnf + G2 < ¢ for all sufficiently large n.

= (0. We therefore have that

Since x,, is bounded, limy_ oo ‘

1 «—N
Prn D=1 0nTn
N

=0 if and only if impy _, H& Y e Gnn| =0.

. 1 N
limy o0 ‘ Px anl PnZn

Suppose that limy_, oo H% ZnN:1 Tn|l = 0. Let € > 0. There exists Ny such that for N > Ny,

HZ”NZI Zn|| < Ne. Let s, = Zg:n x. For Ng <m < N, we have ||s;,|| < 2Ne. We have
1 N 1 N-1
Qi Z qnIn = Qi Z Qn(sn - Sn-‘rl) + gNSN
N n=Ngp N n=Np
1 N
= Qi Z (Qn - anl)sn + qNy SN
N n=Np+1
1 N
< Qi Z (qn — Qn—l)Han + qNOHSNOH
N n=No+1

1
< —(2Ne¢)(2qn) < 4cqe.
QN
N

Hence, limsupy_, o, HQ%V Y omet qnan < ce.

The other direction is true for any increasing g, and can be proved similarly.
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In order to prove a theorem for Fejér functions which are slower than those in 7y (see Theo-
rem 5.13 below), we need the following theorem which is proved by Lorentz [20, Theorem 7]
for real valued sequences x,, see also [8, Theorem 2.4.9]. The same proof works for sequences
in any normed linear spaces and we include it here to make the paper self-contained.

Theorem 3.6 Let p, be an increasing sequence of real numbers such that p, — oo, and such
that if P, = ZZ:O pr then lim,_ . %Z = 0. If xz,, is a bounded sequence in a mormed linear
space such that

N
A}i_{noo N1 Z Than|| =0  uniformly in h, (10)
n=0
then
N
li — =
Ngnoo N ;pn‘rn

Proof:  Suppose that ¢ € R™ is such that ||zx|| < ¢ for all k. Let € > 0 and let Ny € N such

that
1 h+Ng
HNOH > an| <e/tforallhe N (11)
n=h
and let ng = ng(Np) such that
PN
— for all NV 12
PN<4N()C or a > nyg. (12)

Let N > ng, and for this N let p, = p, if 0 < n < N and let p, = 0 otherwise. We have

1 N 1 N 1 N+Ng 1 n
7zpnxn < 7zpn1‘n_ Z Tn—m— Z Dk
PN n=0 PN n=0 NO +1 n=~Np PN k=n—Np
B
1 N-+Ny N k+No
+ an > Pk**ZPkZ%
No—l-l
n=Np k’ n—No
Y
1 1 N k+No
+N0+1 Ezpk Z z
k=0 n=k
1
where 6 < ¢/4 by (11),
1 N+Ny N+Np
Y = W1 an ZPFZ% >
n=Ny LAy — No N k=n— No
1t & oy €
~ N
Not1| 2 Tpy 2 Pr| SeNopo <
n=0 k=n—DNp




by (12), and

1 No—1 1 N+Ng 1 n
ﬂ - Pszn n_N+1 anFN Z pk_pn(NO+1)
n=0 n=Np k=n—Ng
N+Ny
< CN07+N0+1 z]:v Z \pn k — Pnl
=1iVo

<E: n— klp” pr+1|

N No
c 1
< €/4+ —|pn —p k
S / N0+17§PN’pn pn+1;
c N()(N[)—i-l)i
No—l-l 2 PN

< €/4+

(2pn — po) < €/2

by (12). Hence, H% ZTJLO PnTn,

<e€/d+e/d+e€/2=c¢.

Remark:

As in Theorem 3.5, it is easy to see that the same conclusion is true if p,, itself is not increasing
but there exist some increasing sequence ¢, and a bounded sequence a,, with p, = ¢, + an.
We will call such a sequence almost increasing.

4 Convergence theorem for functions from F U L

Theorem 4.3 below will be used as a base of induction in the proofs of Theorems A and B. We
will use the following version of van der Corput’s difference theorem which follows from the
proof of [2, Theorem 1.5].

Theorem 4.1 (Van der Corput trick) Suppose that x,,n =1,2,..., is a bounded sequence of
elements in a real Hilbert space. If

N
1
}}gnoo — thsu Py Z Ty Tptn) = 0,

h—1 N—oo
then
1 N
i 2 an| =
n=

Lemma 4.2 Suppose that (X, B, u,T) is a weakly mizing system and let q;(x) = [oyzx] + ¢;,
a; € R\ {0}, c;€Z,i=1,...,k. Then for any f1, fo,..., fr € L=°(X, B, n) one has:

/fqul i [F fadp - (BT H< /fzdu>

=0 (13)
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Proof: Since {[a;n] + ¢; | n € N}, has positive density, we have by Theorem 3.1 that

lim — /f Tleankte fq,, — /fld,u, =1,....k
N—oo N
Formula (13) now follows from the fact that if uq, ..., ux are bounded sequences and Iy, ..., €

R with limy oo & S0 ui(n)—Li| = 0,4 = 1,..., k, then limy oo & S0 T, wi(n) — 1, 1l =
0.
O

Theorem 4.3 Let g1,...,9x € F UL be such that g; — g; € FUL for i # j and assume that
{g91,..., 9k} has the M-property. Then for any invertible weakly mixing system (X, B, u,T) and
any f17 .. '7fk € LOO(X7BMU/)7

N k

1

v E :T[g1(n)]f1 Tl g H / fi
n=1 i=1 2

Proof: We use induction on k. Let £k = 1. We have to show that for g € F U L,

1 N
S et
N n=1

If ¢(x) — v # 0 as x — oo then {[g(n)] | n € N} has positive lower density and (15) follows
from Theorem 3.1 (iv).

If ¢'(n) — 0 then (15) can be proved in two different ways. One of the proofs works for any
Fejér function and is a special case of the proof of Theorem 7.1 below. The other proof, which
we will present here, is via the method of passing to an equivalent method of summation and
uses the assumption that for some 0 < a < 1, limg o0 xgggs) = a. We remark that this method
will be utilized later in the proof of the inductive step.

Replacing, if needed, f by f — [ f, we may and will assume that [ f = 0.

If g is positive, let ¢(n) = [{m € N | [¢(m)] = n}|. By Lemma 2.4, Lemma 2.5 and Theorem 3.5,
we have

lim —ZT[Q = lim — Z op(n)T" f

N—oco N N—oco N

lim
N—oo

= 0. (14)

lim
N—o0

(15)

= lim on)T"f = hm — ™f /f
N—oo Zn 0 Z Z
Now if g takes negative values, then [g(n)] = —[—g(n)] — an, a, € {0,1} and we let ¢p(m) =

{n | [~g(n)] = m}| so that TI9()] = T=m=an fSince T is invertible and weakly mixing we get
the limit (15) in the same way as for positive g by using Proposition 3.3.

Suppose that the theorem is true for k — 1, and let g1, g2, ..., gr € F UL such that they satisfy
the conditions of the theorem. Let (X, B, u,T) be a weakly mixing system and fi,..., fx €
L>(X, B, ). We will show (14) for this system. We may assume that [ f; = 0.
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By the M-property and I'Hopital’s rule, lim, . 3?83 exists in R U {£oo} for any i,5. By
J

possibly reordering the g;’s, we have that lim,, . g;((z)) = ~;, where |v;| < oo for all . Consider

first the case where gi(n) — A\ # 0, 4 = 1,...,r and ¢gj(n) — 0, i = r+ 1,...,k, where
1<r <k Leta, ="l . Tloc®f  Then

(T, Tnin) = /T[gl(n)]f1 ol g plonth)] ¢ oplok(tl g gy,
— /T[91 I pyrlorrl=lonm)] ¢y oploe() (g ploerl=los ()] £y gy,

— / flT[gz(n)—gl(n)ch f2 ... lgr(n)=g1(n)]+cr f;
w Tlgr+1(n)—g1(n)]+cri1 fr+1 .. lge(n)=g1(n)]+ck fkdu
where f} - fiT[gi(n+h)]_[Qi(n)]fi — fiT[Aih]‘f’ai(n:h)fi’ i=1,...,r, and fl — fiT[gi(n+h)]_[9i(n)]fi —

fiT M f i =714 1,...,k, and by Lemma 2.12, ¢; = ¢;(n) € {0,1} and a;(n, h) € {0, %1} for
sufficiently large n. For each h and j =1,...,k, let a?i,cji €eR,i=1,...,l, be such that

(a1(n,h), ... ax(n, h),ca(n), ... cu(n)) € {(al, ... al cosy ..o ers) |i=1,...,1}.
Let fﬂ = ij[/\tha?ifj? J=1...r, ]Eji = ija?ifj, j=r+1,...,k, and define
=1 [ gy g0l
for each n,h, i =1,...,1. Now, gj —g1 € FUL, j=2,...,k, and these new functions satisfy

the conditions of the theorem. Since strong convergence implies weak convergence, and since
T is weakly mixing, we have, by the induction hypothesis,

ilh =ngnooﬁzyznh N A T S

Let bs;; € R be such that (aﬁ., .. .,aZi) € {(b1ij, -5 brij) | 5 =1,...,u;}. Let fsij = £, TP f,,
s=r-+1,...,k, and define

zij(h) = ’/flT[)‘thb”jfl'“/frT[)‘Tth”jfr/fr+1,z‘j"'/fkij\

for each h. It follows now from Lemma 4.2 that

[}EHOOI; Zl] /fl : '(/fr‘)Q/fTJrl,ij"‘/fkij:0

for each i, j since [ fi =0, so that

1 A 1 1z
lim — lim — E ; = lim — E i(h) =
im Hh 1Nlm Nn 1yz(n,h) im . 1yz(h)
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It follows from Lemma 3.4 that lim =+ Z limsup + Z |{(Zp, Tnin)| = 0 and so by Theo-

H—oo 1 —1 N—oo n=1
rem 4.1 we have proved (14) for the case Where gi(n) — X\; # 0 for some 1.

Suppose now that g(n) — 0 for all i and that limy .o gi((a;)) = limy; 0o % =i, V1,5 Ys Z O,

Vo1 =+ = =0, 1 <s < k. Introduce the new variable m, m = [g1(n)] (or m = [—g1(n)] if
g1 < 0). Let gi(m) = gi(g; *(m)). Then by Lemma 2.7, §; € FU L and [g;(n)] = [3:([91(n)])] +
¢i(n), ¢i(n) € C C Z,|C| < oo, and by Proposition 2.11, {g1, g2, ..., gk} has the M-property.
Let Ué’:1 C; be a partition of N and b;; € R such that ¢;(n) = b;; if n € Cj,i=1,...,k. For
n € Cj, we then have

vl ooplee g — plor ()] g pla2(lon (D25 ¢, o plokar(IDI+bx; £,

and by Proposition 3.3 it suffices to prove that

N
%ZT[WM Fulae o Dby g, Ll D+ p, / fiee / fo=0
n=1

for j =1,...,l. By changing the index of summation, m = [gi(n)], and letting ¢(m) = [{n €
N | [g1(n)] = m}|, we have by Lemmas 2.4, 2.5 and Theorem 3.5
1 & : :
lim ~ Z Tlor (] £, pla2(lgr(mDI+b2; ¢, . 1ok (lgr ()D]+bks £,

N—o0
n=1

= lim — Z ¢ TmflT[§2(m)]+b2j f2 .. T[gk (m)]-&-bkj fk‘

= lim N z " f1 ng m)]+b2gf T[s?k(m)]—l—bkj .

m=1

We are now back to our previous situation. Hence, (14) is proved.
Od

Note that in the special case when ¢1,...,9x € L, Theorem 4. 3 also admits the uniform

version which corresponds to replacing the expressions hm %= Z Tl g ploe®M £ by
n 1

N
N 1]1er1_) N M > Tlor)] £ .. Tloe™)] £, - The proof follows by invoking the uniform version
n=M+1

of Theorem 4.1 (see Theorem 3.2 in [2]) and is left to the reader. In particular, we have the
following result which will be used in the proof of Theorem 5.13.

Proposition 4.4 Let ci,...,c; € R\ {0} and assume that ¢; # c¢; for i # j. Then for any
invertible weakly mizing system (X, B, u,T) and any f1,..., fr € L=(X, B, ),

m+N k
i [c1n] Tlexn] g | — ; :
]\}inoo ZH T ™ f fx 1_[1 / fi 0  wuniformly in m.
n=m 1= 2
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5 Tempered functions

In this section we take a closer look at the various classes of tempered functions which were
defined in the Introduction. The results obtained in this section will be used in the next section
in the proofs of Theorems A and B.

Proposition 5.1 Let Gy = {g € H | 3a > 0, lim 29(@) _ ¢, if a € N then lim ¢(®(z) €
T—00 g(:C) r—00
R}. Then Gy =GNH.

Proof:  In order to use 'Hopital’s rule when the functions involved are members of a Hardy
field, we only need to check that both numerator and denominator either tend to 0 or to fooc.
We leave it to the reader to justify the use of I’'Hopital’s rule below, but remark that Lemma 2.1

is often useful.

GNH C Gyy: Clearly TN'H C Gy. Let g € PynH. Then lim, o % = % = 0. By 'Hopital’s

rule we have lim,_, o %9/ =1+ 1. Hence, g € Gy.

G CGNMH: Let g € Gy, L € NU{0} and I < a < [+ 1 such that nm%oo%g’ =a. If
a#l+1ora=10+1and lim, o gV (z) = 0 then it follows by 'Hopital’s rule that

gt (z) . . s URT
@ S a1 for all ¢ € N, and hence, g € 7. If @« = [+ 1 then by 'Hopital’s
g2 (z)
g+ (@)
In particular, lim, .. ¢**t?(z) = 0. So by I'Hopital’s rule again, 0 = lim, ., zg(*?(z) =
limy oo g(l:;;(‘”) = —lim, oo % = —lim,_o 22¢"*3) (x). By induction,

lim, 00 2'gUT* D (2) = 0 for all i € N. Hence, g € P.

lim, o

rule lim,_, = 0 so that if lim, . g(l“)(:v) =~ # 0, then limy_,o zg(t2) (x) = 0.

Proposition 5.2 If g € T then g is a tempered function.

Proof: Suppose that [ > 0, g € 7; and that 0 < A < 1 such that lim,_, %g/ = A+ 1

Since 7 C R, all the derivatives ¢ has eventually constant sign. Also, by 'Hopital’s rule,
lim, oo % = \. Hence, by Lemma 2.2, ¢ is a Fejér function and therefore g is a tempered

function of order .
O

Definition 5.3 Let

2 f0 (g
S:{fECOO(RJr)\man;Oi(;g):()forallieN}

Examples: The following functions belong to S:
° 7+Z?:10ixﬂi, where v #0, ¢, € R, 3; <0,i=1,...,k.
e v+ cos(log? ), where |[y| >1,0< < 1lor~y€R and § <0.

e v+log?z, wherey e R, e R
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o v+ Sinlggim), where v # 0.

Proposition 5.4 Let [ € N U{0}.

[

(i) Let 0 < A < 1. Then g € T} with limy_, “;‘Zl((;)
such that g(z) = 22 f(x).

A+ 1 if and only if there exists f € S

(ii) If g € T; with lim,_ % = [+ 1 then there ezists f € S with limg_,o f(x) = 0 such
that g(z) = 2! f ().

(i) Let v € R\ {0}. Then g € P, with lim, .o ¢tV (2) = 7 if and only if there exists f € S

with limg o f(x) = ﬁ and such that g = '+ f.

Proof: (i) (=) and (ii). Let 0 < A < 1. Suppose that g € 7; and that lim,_. 20(@) _ Ny,

(=)
By I'Hopital’s rule, ’
(i4+1)
T At CO N (16)
fori=0,1,2,.... Let a =X+ 1 and let f(z) = %. Then
gD (z) = Z a5 fO3) (1), i=0,1,... (17)
s=0

where a;o = 1 for all 4 and a;s = ¢ H;;(l)(a —j) for s =1,...,4, i > 1. Hence a;s # 0 for

s=0,...,7and for all ¢ if A < 1 and for : <1+ 2 if A =1 so that

i+lfsf(i+lfs) (Z‘)

gt (z)  (a—i)+ Do bis (@)

. = — 18)
(74) T i—1 ' xzfsf(zfs)(x) (
9"(x) R D
fori =0,1,2,... when A < 1and fori=0,1,...,l+1 when X\ = 1, where b;s = m,
Cis — m When A =1 andZZl—i—Q, then

i CEi+1f(i+l)(z) 1+1 ' Cvi+1—sf(i+1—s) (x)

rgt V@) TRt e Gt 19)
(4) +1 xi—s fli=s)(g ’
g (x) Zs—io ais%()

Since o = wlirgo x;(’i;:)’ we get from (18), ¢ = 0, that wh_}rrgo x;c(,g) = 0, and by induction on i, using
(16) and (18) when A < 1 and using (16), (18) and (19) when A = 1, we get lim “F0() —,

i=1,2,.... Hence, g(z) = % f(x) where f € S. It is left to prove that lim;_.. f(z) = 0 when
A = 1. But this follows from the facts that ¢ € 7; so that lim,_., ¢/+tV)(z) = 0, and that

l pltl=s £(i+1=s)
g (@) = f(x) ((l + 1!+ Zalﬂ,s + }C(;; ( )> .
50

(20)
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(i) («). Suppose now that 0 < A < 1 and that g = 2**'f, f € S. It follows from (18) that

M:)\—l—l—iforizo,l,l..., and hence, g € 7.
g (x)

(iii) Let v € R\ {0} and g € C®°(R*) such that lim, .o g**V(2) = ~. Let also g = g¥
and f1 = g1/x. By Hopital’s rule, lim, . f1(z) = lim;— ¢} () = 7. Furthermore, we have
gy) = ifl(i_l) + .I‘fl(i) for i € N. By letting i« = 1 we get that lim, o xf](z) = 0. Hence, by
induction on i, we have

limg oo

lim 2g/"™(z) =0 & lim 2% (z) =0, i €N. (21)
T—00 T—00

(=). Let g, v and f1 be as above and assume that g € P;. Let fo = —f#5. Then, by

g (x)

I'Hopital’s rule, lim, . fo(x) = lim,; .o i (111)!' It is left to prove that fo € S.
l l l
Since :vgg((;;m = g(ftl) so that limg, % = 1, we obtain (16) for A = 1 and i = 0,...,1,

by 1'Hopital’s rule. We also have (18) for f = fa, A = 1 and ¢ = 0,...,0 + 1. Hence,
limg oo xifZ(Z) (£) =0fori=1,...,1+2. Since g) = (I 4+ 1)z fs + Zi;% alsle_SfQ(l*S) (see
(17)),

-1
A=0+Df+ Y aal [ (22)
s=0

so that for some bs; € R, :Uifl(i) = (I+ 1)!xif2(i) + Zi_:lo ais (Z;’:O bijl*”i*jfél_sﬁ_j)). Since

limg o0 xifl(i) () = 0 by (21), it follows by inducton on ¢ that limg_, xifQ(i) (x) = 0 for all i.
Hence, fo € S.

(«<). Suppose that g = 2!l fy, fo € S, limg_.oo fo(2) = 72 € R\ {0}. In the same way
as we obtained (22) we now get that ¢(). = zf; where f; is given by (22). It follows that
limg o0 fi(z) = (I + 1)!y2 and that f; € S. Hence, g € P; by (21).

O

Lemma 5.5 If fi, fo € S and c € R\ {0} then

(i) fif2€S

(i) 1/ €8

(iti) cfi +xfl €S

(iv) fi42%fs €S ifa <0

(v) fi+ fa €S if L =limy oo f;g exists in RU{xoo} and L # —1

1
s

Proof: (i) Let f = f1fo. Since f0) = 22:0 ( ) flifs)fés), we have

. xif(i)(x)_ . i i xi—Sf(i—S)(x) xSf(S)(m)_
i o = () i e

5 )
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for ¢ € N.

(ii) Let f = 1/f1. We show by induction on i that xiJ}(i) is a linear combination of terms

i £(3) ! /
of form [] mjjfll When ¢ = 1 then ”C]Jf = —% which is of the right form. Suppose
Yji=i
zt ) 90ljf1(lj) () f1(l & ! 1
=>,a0, o= ] #— so that f =37 ¢f JI “ and f' = —f%. Then
Zl]:Z Z] J_Z
. (Is+1) _ pr £(ls) (15)
f(z+1) =3¢ I f1 FEY, fify —fifi 11 hH' so that
ijj:i /i LA,
() +1 p(Is+1) rpls £(s) (5
i1 (1) zf! zlf, 7 glstlf xf] a's f i fy? PRI
= =Y ( i ZIZI_i T 5 S el et run U IS Ry o ) which is
§4=

of the right form. Hence, lim,_, o xl§22§m) =0 for i € N so that f € S.

(ifi) Let f = cfy + xf]. Then f@ = (c+ )" + 2™ so that for i € N,

o 2 f{(z) | 2T (@)
aifi@) ) e
lim ———~% = lim
T—00 f(x T—00 c+ Ifl( )

fi(x)

=0.

(iv) Let f' =fi + 2 f3. It follows by induction on i that O = fl(i) + 2 afa—1) - (@—i+
Df2 437 ijJfQ(])) for some ¢; € R so that

210 @) | afola) v 37 (x)
L aifO) Am R (@ (- it D+ o g ;
m =

T—00 - T—00 o f2(z)
f(:(}) l1+z fi(z)

for i € N, since by (i) and (ii), % € S and limg_,o0 ¢ Ezg =0 by Lemma 2.1.
(v) Let f = f1 + f2. Suppose that lim; ]%\ < 0o. Then for all i € N,

o 2 fi7(@) | folz) 20 (@)
e et R e
lim ——~% = lim =0.

O
Remark: If ¢ = 0 then Lemma 5.5 (iii) is true only for some f; € S. For example, if
fi(z) =logz then ] = 1 which is in S, while if fi(z) =1+ 1 then zf{(z) = -1 ¢ S. Note
also that Lemma 5.5 (iv) is not true for o > 0. For f1 + 2% fy = 2%(fo + 27 %f1) so that if
x%fy € G, then also fi1 +x%f2 € G and therefore f; +2%fo € S.
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Lemma 5.6 Let 0 < oy < g and suppose that

g1 € G(a1), 92 € G(az), 9(w) = g1(x) + g2().

Then g € G(ag) and g € P if and only if g2 € P.

Proof: By Proposition 5.4, there exist fi, fo € S such that g1 = 2% f1 and go = 2 f,. We
have g = g1 + g2 = (™72 f] + fo) and f = 272 f; + fo € S by Lemma 5.5(iv). Hence,
if ag € N, then g € 7 (a2) by Proposition 5.4.

If ap =1 € N and limg o0 fo(z) = 7, then lim, oo f(2) = limg oo (2 L f1(2) + fo(z)) = 7.
Hence, g € P;_1 if v # 0 by Proposition 5.4(iii).
(4)
Let ap =1 € Nand v = 0. If g1,92 € T then it follows from Lemma 2.6 that lim,_,, “]%T(x) =0
g

P (x)
for all « € N such that

a:g;“><z) 29\ (2) ¢{" (x)

(i+1) . @y oD (a (i+1)
limw:hm ) (x) ()() '@ _ o wgg() (rr):az_z
v—oo glW(z)  w—eo 14 9@ w0 glt) ()

9 (@)

which shows that ¢ € 7(ag2). Suppose now that g; € P and g2 € 7. We have g = g2(1 +

%) = go(1 +$a1_l%). Let ¢ = 1+ x‘“_l%. By Lemma 5.5, ¢ € §. For any j € N,

g(j) = Z:O (i) géjfs)qﬁ(s) and for i € N,

. Z;—Lé <Z + 1) g§i+1_s)¢(s) zgé2+1)( ) n Zf:;ll <’L + 1) géz'-&-t—S)(;p) xqﬁdiz;()m)

zg ™ (z) S 95" (@) s 95" (@)
g () ; ’ g5 )
=0 9215¢(S 1+Zsl <)¢¢>
(23)
) 25 PO R C R ) gD e(e) )
Since ¢ € S such that —5— — 0, o T T gl ngl D g (goe)s to 0 if
_ I+1
lg{i—1,...,i+1—s}. Suppose that l € {i —1,...,i+1— s}, and let f = %. Then
~ 1'92
limg, o0 el = (0. We will show that limg, o0 fxs¢(s) =0for s € N. Let A\ = a1 — [ and

f
Y = f1/f2 € S such that ¢ = 1 4+ 2. Then

J)

s—1 25— s
¢ =2y [ T =) +Zaw ,
j=0

where as; € R. Hence, lim; . f:nsgb () = 0 if hmxﬁoox wf 0. Let g = J,‘)‘T/)f. Then
limg, o0 % = A < 0. Hence, by Lemma 2.1, lim,_. f:csgb = 0. It follows that

(i+1—s) (i—s)
95 (z) 2¢(*) (x) : g () ) (z) _
2ggi)(x) @ = 0 for all s € N. In the same way, lim;_, s )o@ 0 for

i (i+1)
all s € N. Hence, by (23), lim,_.s 2™ (@) _ limg 0 20 @) for all 4 € N, and therefore
Y g (z) gél)(:ﬂ)

limg o0

29



geT.

If g € G and h € N, we will use the notation
Apg(z) = g(x + h) — g(z).

It is not hard to show that if ¢ is a tempered function of order ¢ and 5 > 0 then g(z+ ) — g(x)
is tempered of order i — 1 (see for example [17, p. 36]). We have the following generalization
of this fact.

Lemma 5.7 Let > 1 and g € G(«). Then Apg € G(a—1) and g € T if and only if Ag € T.

Proof: Ifl>1and g € P, such that lim, ., g¢TV(z) = v # 0, and lim,_, o, 2°g"H) (2) =
0 for all i € N, then by the mean value theorem there exists z; = z;(z), z < z; < x +
h, such that limm_,oo(Ahg)(l)( ) = lim,_, Oog(”l)(zo)h = ~vh and limg, . xi(Ahg)(l“)(m) =
limy o ' g1 (2;) = 0 for all i € N. Hence, Apg € Pp_;.

Let g € 7 and ¢ > 1. Then for some 0 < ¢;,d,; < h and by Lemma 2.3, lim,_, %

. D (ate)h 1 (i+1) . . .
limy oo % = limy oo %(x(f) = a—i. Also,if @ =1 € N then lim, 0 (Apg) Y (z) =

hlimg e gV (x) = 0. Hence, Apg € T(a— 1) for all o > 0.
Od

)

Lemma 5.8 Let o > 0, | = [a] and let g1,g92 € T(a) be such that either lim, o 2 (zT)()
x

exists in R U {xoo} or if a ¢ N, lim,_, —g;gg exists in R U {d+oo}. Then limy_, 2”52

lim 91(x)
T—00 go(x)

Proof:  Since if g € 7 (o), then lim, Lz;()z) = a —1 for all © € N, we have that

mgﬁ”( ) (1)

0@ i w g @) _a—itl g @)
z—o0 (1) T 250 mg()( ) (i—1) o a—1+1z—0 (i—-1)
9o x

(24)

for all i € N for which a # i — 1. If a ¢ N and lim, g;g; exists, the conclusion follows
(1+1)
)

by induction on i. Suppose that & € R and that lim, . UT)EOC) exists. Then by induction

(144) (a+1)
g1 (z) )
and (24), limy_, o = o

(z)
1)
limy, oo (ITEQC; for all 0 <+ <[ by 'Hopital’s rule.

(i)
for all # € N. Furthermore, lim;,_ . (i)Em; —

(z
hmx_wo aT)()

O

Lemma 5.9 Let 0 < a3 < a9, ag > 1. Suppose that g1 € G(a1) and g2 € G(ag) are such
that g2 — g1 € G and such that if [ag] = 1 and go — g1 € T(aa — 1), g2 € T(az), then

(I+1)
92 @) orists in R U {xo0}. Let h € N, and let

limy— o0 (92—91)D ()
9(x) = g2(z + h) — g1(z).
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Then for sufficiently large h,

a9 if ag >

9 €G(), where A= { max{az — 1,8}  ifaz = 1,92 — g1 € G(B), B < az.

If ag € N and g2 — g1 € G(ag — 1) then g € P if either go — g1 or g2 is in P.

Proof: If ay < ag, then g2 — g1 € G(a2) by Lemma 5.6 and Apgo € G(ae — 1) by Lemma 5.7
so that g = g2 — g1 + Apg2 € G(a2) by Lemma 5.6.

Suppose that a; = as = « and that g2 — g1 € G(3), where § < a. If § # a — 1, then
g=g2— g1+ Anga € G(N\), where A = max{f,« — 1}, by Lemma 5.6.

Suppose that § = o — 1. Since ga — g1, Apg2 € G(a — 1), it follows by Proposition 5.4 that
there exist fgl,fg € S such that go — g1 = 2% fo; and Apgy = a:o‘*lfg. Let f = fo1 + fg
so that g = 27 1f. By Lemma 5.5(v), f € S if limy Ji;gl((:;)) exists in R U {£o0} and does
not equal —1. If @ € N then there exist v21,72 € R such that lim, o fo1(z) = 721 and
lim, oo fQ(x) = voh. Hence, f € § and lim,_, f(z) # 0 if either go — g1 € P or g2 € P so
that g € P in these cases by Proposition 5.4.

Suppose now that go, g2 — g1 € 7. We have for some x < z, < z + h and by Lemma 2.3 that

Polz) _ o Buga() gplza)h o gp()h (25)

2o00 for () w00 ga(a) — g1(x) | 2o00 ga(w) — g1 (x) | 2m00 ga(w) — gu(x)]

9 @)
m exists in R U {:tOO}

for all i > 0, and is different from —1 for sufficiently large h. Hence, if « ¢ N then g € T(a—1)
by Proposition 5.4. It is left to prove that g € R if o € N.

which exists since by our assumption and Lemma 5.8, lim,

Let i € N. If limy oo 2 @) ¢ R then
’ P20 (ga—g1) ) ()
. 1(92791)(”1)(‘%) xg§i+2)(x) ggi+1)(x)
. xg@ (@) (gD (@) WD (@) (92— ()
lim —————* = lim =
T—00 g(’) (x) T—00 gghL )(x)

1+h (92—91)® ()

exists since the limits of all the smaller fractions exist. Hence, g € R and therefore g € 7 (a—1).

(i+1)
92 _{7) 7 € {*o00}, is similar.

The case where lim;_, r 0@

O

The following corollary now follows from the lemmas 5.7 and 5.9 and easy checking.

Corollary 5.10 Let G C ;> Gi be such that Gaig = {91 — g2 | 91,92 € G, 1 # g2} C G.

Suppose that if « > 0, [a] =1, and g1,92 € GNT(a) are such that go — g1 € T (o — 1), then
(1+1)

limg 0o (952—917)((’?2@ exists in R U {xoo}. Then for any g1 € G and for all sufficiently large
h € N, the set

G={9—g1lgeG.g#n}tui{ili(x)=gl@+h)—g),gcG}

is contained in G and Gaig = {91 — 92| 91,92 € G, # g2} CG.
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Proposition 5.11 Let G C G be a finite subset such that Gaig = {91 — g2 | 91,92 € G, 1 #
g2} C G and suppose that G has the R-property.

(i) If G C Gy then G has the M-property.

(i1) Suppose that G C |J;~1 Gi- If g1 € G is such that % is bounded for all g € G, and if
h €N, let -

G={9—g1l9e€CGg#g}tU{jlix)=g(z+h)—glz)geC}.

Then for sufficiently large h, GU Gaig C G and G has the R-property.

Proof: (i). Let G C Gy, 0 < a <1, G(a) = GNG(a) and let ¥1,199 € (G(a) UG () i) NT .
Suppose that ¢ € T(51) and 9 € T(B2). If 81 > (o and f = Z—%, then by Lemma 2.6, f
goes monotonically to 0, and lim,_, fo/ = (o — 01 # 0. If B = P2 then by the R-property,
limg oo % € R\ {0}. Hence, G has the M-property.

(ii). Since G has the R-property, G satisfies the conditions of Corollary 5.10 such that for
sufficiently large h, G U Ggig C G. It is left to prove that G has the R-property.

Let g1 € GNG(ay), where a; > 0, and let @ > 0. Any function in @(a) is of the form g, — gy or
92 — g1 + Apga, where go € GNG(az), and since ay < ag, either ay < o = g or a1 = ag > «.
Therefore, any function in G(a) U G(«)qig is of one of the forms

g2—0g1, 93— g1+ ADng3,  ga—9gs, 96— g1+ Dngs, 98 —go+ Ap(gs—g9)  (26)

where g; € GNG(a;),i=2,...,9 and either a1 < e = =ag=aora; =ay=---=ag >
a. If a; < « then the ratios under study have good behavior by the R-property of G. Suppose
now that a3 > «a. Let us for now say that a function g has the rate 5 if g € G(3).

For each ¢ € {1,2}, let ¢, € T(8;) be a function of one of the forms (26), and suppose that
Bi— By =1€ NU{0} and that v\'™ and ") have the same rate 3, where k = [35]. Then

(I+k)
W may be written as a ratio of sums of partial fractions where the common denominator of

2
each partial fraction has the rate g, as in the following example,

(gz—g1) R
) (1+k) I Cha

(I+k)
lim wl = lim (93 e = 11m ————
mmee g e g — g+ Aage) () emm lonp D
6

where (g3 —gl)(”k),gékﬂ) € T(3) and (g6 — g7)® € G(\), A < 3. Note that Apg has the same
asymptotic behavior as hg'. If the numerator of the partial fraction has lower rate than 3 then
this partial fraction tends to 0. Otherwise, it tends to a non-zero number by the R-property of

(1+k)
G. Tt follows that by letting h be sufficiently large, lim, w;T € R\ {0}.
O

The following lemma will be used in Section 7. Recall the definition of tempered functions,
Definition 1.4.
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Lemma 5.12 If g(x) is a tempered function then [g(n)]y, n = 1,2, ..., is uniformly distributed
(mod 1) if and only if v is irrational.

Proof: By Fejér’s theorem, Theorem 1.5, and the remark following it, g(n)A\, n = 1,2,...,
is uniformly distributed (mod 1) for any A € R\ {0}. Let h € Z \ {0}. Then

N N N
NS ominlgmy i LN 2min(gv—{em)) — i b
lim N ; e = lim I Z e = lim N 1; flg(n)y,g(n)),

N—o0 N—oo N—o0
n=1

where f(z,y) = e2™Mo={v}7) is a Riemann-integrable periodic mod 1 function on R2. So
if (g(n)y,g(n)) is uniformly distributed (mod 1) in R? then limy .o % 27]2[21 e2miblg(mly =
folfol f(z,y)dzdy = 0 and by Weyl criterion (see [19, p. 7]), [g(n)]y, n =1,2,..., is uniformly
distributed (mod 1). Now, (g(n)7, g(n)) is uniformly distributed (mod 1) in R? if and only if
ag(n)y + bg(n) = (ay + b)g(n) is uniformly distributed (mod 1) for all a,b € Z, (a,b) # (0,0),
which is true if and only if « is irrational.

O
We will end this section by proving a convergence theorem for tempered functions (and not
just for functions in the class 7).

Let [ € N and for 0 <1 <, let 9; be a tempered function of order i, and let

E(pr,... ) =span{y)? |0 < j <iji=0,...,1}\ {0}, (27)

where the linear span is taken over R. We will say that g € £(¢1,...,%¢;) has order i if
g= Z;Zl gj, where g; € E(Yn,...,1y) is tempered, and max;{order(g;)} = i.

A subset {g1,...,9x} C E(W1,...,1y) is said to be admissible if for any 1 < i < j < k one of
the following (mutually exclusive) conditions holds:

(i) the order of g; is less than the order of g;

(ii) there exists ¢ € R\ {0} and 1 < r < order(g;) such that g; — g; = cgj(r) + p1, gj(-r),pl €
E(W1,...,) U{0} and % — 0

J

(ili) there exists d € R\ {0,1} such that g; — g; = dg; + p2, p2 € E(W1,...,4;) U {0} and
P2

— 0.
gj

Example: The set {log®?z,21log®? 2, z1og®? ., 25/2 log &, 2™ (2 + cos v/Iog x)} is admissible.
See also additional examples of admissible sets in the formulation of Corollary 5.14 below.

Theorem 5.13 Let I € N, and let 11,...,¢; and E(¢1,...,1;) be defined as in (27) above.
Let k € N, and suppose that {g1,...,gx} C EWr,...,Y) is admissible. Then for any invertible
weakly mizing system (X, B,u,T) and any fi,..., fr € L=(X, B, ),

N k
% ZT[m(n)]fl .. .T[gk(n)]fk _ H / £l =o.
n=1 i=1

2

lim
N—o0
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Proof: Let first [ = 0 and ¢ a Fejér function. Then E(¢) = {cy | ¢ # 0} and ¢; = ¢;%),
i =1,...,k, such that ¢; # ¢; when ¢ # j. Consider

N
% STl fy el g

n=1

where we may assume that [ f; = 0. By making a change of variables, m = [¢)(n)], we have
[civvi(n)] = [eim] + di(n), where d;(n) takes only finitely many values. Let ¢(n) = [{k € N |
[¢(k)] = n}| such that by the Lemmas 2.4 and 2.5, ¢(n) is almost increasing (see Remark after
Theorem 3.6) and lim, o i(( )) = 0, where ®(n) = >;_,#(k). Then by Theorem 3.6 and
Proposition 4.4,

N

N
1 1
i — lerp(m)] ¢ .. plexd(n)] - I _ [ern]+di ¢ plern]+dy
1\}21100 N ZT fioT Jr 2 ngnoo BV nzz;)cz)(n)T fi---T fr 2
1 N
= J\}Enoo N T; T[c1n]+d1 foee T[ckn}+dk £ 2

The rest of the proof, when [ > 0, goes along the same lines as the proof of Theorem B in
Section 6 below and the details are left to the reader. However, we will here check that when
using the van der Corput trick, we get a new set of functions which also is admissible. First,
notice that if 61,6, are two functions and 62 — 0 then [01(n) 4 62(n)] = [61(n)] + d,,, where
dp, takes only finitely many values, and therefore 6, may be neglected. Hence, if g has order i
and Apg — (hg' + Z ahg(J)) — 0 then we can use Ang = hg' + Z ahg(J) instead of Apg.
Assume that g; has order at least one, and that order(g;) > order(gl) i=2,...,k. We will
show that the set

G={Ang1.0i— 91,9 — g1 + Dngi | i =2,... k},
which is a subset of £(1,...,1), is admissible. We have that

e the pair g; — g1 +Ang; and g; — g satisfies condition (ii) of the definition of admissible sets
(see above) with r = 1 if the pair g, g; satisfies the condition (i) or (iii), and it satisfies
the condition (iii) if the pair g1, ¢g; satisfies the condition (ii) with » = 1, and (i) if g1, ¢;
satisfies (ii) with r > 1,

e the pair ¢g; — g1 and Ahgl satisfies the condition (i) if g; — g1 has the same order as g; or
has smaller order than g, and the condition (iii) if g;, g1 satisfies (ii) with r = 1,

e the pair g; — g1 + Ahgi and Ahgl satisfies the condition (i) if g; — g1 has the same order
as g;, and the condition (iii) if g;, g1 satisfies (ii),

o ifi>j 6,6 €{0,1} and ws = gs— 1 +esAngs, s =1, 7, the pair wj, wj satisfies the same
condition as g;, g; does if order(g1) < order(g;) < order(g;) or order(g;) < order(g;).
Suppose that order(g1) = order(g;) = order(g;). Then for s =14,j, gs = g1 + csgys) + Ps,

where r; > 0 and (pfs) — 0. Hence, since w; — w; has at least order 0, the pair w;,w;
g

satisfies (i), (if) or (ifi).
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Hence, G is admissible.
O

Corollary 5.14 Let g1,...,gr be tempered functions and assume that they satisfy one of the
following four conditions.

(a) gi =a;g, i =1,...,k, where g is a tempered function and a; < ag < --- < ay.

(b) gi(z) = glx+a;), i =1,...,k, where g is tempered of order at least one and 0 < a; <
ag < - < ag.

(c) g; is tempered of orderi,i=1,... k.

(d) If | € N and ¢ is tempered of order 1, let Q = {Zézo a;i® | a; € R} \ {0}, and let
91559k € K2 be such that g; — gj € Q for all i # j.

Then for any invertible weakly mizing system (X, B, p, T) and any fi,..., fr € L=(X,B, ),

N k
;zﬁmmmnfwmhn/ﬁ _o.
n=1 i=1

2

lim
N—oo

Remark:

A natural extension of (a) could possibly involve powers of a tempered function g. However,
a power of a tempered function does not need to be tempered and may not be an element
of G even if ¢ € T. For example, if g(z) = /(2 + cosy/logz) then g € Ty but ¢*(z) =
#(2 + cos 1og7)? ¢ .

6 Proofs of Theorem A and Theorem B

The proofs of Theorems A and B are similar and go along the lines of the proof of the weakly
mixing PET in [2]. We will sketch here the proof of Theorem B; the reader should have no
problem to check that an almost identical argument gives a proof of Theorem A.

Let G = {g1,...,9x} be a finite subset of G such that g; — g; € G for i # j and such that G has
the R-property.

Suppose that d = max{i | GNG; # 0}. Let G;=GNG;,i=0,1,...,d, so that G = U?ZO G,
where Gy # ). Each G; can be further decomposed into the disjoint union

@:UQQ
j=1

where G§i), j =1,...,n;, have the following property: if g,, € Gg) and gs, € Ggi) then r = s

if and only if g,, — gs;, & G;. So we have



We say that G has the characteristic vector (ng,n1,...,ng), where n; is the number of different
groups of functions in Gj.

Example: The functions ¢, = 23/2, gy = x3/2(3—|—cos Viegx), g3 = 2324254 gy = 2324212,
are in GG; and are divided into the three groups {g1,94}, {92} and {g3}. Hence, n; = 3.

Let F(ng, n1,...,nq) be the family of all finite subsets G C G with the following two properties:

(i) G has the characteristic vector (ng,ni,...,nq).

(ii) G satisfies the conditions of Theorem B.

Consider the following two statements:

T(ng,n1,...,ng): "Theorem B is valid for any G € F(ng,n1,...,nq).’
T (R0, - s Mt 1y - - -, ng): " T'(ng,ma,...,ng) is valid for any (ng,nq,...,n;).’
Note that Theorem B is equivalent to the statement: "T'(Tig, 721, - - -, 1ig) is valid for any d’. It is

enough (see the proof of [2, Theorem 1.2]) to prove the case d = 0 and ng = 1 and the following
implications:

T(ng,nl,...,nd):>T(no+1,n1,...,nd); ng,---,Ng_1=>0,ng>1,d>0 (28)
T(no, - i—1,Niy---,ng) = T(0,...,0,n; +1,ni41,...,n4q), (29)
—
i zeros
NiyoooyNg—1 > 0,ng>1,d>1>0
T(ng,m1,---,nq) = 1(0,...,0,1), d>1 (30)
———
d+1 zeros

The case d = 0 and ng = 1 and the implication (28) for d = 0 is done in Theorem 4.3. The
proof of (28) for d > 0 can be done similarly. The proof of (30) is the same as that of (29).
Thus we will finish the proof by proving (29).

Suppose that G is a finite set of functions from G such that also the difference of any pair of
them is in G, and such that G has the R-property, and assume that G has the characteristic

vector (0,...,0,n; + 1,m41,...,n4), where i > 0. Fix one of the n; + 1 groups of functions
from Gj; such that if g11,..., g1 are its functions and the rest of the functions in G is denoted
by go1, ..., g, then % is bounded for each j. Let

zy = Tl g oplow®] g plonl g oo ploa@l gy

where f;; € L*(X, B, pv). Without loss of generality we may assume that one of the functions

N
fij has zero integral. With this assumption we have to show that A}imoo % > an|| =0. By
- n=1 2
Theorem 4.1 it is enough to prove that
1N
lim sup — x Tn) =0 31
N—>oopanl< n+h> n> ( )
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for all sufficiently large h. We have

<xn+haxn>
_ /HT[QU (nt)] HT[gQJ (b g, HT[gu N, Hngj ) fydp
j=1
_ / lon ) [ £, HTgu (nh)=lon (] £, HTL‘”J(”+ Pl g,

J=1

k
« H Tlossml=lon(m)] ¢, H Tl =l g, )y,

/f11 HTg“ e gy HT[‘%J ez fo HT[g”(n T fuy HT[QQJ (Wltess fodp

Jj=1 j=2 7j=1

where ¢;; € {0,1} and

g15(n) = g1;(n) —gn(n), j=2,...,k
92j(n) = g25(n) —gu(n), j=1,2,....1
{713'(”) =gij(n+h)—guu(n), j=1,2,...,k
9o;(n) = g2j(n+h) —g11(n), j=1,2,...,1

By Lemma 3.4 we may treat the c¢;; as constants. By Proposition 5.11 the set G = {01 |
Jg=2,...,k} U{ge; | 7 = 1,...,Z}U{§1j | 7 = 1,...,k}U{§2j |7 =1,...,l1} € G
and is such that any pairwise differences of functions from G are in G for all sufficiently
large h, and G has the R-property. By Lemma 5.9, the characteristic vector of the set

{QIZ(n)v s 7g1k(n)a éll(n)7 s ’élk(n)’921(n)’ ce agQZ(n)).éZl(n)? s 5.62[(”)} has the form
(@0, @1y« y Qim1, My Mg 15 - - -, g). Applying T'(Tig, -~ -, i—1, N - - -, Ng) (Weak convergence) and
using the fact that one of the functions f;; has zero integral, we get

N k ! k !
. 1
A}EHOON;@MM%M _jl—_Il/fljdujl:[l/f%dujl:[l/fljdlujl:[l/f2jdlu_0.

7 Ergodicity of higher orders for Fejér functions
We start this section by proving a result which is an extension of the case k = 1 of Theorems

A, B and 4.3, in two directions. First, it holds for all tempered functions and not just for some
subclass thereof. Second, it holds for any ergodic system.

Theorem 7.1 If g is a tempered function, (X,B,u,T) is an invertible ergodic system and

f e L*X,B,u), then
1 N
ZT{g(n)]f_/f
=1
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Proof: We may assume that [ f = 0. According to Lemma 5.12, [g(n)]y, n = 1,2,..
uniformly distributed (mod 1) for any irrational 7. Hence, since

., is

N
. 1 2milg(n _
lim N Z e2milamly — (32)

N—oo
n=1

for any v € Q\ Z by [19, Theorem 1.4, p. 307], (32) is true for any v € (0,1). By using the
spectral theorem, we have

1 N
>l g
n=1

1
= > / Tlo)] prlatm) £,

2 n,m=1

1
= 3 /fT “loml gy,

n,m=1

1 Yy m
= = Z / 2mi([g( )])def()

n,m=1

:/NN

2
dvy () (33)

1 3 ezmilatly

n=1

where vy is the spectral measure with v¢({0}) = 0 since T is ergodic and [ f = 0. Hence, (33)
converges to 0 as N — oo.

O

Corollary 7.2 If g is a tempered function, (X, B, u, T) an invertible measure preserving system
and A € B with u(A) > 0, then

N
1
lim — AN TIMIA) > (u(A))2. 4
i Do u(ANTHLA) > (u(a) (34)
Proof: By using weak convergence in the above theorem we get that for any ergodic system

N
(X,B,1,T), A€ B,and f = 14, th + 3 uAnTEMIA) = hm z [fr=lvmlfay =
—00 n=1

(J)? = (u(A)2 If (X,B,u,T) is not eré;odic the inequality (34) follows by utilizing the
ergodic decomposition of u (see for example [3, Sec.5]).
O

Theorem 7.3 Let g1,92,...,9x € F be such that lim,_ .. gigf(lg) = 0 and the ratio 9;(1585) i

eventually monotone, i = 1,...,k — 1. Then for any invertible ergodic system (X, B, u,T) and
any fl’ o '7fk € LOO(Xva,u);

N k
1
Sl gy ool T / fi
=1 2

n=1

lim
N—oo
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Theorem 7.3 is a corollary of the following more general result.

Lemma 7.4 Let either gi(x) = x or g1 € F, and let ga,...,gx € F, gr+1 € F U{0}, so that
(z)

limg o0 gl+(1:£:)c) = 0, and such that the ratio g”fé ) is eventually monotone, i = 1,...,k. Let

also for 1 > 0 andi=1,...,1, gi; € F, so that limy_. (@) _ 0, and such that the ratios

k()
ggll:((;)) and Zlﬁ((j)) are eventually monotone. Then for any invertible ergodic system (X, B, u,T)
k

and any fla"'vfk € LOO(X,B’M)’

N k
LS =T o] gl @l @) g, o=l g T / fi
N
i=1

n=1

lim =0.

N—oo

Proof: In the proof we will use the following facts repeatedly. First, if ¢ € F and h € N,

then [g(n + h)] — [g(n)] = 0 for a set of n of density 1, by Lemma 2.12. Second, if ¢1,¢92 € F,

limg 00 gfgg 0 and gig ; is eventually monotone, then go(x) = ga(g; ' (z)) € F and [ga(n)] =

[G2([g1(n)])] on a set of n of density 1, by Lemma 2.7.

The proof is by induction on k. To prove the base of induction, k¥ = 1, we have two cases to
check.

Case 1, when ¢g1(n) = n. If 2, = T”‘Eizl[gli(”)]f, [f =0, then (zy,xpin) = ffThfd,u
on a set of n of density 1. So impy_.cc 7 Zf VHmy e & ij 1<xn,xn+h =([f)?=0by
ergodicity of 7. Hence, by van der Corput’s theorem, limy_.o || % Z 1 Zn|l2 = 0. Note that
this result would not be true for all ergodic T" if g;(n) = an, a > 1.

Case 2, when g1 € F. Let m = [g1(n)], ¢(m) = [{n | m = [g1(n)]}| and gui(2) = gui(97 ' (2)),
1=1,...,1. Then

LS s (=52 s (o] 1 9! [g1:(m)]
]\}gnoo NZTgln i=1lo1i(n)] ¢ - ]\}E)noo Bl Z d(m Lizalgri(m)] ¢
n=1 2 2
— 1 I n— [914(n)]
v ZT |

according to the lemmas 2.4, 2.5, 2.7 and Theorem 3.5. We are back to case 1.
Suppose now that the k — 1 case is proved. Let

Ty = T[Ql(n)]*Zé:l[gu‘(n)}flT[gz(n)]*[ng(")}fg o T[gk(n)]*[gml(n)]fk

where we may assume that [ f; = 0. Again, if g;(n) = n, then
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= /flThfldﬂ/fg"'/fl?

by the induction hypothesis, where g(n) = S>'_ [g1:(n)] — [gr(n)] + [gk+1(n)]. Hence, by
ergodicity of T,

H N

fim_ >0 i S e = ([ 02 [ 5 [ 2 =0

H—oo N—oo
h=1 n=1

If g1 € F then let, as in the case k = 1, m = [g1(n)] so that

Ly 1Y S [g1im)] (98- (m)] = [951 ()]
i || = i | S Sl el
n=1 2 m=1 9
1 N Uops N .
= i || ;Tnzizl[gm)] fyoo Tl =l )] £, 2

by Theorem 3.5. We are now back to the previous situation.

For example, Theorem 7.3 is true for

o gi(x) =a%¢pi(x),i=1,...,k, where 1 > a3 >as>--->ar>0and ¢1,...,05 €S.
o gi(x) =aloglx, i=1,... k where 0 < o< 1land 81 > 2 > --- > (.

In a similar way as we got Corollary 7.2 we now have

Corollary 7.5 (Cf. [5, Corollary, p.32]) Let g1,92,...,9x € F satisfy the assumptions of
Theorem 7.3. Then for any invertible measure preserving system (X, B, u,T) and any A € B,
u(4) > 0,

N
: 1 n n k+1
A}EHOON;M(AQT[M AN N A) > (u(A)FL (35)

The equality in formula (35) holds for all A € B if and only if T is ergodic.

Corollary 7.5, being a result about an arbitrary probability measure-preserving system has an
interesting application to combinatorial number theory.

By Furstenberg’s correspondence principle (see [7, Prop. 7.2], [4, p. 755-756]), given a set
E C N with d(E) > 0 (see definition of d(E) in footnote 5) one can find an invertible probability
measure preserving system (X, B, u,T) and a set A € B with u(A) = d(E), such that for any
k € N and any ni,ns,...,ni € Z, one has

p(ANT ™AN---NT "™A) <dEN(E—n1)N---N(E—ng)).

We see now that Corollary 7.5 implies the following result.
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Corollary 7.6 Let E C N be a subset with d(E) > 0. If g1,92,...,9x € F satisfy the assump-
tions of Theorem 7.3 then one has

d{n e N |d(EN(E ~[gi(m)]) N+ N (E = [ge(n)])) = (d(E))*F'}) > 0.

Remark: For a Szemerédi type result involving multiples of a tempered Hardy function see
the recent preprint [12].

8 Some conjectures
In this short final section we formulate two natural conjectures.
Conjecture 8.1 Let each of g1,...,g9x and g; — gj, © # j, 1 < 4,5 < k, be either a tem-

pered function or a non-constant polynomial. Then for any invertible weakly mizing system
(X,B,u,T),i=1,...,k, one has

=0.
2

lim
N—oo

N k
1
= STl fle s, T / Fudy
n=1 =1

The following conjecture is motivated by Corollary 7.5.

Conjecture 8.2 Let g1,92,-..,9r € T N'H be such that lim,_, %lg) =0,i=1,....,k—1.

Then for any invertible measure preserving system (X, B, u,T) and any A € B, u(A) > 0,

N
1
im — [91(n)] . lok(n)] A} > k+1
]\}gréo N;:l wANT An---NT A) > (u(A) .
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